1
|
Cadenbach T, Sanchez V, Vizuete K, Debut A, Reinoso C, Benitez MJ. Enhanced Visible-Light Photocatalytic Activity of Bismuth Ferrite Hollow Spheres Synthesized via Evaporation-Induced Self-Assembly. Molecules 2024; 29:3592. [PMID: 39124997 PMCID: PMC11314036 DOI: 10.3390/molecules29153592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 07/25/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024] Open
Abstract
Semiconductor hollow spheres have garnered significant attention in recent years due to their unique structural properties and enhanced surface area, which are advantageous for various applications in catalysis, energy storage, and sensing. The present study explores the surfactant-assisted synthesis of bismuth ferrite (BiFeO3) hollow spheres, emphasizing their enhanced visible-light photocatalytic activity. Utilizing a novel, facile, two-step evaporation-induced self-assembly (EISA) approach, monodisperse BiFeO3 hollow spheres were synthesized with a narrow particle size distribution. The synthesis involved Bi/Fe citrate complexes as precursors and the triblock copolymer Pluronic P123 as a soft template. The BiFeO3 hollow spheres demonstrated outstanding photocatalytic performance in degrading the emerging pollutants Rhodamine B and metronidazole under visible-light irradiation (100% degradation of Rhodamine B in <140 min and of metronidazole in 240 min). The active species in the photocatalytic process were identified through trapping experiments, providing crucial insights into the mechanisms and efficiency of semiconductor hollow spheres. The findings suggest that the unique structural features of BiFeO3 hollow spheres, combined with their excellent optical properties, make them promising candidates for photocatalytic applications.
Collapse
Affiliation(s)
- Thomas Cadenbach
- Departamento de Ingeniería Ambiental, Instituto de Energía y Materiales, Colegio Politécnico de Ciencias e Ingenierias, Universidad San Francisco de Quito, Quito 170901, Ecuador
| | - Valeria Sanchez
- Departamento de Física, Facultad de Ciencias, Escuela Politécnica Nacional, Ladrón de Guevara E11-253, Quito 170517, Ecuador
| | - Karla Vizuete
- Centro de Nanociencia y Nanotecnología, Universidad de las Fuerzas Armadas ESPE, Av. Gral. Rumiñahui s/n, Sangolquí 171523, Ecuador
| | - Alexis Debut
- Centro de Nanociencia y Nanotecnología, Universidad de las Fuerzas Armadas ESPE, Av. Gral. Rumiñahui s/n, Sangolquí 171523, Ecuador
| | - Carlos Reinoso
- School of Physical Sciences and Nanotechnology, Yachay Tech University, Hda. San José s/n y Proyecto Yachay, Urcuqui 100115, Ecuador
| | - Maria J. Benitez
- Departamento de Física, Facultad de Ciencias, Escuela Politécnica Nacional, Ladrón de Guevara E11-253, Quito 170517, Ecuador
| |
Collapse
|
2
|
Wang P, Gravel V, Bueno V, Galhardi JA, Roginski A, Ghoshal S, Wilkinson KJ, Bayen S. Effect of nanopesticides (azoxystrobin and bifenthrin) on the phenolic content and metabolic profiles of strawberries (Fragaria × ananassa). JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:6780-6789. [PMID: 37357569 DOI: 10.1002/jsfa.12811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 04/20/2023] [Accepted: 06/26/2023] [Indexed: 06/27/2023]
Abstract
BACKGROUND Nanoencapsulation has opened promising fields of innovation for pesticides. Conventional pesticides can cause side effects on plant metabolism. To date, the effect of nanoencapsulated pesticides on plant phenolic contents has not been reported. RESULTS In this study, a comparative evaluation of the phenolic contents and metabolic profiles of strawberries was performed for plants grown under controlled field conditions and treated with two separate active ingredients, azoxystrobin and bifenthrin, loaded into two different types of nanocarriers (Allosperse® polymeric nanoparticles and SiO2 nanoparticles). There were small but significant decreases of the total phenolic content (9%) and pelargonidin 3-glucoside content (6%) in strawberries treated with the nanopesticides. An increase of 31% to 125% was observed in the levels of gallic acid, quercetin, and kaempferol in the strawberries treated with the nanoencapsulated pesticides compared with the conventional treatments. The effects of the nanocarriers on the metabolite and phenolic profiles was identified by principal component analysis. CONCLUSION Overall, even though the effects of nanopesticides on the phenological parameters of strawberry plants were not obvious, there were significant changes to the plants at a molecular level. In particular, nanocarriers had some subtle effects on plant health and fruit quality through variations in total and individual phenolics in the fruits. Further research will be needed to assess the impact of diverse nanopesticides on other groups of plant metabolites. © 2023 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Peiying Wang
