1
|
Hughes AV, Losasso V, Winn M. The analysis of neutron reflectivity from Langmuir monolayers of lipids using molecular dynamics simulations: the role of lipid area. ROYAL SOCIETY OPEN SCIENCE 2025; 12:241727. [PMID: 40103917 PMCID: PMC11919530 DOI: 10.1098/rsos.241727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 11/28/2024] [Indexed: 03/20/2025]
Abstract
Biomolecular simulations are increasingly being used to generate detailed structural models to aid interpretation of neutron reflectometry (NR) data obtained from model biological membranes. Unlike globular systems, often studied by small-angle scattering, simulations of two-dimensional layers are sensitive to the simulation cell used which constrains the system laterally. We perform a careful analysis of NR data obtained from a monolayer of the lipid distearoylphosphatidylcholine at the air-water interface and show that the fit of number density profiles obtained from atomistic molecular dynamics simulation to the experimental data is very sensitive to the assumed area per lipid (APL). We propose a protocol for obtaining a realistic isotherm by combining the experimental surface pressure corresponding to a reflectometry measurement with an APL obtained from the simulation that best fits that data. Finally, we demonstrate how downstream interpretation of the experimental sample, derived from structural and dynamic properties of the atomistic model, depends strongly on the correct choice of simulation cell.
Collapse
Affiliation(s)
- Arwel V Hughes
- ISIS Pulsed Neutron and Muon Source, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Didcot, Oxfordshire OX11 OQX, UK
| | - Valeria Losasso
- Science and Technology Facilities Council, Daresbury Laboratory, Warrington WA4 4AD, UK
| | - Martyn Winn
- Science and Technology Facilities Council, Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot OX11 0FA, UK
| |
Collapse
|
2
|
Srinivasan H, Sharma VK, Mitra S. Breaking the Brownian barrier: models and manifestations of molecular diffusion in complex fluids. Phys Chem Chem Phys 2024. [PMID: 39584788 DOI: 10.1039/d4cp01813c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2024]
Abstract
Over a century ago, Einstein formulated a precise mathematical model for describing Brownian motion. While this model adequately explains the diffusion of micron-sized particles in fluids, its limitations become apparent when applied to molecular self-diffusion in fluids. The foundational principles of Gaussianity and Markovianity, central to the Brownian diffusion paradigm, are insufficient for describing molecular diffusion, particularly in complex fluids characterized by intricate intermolecular interactions and hindered relaxation processes. This perspective delves into the nuanced behavior observed in diverse complex fluids, including molecular self-assembly systems, deep eutectic solvents, and ionic liquids, with a specific focus on modeling self-diffusion within these media. We explore the possibility of extending diffusion models to incorporate non-Gaussian and non-Markovian effects by augmenting the Brownian model using non-local diffusion equations. Furthermore, we validate the applicability of these models by utilizing them to describe results from quasielastic neutron scattering and MD simulations.
Collapse
Affiliation(s)
- Harish Srinivasan
- Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai, 400085, India.
- Homi Bhabha National Institute, Mumbai, 400094, India
| | - Veerendra K Sharma
- Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai, 400085, India.
- Homi Bhabha National Institute, Mumbai, 400094, India
| | - Subhankur Mitra
- Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai, 400085, India.
- Homi Bhabha National Institute, Mumbai, 400094, India
| |
Collapse
|
3
|
Sharma VK, Srinivasan H, Gupta J, Mitra S. Lipid lateral diffusion: mechanisms and modulators. SOFT MATTER 2024; 20:7763-7796. [PMID: 39315599 DOI: 10.1039/d4sm00597j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
The lateral diffusion of lipids within a membrane is of paramount importance, serving as a central mechanism in numerous physiological processes including cell signaling, membrane trafficking, protein activity regulation, and energy transduction pathways. This review offers a comprehensive overview of lateral lipid diffusion in model biomembrane systems explored through the lens of neutron scattering techniques. We examine diverse models of lateral diffusion and explore the various factors influencing this fundamental process in membrane dynamics. Additionally, we offer a thorough summary of how different membrane-active compounds, including drugs, antioxidants, stimulants, and membrane proteins, affect lipid lateral diffusion. Our analysis unveils the intricate interplay between these additives and membranes, shedding light on their dynamic interactions. We elucidate that this interaction is governed by a complex combination of multiple factors including the physical state and charge of the membrane, the concentration of additives, the molecular architecture of the compounds, and their spatial distribution within the membrane. In conclusion, we briefly discuss the future directions and areas requiring further investigation in the realm of lateral lipid diffusion, highlighting the need to study more realistic membrane systems.
Collapse
Affiliation(s)
- V K Sharma
- Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai, 400085, India.
- Homi Bhabha National Institute, Mumbai, 400094, India
| | - H Srinivasan
- Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai, 400085, India.
- Homi Bhabha National Institute, Mumbai, 400094, India
| | - J Gupta
- Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai, 400085, India.
- Homi Bhabha National Institute, Mumbai, 400094, India
| | - S Mitra
- Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai, 400085, India.