- Department of Food Science and Agricultural Chemistry, McGill University, Ste-Anne-de-Bellevue, QC, Canada
| | - Valérie Gravel
- Department of Plant Science, McGill University, Ste-Anne-de-Bellevue, QC, Canada
| | - Vinicius Bueno
- Department of Civil Engineering, McGill University, Montréal, QC, Canada
| | | | - Alexandra Roginski
- Department of Food Science and Agricultural Chemistry, McGill University, Ste-Anne-de-Bellevue, QC, Canada
| | - Subhasis Ghoshal
- Department of Civil Engineering, McGill University, Montréal, QC, Canada
| | - Kevin J Wilkinson
- Department of Chemistry, Université de Montréal, Montréal, QC, Canada
| | - Stéphane Bayen
- Department of Food Science and Agricultural Chemistry, McGill University, Ste-Anne-de-Bellevue, QC, Canada
| |
Collapse
|
3
|
Shaffer CC, Zhai C, Chasteen JL, Orlova T, Zhukovskyi M, Smith BD. Silica nanoparticle remodeling under mild conditions: versatile one step conversion of mesoporous to hollow nanoparticles with simultaneous payload loading. NANOSCALE 2022; 14:17514-17518. [PMID: 36408868 PMCID: PMC9970696 DOI: 10.1039/d2nr05528g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
A binary mixture of mesoporous silica nanoparticles plus organic polyammonium additive (dye or drug) is cleanly converted upon mild heating into hollow nanoparticles. The remodeled nanoparticle shell is an organized nanoscale assembly of globular additive/silica subunits and cancer cell assays show that a loaded drug additive is bioavailable.
Collapse
Affiliation(s)
- Cassandra C Shaffer
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA.
| | - Canjia Zhai
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA.
| | - Jordan L Chasteen
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA.
| | - Tatyana Orlova
- Notre Dame Integrated Imaging Facility, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Maksym Zhukovskyi
- Notre Dame Integrated Imaging Facility, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Bradley D Smith
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA.
| |
Collapse
|
4
|
Upgrading Waste Activated Carbon by Equipping Micro-/Mesopore-Dominant Microstructures from the Perspective of Circular Economy. Processes (Basel) 2022. [DOI: 10.3390/pr10081631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Equipping wastes with interesting properties in response to the circular economy could release environmental burdens by reducing resource exploitation and material manufacturing. In this study, we demonstrated that the waste regenerated activated carbon (RAC) could become micro-/mesopore-dominant through a simple surfactant/gel modification. This was achieved by associating carbon precursors, such as commercially available low-cost surfactants/methyl cellulose thickening reagents, with the pores of RAC. Following heat treatment, associated carbon precursors were carbonized, hence modifying the microstructure of RAC to be micro-/mesopore-dominant. The surfactant modification gave rise to a micropore-dominant RAC by increasing the micropore volume (PVmicro) together with significantly decreasing the mesopore volume (PVmeso) and macropore volume (PVmacro). In contrast, gel modification led to mesopore-rich RAC by blocking micropores with carbonized methyl cellulose and a surfactant matrix. Interestingly, both surfactant/gel modifications were insensitive to the properties of the surfactant applied, which provided a new alternative for waste/low-grade surfactant mixture disposal. Our results provide an important demonstration that waste could be effectively upgraded with a rational design by exhibiting new properties in response to the circular economy.
Collapse
|
5
|
Song Z, Bai J, Wang J, Liu L, Zhu X, Jin X. Different Agglomeration Processes Induced by the Varied Interaction of Fe-Fe Analogues with Differently Charged Surfactants. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:8469-8476. [PMID: 35762983 DOI: 10.1021/acs.langmuir.2c01079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The catalytic activity of Prussian blue analogues (PBAs) is mainly tuned via the control of material sizes and morphologies. However, the shapes and sizes of many PBAs are difficult to control. In this work, a facile approach is demonstrated using differently charged surfactants to tune the catalytic activity of PBAs. Fe-Fe PBAs prepared with non-ionic P123, cationic cetyltrimethylammonium bromide, and anionic sodium dodecyl sulfate are chosen to study the effect of surfactant charges on the catalytic activity. The transesterification of propylene carbonate to dimethyl carbonate by methanol is selected as a model reaction. Owing to the different agglomeration processes of PB particles after modified with differently charged surfactants, significantly varied shapes and sizes were observed. Accordingly, the catalytic activity is greatly varied by adding surfactants. The different catalytic activities may arise from the different behaviors of agglomeration of PB particles after surfactant modification as well as the material size and shape changes. Besides, apparent activation energies for PBs adding different surfactants were derived. Finally, the agglomeration mechanism of PB particles in the presence of differently charged surfactants was proposed.
Collapse
Affiliation(s)
- Ziwei Song
- Hebei Key Laboratory of Applied Chemistry, Nano-biotechnology Key Lab of Hebei Province, School of Environmental and Chemical Engineering, Yanshan University, 438 West Hebei Street, Qinhuangdao 066004, China
| | - Juan Bai
- Hebei Key Laboratory of Applied Chemistry, Nano-biotechnology Key Lab of Hebei Province, School of Environmental and Chemical Engineering, Yanshan University, 438 West Hebei Street, Qinhuangdao 066004, China
| | - Jinyao Wang
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum, No. 66 Changjiang West Road, Qingdao, Shandong Province 266580, China
| | - Lijuan Liu
- Hebei Key Laboratory of Applied Chemistry, Nano-biotechnology Key Lab of Hebei Province, School of Environmental and Chemical Engineering, Yanshan University, 438 West Hebei Street, Qinhuangdao 066004, China
| | - Xu Zhu
- Hebei Key Laboratory of Applied Chemistry, Nano-biotechnology Key Lab of Hebei Province, School of Environmental and Chemical Engineering, Yanshan University, 438 West Hebei Street, Qinhuangdao 066004, China
| | - Xin Jin
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum, No. 66 Changjiang West Road, Qingdao, Shandong Province 266580, China
| |
Collapse
|
6
|
Athab ZH, Halbus AF, Greenway GM. One-step strategy for the synthesis of magnetic mesoporous carbon composite materials incorporating iron, cobalt and nickel nanoparticles. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02271-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
7
|
Bueno V, Gao X, Abdul Rahim A, Wang P, Bayen S, Ghoshal S. Uptake and Translocation of a Silica Nanocarrier and an Encapsulated Organic Pesticide Following Foliar Application in Tomato Plants. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:6722-6732. [PMID: 35467849 DOI: 10.1021/acs.est.1c08185] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Pesticide nanoencapsulation and its foliar application are promising approaches for improving the efficiency of current pesticide application practices, whose losses can reach 99%. Here, we investigated the uptake and translocation of azoxystrobin, a systemic pesticide, encapsulated within porous hollow silica nanoparticles (PHSNs) of a mean diameter of 253 ± 73 nm, following foliar application on tomato plants. The PHSNs had 67% loading efficiency for azoxystrobin and enabled its controlled release over several days. Thus, the nanoencapsulated pesticide was taken up and distributed more slowly than the nonencapsulated pesticide. A total of 8.7 ± 1.3 μg of the azoxystrobin was quantified in different plant parts, 4 days after 20 μg of nanoencapsulated pesticide application on a single leaf of each plant. In parallel, the uptake and translocation of the PHSNs (as total Si and particulate SiO2) in the plant were characterized. The total Si translocated after 4 days was 15.5 ± 1.6 μg, and the uptake rate and translocation patterns for PHSNs were different from their pesticide load. Notably, PHSNs were translocated throughout the plant, although they were much larger than known size-exclusion limits (reportedly below 50 nm) in plant tissues, which points to knowledge gaps in the translocation mechanisms of nanoparticles in plants. The translocation patterns of azoxystrobin vary significantly following foliar uptake of the nanosilica-encapsulated and nonencapsulated pesticide formulations.