- Homi Bhabha National Institute, Mumbai, 400094, India
| |
Collapse
|
4
|
Qian S, Nagy G, Zolnierczuk P, Mamontov E, Standaert R. Nonstereotypical Distribution and Effect of Ergosterol in Lipid Membranes. J Phys Chem Lett 2024; 15:4745-4752. [PMID: 38661394 DOI: 10.1021/acs.jpclett.4c00385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Ergosterol, found in fungi and some protist membranes, is understudied compared with cholesterol from animal membranes. Generally, ergosterol is assumed to modulate membranes in the same manner as cholesterol, based on their similar chemical structures. Here we reveal some fundamental structural and dynamical differences between them. Neutron diffraction shows that ergosterol is embedded in the lipid bilayer much shallower than cholesterol. Ergosterol does not change the membrane thickness as much as cholesterol does, indicating little condensation effect. Neutron spin echo shows that ergosterol can rigidify and soften membranes at different concentrations. The lateral lipid diffusion measured by quasielastic neutron scattering indicates that ergosterol promotes a jump diffusion of the lipid, whereas cholesterol keeps the same continuous lateral diffusion as the pure lipid membrane. Our results point to quite distinct interactions of ergosterol with membranes compared with cholesterol. These insights provide a basic understanding of membranes containing ergosterol with implications for phenomena such as lipid rafts and drug interactions.
Collapse
Affiliation(s)
- Shuo Qian
- Oak Ridge National Laboratory, PO BOX 2008, Oak Ridge, Tennessee 37831, United States
| | - Gergely Nagy
- Oak Ridge National Laboratory, PO BOX 2008, Oak Ridge, Tennessee 37831, United States
| | - Piotr Zolnierczuk
- Oak Ridge National Laboratory, PO BOX 2008, Oak Ridge, Tennessee 37831, United States
| | - Eugene Mamontov
- Oak Ridge National Laboratory, PO BOX 2008, Oak Ridge, Tennessee 37831, United States
| | - Robert Standaert
- Oak Ridge National Laboratory, PO BOX 2008, Oak Ridge, Tennessee 37831, United States
| |
Collapse
|
5
|
Shih KC, Leriche G, Liu CH, He J, John VT, Fang J, Barker JG, Nagao M, Yang L, Yang J, Nieh MP. Antivesiculation and Complete Unbinding of Tail-Tethered Lipids. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:1688-1697. [PMID: 38186288 DOI: 10.1021/acs.langmuir.3c02663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
We report the effect of tail-tethering on vesiculation and complete unbinding of bilayered membranes. Amphiphilic molecules of a bolalipid, resembling the tail-tethered molecular structure of archaeal lipids, with two identical zwitterionic phosphatidylcholine headgroups self-assemble into a large flat lamellar membrane, in contrast to the multilamellar vesicles (MLVs) observed in its counterpart, monopolar nontethered zwitterionic lipids. The antivesiculation is confirmed by small-angle X-ray scattering (SAXS) and cryogenic transmission electron microscopy (cyro-TEM). With the net charge of zero and higher bending rigidity of the membrane (confirmed by neutron spin echo (NSE) spectroscopy), the current membrane theory would predict that membranes should stack with each other (aka "bind") due to dominant van der Waals attraction, while the outcome of the nonstacking ("unbinding") membrane suggests that the theory needs to include entropic contribution for the nonvesicular structures. This report pioneers an understanding of how the tail-tethering of amphiphiles affects the structure, enabling better control over the final nanoscale morphology.
Collapse
Affiliation(s)
| | - Geoffray Leriche
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, United States
| | | | - Jibao He
- Department of Chemical and Biomolecular Engineering, Tulane University, New Orleans, Louisiana 70118, United States
| | - Vijay T John
- Department of Chemical and Biomolecular Engineering, Tulane University, New Orleans, Louisiana 70118, United States
| | | | - John G Barker
- NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Michihiro Nagao
- NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
- Department of Materials Science and Engineering, University of Maryland, College Park, Maryland 20742, United States
- Department of Physics and Astronomy, University of Delaware, Newark, Delaware 19716, United States
| | - Lin Yang
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Jerry Yang
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, United States
| | | |
Collapse
|
6
|
Gupta J, Sharma VK, Srinivasan H, Bhatt H, Sakai VG, Mukhopadhyay R, Mitra S. Modulation of Phase Behavior and Microscopic Dynamics in Cationic Vesicles by 1-Decyl-3-methylimidazolium Bromide. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:504-518. [PMID: 38126298 DOI: 10.1021/acs.langmuir.3c02755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Synthetic cationic lipids have garnered significant attention as promising candidates for gene/DNA transfection in therapeutic applications. The phase behavior of the vesicles formed by these lipids is intriguing, revealing intricate connections to the structure and dynamics of the membrane. These phenomena emerge from the complex interplay between hydrophobic and electrostatic interactions of the lipids. In this study, we explore the impact of an ionic liquid-based surfactant, 1-decyl-3-methylimidazolium bromide (DMIM[Br]), on the structural, dynamical, and phase behavior of cationic dihexadecyldimethylammonium bromide (DHDAB) vesicles. Our investigations indicate that the addition of DMIM[Br] increases the vesicle size while thinning the membrane. Further, DMIM[Br] also induces substantial changes in the membrane phase behavior. At 10 and 25 mol %, DMIM[Br] eliminates the pre-transition from coagel to intermediate crystalline (IC) phase and decreases the onset temperature of the main phase transition to the fluid phase. In the cooling cycle, the addition of DMIM[Br] further induces the formation of an intermediate gel phase. This behavior is reminiscent of the non-synchronous ordering observed in the DODAB membrane, a longer-chain counterpart of DHDAB. Interestingly, at 40 mol % of DMIM[Br], the formation of the intermediate gel phase is largely suppressed. Neutron scattering data provide evidence that the addition of DMIM[Br] enhances lipid mobility in coagel and fluid phases, suggesting that DMIM[Br] acts as a plasticizer, enhancing membrane fluidity across all of the phases. Our findings infer that DMIM[Br] modulates the membrane's phase behavior and fluidity, two essential ingredients for the efficient transport of cargo, by controlling the balance of electrostatic and hydrophobic interactions.