Collapse
Affiliation(s)
- Vinicius Bueno
- Department of Civil Engineering, McGill University, Montreal, Quebec H3A 0C3, Canada
| | - Xiaoyu Gao
- Department of Civil Engineering, McGill University, Montreal, Quebec H3A 0C3, Canada
| | - Arshath Abdul Rahim
- Department of Civil Engineering, McGill University, Montreal, Quebec H3A 0C3, Canada
| | - Peiying Wang
- Department of Food Science and Agricultural Chemistry, McGill University, Ste-Anne-de-Bellevue, Quebec H9X 3V9, Canada
| | - Stéphane Bayen
- Department of Food Science and Agricultural Chemistry, McGill University, Ste-Anne-de-Bellevue, Quebec H9X 3V9, Canada
| | - Subhasis Ghoshal
- Department of Civil Engineering, McGill University, Montreal, Quebec H3A 0C3, Canada
| |
Collapse
|
8
|
Granetto M, Serpella L, Fogliatto S, Re L, Bianco C, Vidotto F, Tosco T. Natural clay and biopolymer-based nanopesticides to control the environmental spread of a soluble herbicide. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:151199. [PMID: 34699829 DOI: 10.1016/j.scitotenv.2021.151199] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 09/16/2021] [Accepted: 10/20/2021] [Indexed: 06/13/2023]
Abstract
In this work a novel nano-formulation is proposed to control leaching and volatilization of a broadly used herbicide, dicamba. Dicamba is subject to significant leaching in soils, due to its marked solubility, and to significant volatilization and vapor drift, with consequent risks for operators and neighbouring crops. Natural, biocompatible, low-cost materials were employed to control its dispersion in the environment: among four tested candidate carriers, a nanosized natural clay (namely, K10 montmorillonite) was selected to adsorb the pesticide, and carboxymethyl cellulose (CMC), a food-grade biodegradable polymer, was employed as a coating agent. The synthesis approach is based on direct adsorption at ambient temperature and pressure, with a subsequent particle coating to increase suspension stability and control pesticide release. The nano-formulation showed a controlled release when diluted to field-relevant concentrations: in tap water, the uncoated K10 released approximately 45% of the total loaded dicamba, and the percentage reduced to less than 30% with coating. CMC also contributed to significantly reduce dicamba losses due to volatilization from treated soils (e.g., in medium sand, 9.3% of dicamba was lost in 24 h from the commercial product, 15.1% from the uncoated nanoformulation, and only 4.5% from the coated one). Moreover, the coated nanoformulation showed a dramatic decrease in mobility in porous media (when injected in a 11.6 cm sand-packed column, 99.3% of the commercial formulation was eluted, compared to 88.4% of the uncoated nanoformulation and only 24.5% of the coated one). Greenhouse tests indicated that the clay-based nanoformulation does not hinder the dicamba efficacy toward target weeds, even though differences were observed depending on the treated species. Despite the small (lab and greenhouse) scale of the tests, these preliminary results suggest a good efficacy of the proposed nanoformulation in controlling the environmental spreading of dicamba, without hindering efficacy toward target species.
Collapse
Affiliation(s)
- Monica Granetto
- Department of Environmental, Land and Infrastructure Engineering (DIATI), Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129 Torino, Italy
| | - Luca Serpella
- Department of Environmental, Land and Infrastructure Engineering (DIATI), Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129 Torino, Italy
| | - Silvia Fogliatto
- Department of Agricultural, Forest and Food Sciences (DISAFA), University of Torino, Largo Paolo Braccini 2, 10095 Grugliasco, TO, Italy
| | - Lucia Re
- Department of Environmental, Land and Infrastructure Engineering (DIATI), Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129 Torino, Italy
| | - Carlo Bianco
- Department of Environmental, Land and Infrastructure Engineering (DIATI), Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129 Torino, Italy
| | - Francesco Vidotto
- Department of Agricultural, Forest and Food Sciences (DISAFA), University of Torino, Largo Paolo Braccini 2, 10095 Grugliasco, TO, Italy
| | - Tiziana Tosco
- Department of Environmental, Land and Infrastructure Engineering (DIATI), Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129 Torino, Italy.
| |
Collapse
|
9
|
Lee H, Lee MS, Uji M, Harada N, Park JM, Lee J, Seo SE, Park CS, Kim J, Park SJ, Bhang SH, Yanai N, Kimizuka N, Kwon OS, Kim JH. Nanoencapsulated Phase-Change Materials: Versatile and Air-Tolerant Platforms for Triplet-Triplet Annihilation Upconversion. ACS APPLIED MATERIALS & INTERFACES 2022; 14:4132-4143. [PMID: 35019270 DOI: 10.1021/acsami.1c21080] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Efficient and long-term stable triplet-triplet annihilation upconversion (TTA-UC) can be achieved by effectively protecting the excited organic triplet ensembles from photoinduced oxygen quenching, and discovery of a new material platform that promotes TTA-UC in ambient conditions is of paramount importance for practical applications. In this study, we present the first demonstration of an organic nonparaffin phase-change material (PCM) as an air-tolerant medium for TTA-UC with a unique solid-liquid phase transition in response to temperature variation. For the proposed concept, 2,4-hexadien-1-ol is used and extensively characterized with several key features, including good solvation capacity, mild melting point (30.5 °C), and exclusive antioxidant property, enabling a high-efficiency, low-threshold, and photostable TTA-UC system without energy-intensive degassing processes. In-depth characterization reveals that the triplet diffusion among the transient species, i.e., 3sensitizer* and 3acceptor*, is efficient and well protected from oxygen quenching in both aerated liquid- and solid-phase 2,4-hexadien-1-ol. We also propose a new strategy for the nanoencapsulation of PCM by employing hollow mesoporous silica nanoparticles as vehicles. This scheme is applicable to both aqueous- and solid-phase TTA-UC systems as well as suitable for various applications, such as thermal energy storage and smart drug delivery.
Collapse
Affiliation(s)
- Haklae Lee
- Department of Chemical and Environmental Engineering, Pusan National University, Busan 46241, South Korea
- Infectious Disease Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon 34141, South Korea
| | - Myung-Soo Lee
- Department of Chemical and Environmental Engineering, Pusan National University, Busan 46241, South Korea
| | - Masanori Uji
- Department of Applied Chemistry and Biochemistry, Graduate School of Engineering, Center for Molecular Systems (CMS), Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Naoyuki Harada
- Department of Applied Chemistry and Biochemistry, Graduate School of Engineering, Center for Molecular Systems (CMS), Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Jeong-Min Park
- Department of Chemical and Environmental Engineering, Pusan National University, Busan 46241, South Korea
| | - Jiyeon Lee
- Infectious Disease Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon 34141, South Korea
| | - Sung Eun Seo
- Infectious Disease Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon 34141, South Korea
| | - Chul Soon Park
- Infectious Disease Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon 34141, South Korea
| | - Jinyeong Kim
- Infectious Disease Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon 34141, South Korea
| | - Seon Joo Park
- Infectious Disease Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon 34141, South Korea
| | - Suk Ho Bhang
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, South Korea
| | - Nobuhiro Yanai
- Department of Applied Chemistry and Biochemistry, Graduate School of Engineering, Center for Molecular Systems (CMS), Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan
- PRESTO, JST, Honcho 4-1-8, Kawaguchi, Saitama 332-0012, Japan
| | - Nobuo Kimizuka
- Department of Applied Chemistry and Biochemistry, Graduate School of Engineering, Center for Molecular Systems (CMS), Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Oh Seok Kwon
- Infectious Disease Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon 34141, South Korea
- Nanobiotechnology and Bioinformatics (Major), University of Science & Technology (UST), Daejeon 34141, South Korea
| | - Jae-Hyuk Kim
- Department of Chemical and Environmental Engineering, Pusan National University, Busan 46241, South Korea
| |
Collapse
|
10
|
Wang P, Galhardi JA, Liu L, Bueno V, Ghoshal S, Gravel V, Wilkinson KJ, Bayen S. Development of an LC-MS-based method to study the fate of nanoencapsulated pesticides in soils and strawberry plant. Talanta 2021; 239:123093. [PMID: 34920258 DOI: 10.1016/j.talanta.2021.123093] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 11/19/2021] [Accepted: 11/22/2021] [Indexed: 12/18/2022]
Abstract
The increased production and use of nanopesticides will increase the likelihood of their exposure to humans and the environment. In order to properly evaluate their risk, it will be necessary to rigorously quantify their concentrations in major environmental compartments including water, soil and food. Due to major differences in the characteristics of their formulation, it is unclear whether analytical techniques that have been developed for conventional pesticides will allow quantification of the nano-forms. Therefore, it is necessary to develop and validate analytical techniques for the quantification of nanopesticides in foods and the environment. The goal of this study was to validate a method for analyzing the active ingredients of two pesticides with different physicochemical properties: azoxystrobin (AZOX, a fungicide, log Kow 3.7) and bifenthrin (BFT, an insecticide, log Kow 6.6) that were applied to agricultural soils, either as a conventional formulation or encapsulated in nanoparticles (either Allosperse® or porous hollow nSiO2). Pesticide-free strawberry plants (Fragaria × ananassa) and three different agricultural soils were spiked with the active ingredients (azoxystrobin and bifenthrin), in either conventional or nano formulations. A modified QuEChERS approach was used to extract the pesticides from the strawberry plants (roots, leaves and fruits) and a solvent extraction (1:2 acetonitrile) was employed for the soils. Samples were analyzed by liquid chromatography-hybrid quadrupole time-of-flight mass spectrometry in order to determine method detection limits, recoveries, precision and matrix effects for both the "conventional" and nanoencapsulated pesticides. Results for the modified method indicated good recoveries and precision for the analysis of the nanoencapsulated pesticides from strawberries and agricultural soils, with recoveries ranging from 85 to 127% (AZOX) and 68-138% (BFT). The results indicated that the presence of the nanoencapsulants had significant effects on the efficiency of extraction and the quantification of the active ingredients. The modified analytical methods were successfully used to measure strawberry and soil samples from a field experiment, providing the means to explore the fate of nanoencapsulated pesticides in food and environmental matrices.
Collapse
Affiliation(s)
- Peiying Wang
- Department of Food Science and Agricultural Chemistry, McGill University, Ste-Anne-de-Bellevue, QC, Canada
| | | | - Lan Liu
- Department of Food Science and Agricultural Chemistry, McGill University, Ste-Anne-de-Bellevue, QC, Canada
| | - Vinicius Bueno
- Department of Civil Engineering, McGill University, Montréal, QC, Canada
| | - Subhasis Ghoshal
- Department of Civil Engineering, McGill University, Montréal, QC, Canada
| | - Valérie Gravel
- Department of Plant Science, McGill University, Ste-Anne-de-Bellevue, QC, Canada
| | - Kevin J Wilkinson
- Department of Chemistry, Université de Montréal, Montréal, QC, Canada
| | - Stéphane Bayen
- Department of Food Science and Agricultural Chemistry, McGill University, Ste-Anne-de-Bellevue, QC, Canada.
| |
Collapse
|
11
|
Gao X, Kundu A, Bueno V, Rahim AA, Ghoshal S. Uptake and Translocation of Mesoporous SiO 2-Coated ZnO Nanoparticles to Solanum lycopersicum Following Foliar Application. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:13551-13560. [PMID: 34003637 DOI: 10.1021/acs.est.1c00447] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Nanoparticles composed of ZnO encapsulated in a mesoporous SiO2 shell (nZnO@SiO2) with a primary particle diameter of ∼70 nm were synthesized for delivery of Zn, a micronutrient, by foliar uptake. Compared to the rapid dissolution of bare nZnO (90% Zn dissolution after 4 h) in a model plant media (pH = 5), nZnO@SiO2 released Zn more slowly (40% Zn dissolution after 3 weeks), thus enabling sustained Zn delivery over a longer period. nZnO@SiO2, nZnO, and ZnCl2 were exposed to Solanum lycopersicum by dosing 40 μg of Zn micronutrient (in a 20 μL suspension) on a single leaf. No Zn uptake was observed for the nZnO treatment after 2 days. Comparable amounts of Zn uptake were observed 2 days after ZnCl2 (15.5 ± 2.4 μg Zn) and nZnO@SiO2 (11.4 ± 2.2 μg Zn) dosing. Single particle inductively coupled plasma mass spectrometry revealed that for foliar applied nZnO@SiO2, almost all of the Zn translocated to upper leaves and the stem were in nanoparticulate form. Our results suggest that the SiO2 shell enhances the uptake of ZnO nanoparticles in Solanum lycopersicum. Sustained and controlled micronutrient delivery in plants through foliar application will reduce fertilizer, energy, and water use.
Collapse
Affiliation(s)
- Xiaoyu Gao
- Department of Civil Engineering, McGill University, Montreal, Quebec H3A 0C3, Canada
| | - Anirban Kundu
- Department of Civil Engineering, McGill University, Montreal, Quebec H3A 0C3, Canada
| | - Vinicius Bueno
- Department of Civil Engineering, McGill University, Montreal, Quebec H3A 0C3, Canada
| | - Arshath Abdul Rahim
- Department of Civil Engineering, McGill University, Montreal, Quebec H3A 0C3, Canada
| | - Subhasis Ghoshal
- Department of Civil Engineering, McGill University, Montreal, Quebec H3A 0C3, Canada
| |
Collapse
|
12
|
Bueno V, Bosi A, Tosco T, Ghoshal S. Mobility of solid and porous hollow SiO 2 nanoparticles in saturated porous media: Impacts of surface and particle structure. J Colloid Interface Sci 2021; 606:480-490. [PMID: 34399364 DOI: 10.1016/j.jcis.2021.07.142] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 07/22/2021] [Accepted: 07/28/2021] [Indexed: 01/05/2023]
Abstract
Silica nanoparticles (SiO2 NPs) are of increasing interest in nano-enabled agriculture, particularly as nanocarriers for the targeted delivery of agrochemicals. Their direct application in agricultural soils may lead to the release of SiO2 NPs in the environment. Although some studies have investigated transport of solid SiO2 NPs in porous media, there is a knowledge gap on how different SiO2 NP structures incorporating significant porosities can affect the mobility of such particles under different conditions. Herein, we investigated the effect of pH and ionic strength (IS) on the transport of two distinct structures of SiO2 NPs, namely solid SiO2 NPs (SSNs) and porous hollow SiO2 NPs (PHSNs), of comparable sizes (~200 nm). Decreasing pH and increasing ionic strength reduced the mobility of PHSNs in sand-packed columns more significantly than for SSNs. The deposition of PHSNs was approximately 3 times greater than that of SSNs at pH 4.5 and IS 100 mM. The results are non-intuitive given that PHSNs have a lower density and the same chemical composition of SSNs but can be explained by the greater surface roughness and ten-fold greater specific surface area of PHSNs, and their impacts on van der Waals and electrostatic interaction energies.
Collapse
Affiliation(s)
- Vinicius Bueno
- Department of Civil Engineering, McGill University, Montreal, Quebec H3A 0C3, Canada
| | - Alessandro Bosi
- Department of Environment, Land and Infrastructure Engineering (DIATI), Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129 Torino, Italy
| | - Tiziana Tosco
- Department of Environment, Land and Infrastructure Engineering (DIATI), Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129 Torino, Italy
| | - Subhasis Ghoshal
- Department of Civil Engineering, McGill University, Montreal, Quebec H3A 0C3, Canada.
| |
Collapse
|