Collapse
Affiliation(s)
- Jyoti Gupta
- Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400085, India
- Homi Bhabha National Institute, Mumbai 400094, India
| | - Veerendra Kumar Sharma
- Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400085, India
- Homi Bhabha National Institute, Mumbai 400094, India
| | - Harish Srinivasan
- Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400085, India
- Homi Bhabha National Institute, Mumbai 400094, India
| | - Himal Bhatt
- High Pressure & Synchrotron Radiation Physics Division, Bhabha Atomic Research Centre, Mumbai 400085, India
- Homi Bhabha National Institute, Mumbai 400094, India
| | - Victoria García Sakai
- ISIS Neutron and Muon Source, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Didcot OX11 0QX, United Kingdom
| | | | - Subhankur Mitra
- Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400085, India
- Homi Bhabha National Institute, Mumbai 400094, India
| |
Collapse
|
7
|
Keller MJ, Zhang Q, Qian S, Sanders BC, O'Neill HM, Hettich RL. Characterization of the In Vivo Deuteration of Native Phospholipids by Mass Spectrometry Yields Guidelines for Their Regiospecific Customization. Anal Chem 2024; 96:212-219. [PMID: 38150504 DOI: 10.1021/acs.analchem.3c03750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
Customization of deuterated biomolecules is vital for many advanced biological experiments including neutron scattering. However, because it is challenging to control the proportion and regiospecificity of deuterium incorporation in live systems, often only two or three synthetic lipids are mixed together to form simplistic model membranes. This limits the applicability and biological accuracy of the results generated with these synthetic membranes. Despite some limited prior examination of deuterating Escherichia coli lipids in vivo, this approach has not been widely implemented. Here, an extensive mass spectrometry-based profiling of E. coli phospholipid deuteration states with several different growth media was performed, and a computational method to describe deuterium distributions with a one-number summary is introduced. The deuteration states of 36 lipid species were quantitatively profiled in 15 different growth conditions, and tandem mass spectrometry was used to reveal deuterium localization. Regressions were employed to enable the prediction of lipid deuteration for untested conditions. Small-angle neutron scattering was performed on select deuterated lipid samples, which validated the deuteration states calculated from the mass spectral data. Based on these experiments, guidelines for the design of specifically deuterated phospholipids are described. This unlocks even greater capabilities from neutron-based techniques, enabling experiments that were formerly impossible.
Collapse
Affiliation(s)
- Matthew J Keller
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
- UT-ORNL Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Qiu Zhang
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Shuo Qian
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
- The Second Target Station Project of SNS, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Brian C Sanders
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Hugh M O'Neill
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Robert L Hettich
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| |
Collapse
|
8
|
Mitra S, Sharma VK, Ghosh SK. Effects of ionic liquids on biomembranes: A review on recent biophysical studies. Chem Phys Lipids 2023; 256:105336. [PMID: 37586678 DOI: 10.1016/j.chemphyslip.2023.105336] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/05/2023] [Accepted: 08/11/2023] [Indexed: 08/18/2023]
Abstract
Ionic liquids (ILs) have been emerged as a versatile class of compounds that can be easily tuned to achieve desirable properties for various applications. The ability of ILs to interact with biomembranes has attracted significant interest, as they have been shown to modulate membrane properties in ways that may have implications for various biological processes. This review provides an overview of recent studies that have investigated the interaction between ILs and biomembranes. We discuss the effects of ILs on the physical and chemical properties of biomembranes, including changes in membrane fluidity, permeability, and stability. We also explore the mechanisms underlying the interaction of ILs with biomembranes, such as electrostatic interactions, hydrogen bonding, and van der Waals forces. Additionally, we discuss the future prospects of this field.
Collapse
Affiliation(s)
- Saheli Mitra
- Department of Physics, School of Natural Sciences, Shiv Nadar Institution of Eminence, NH 91, Tehsil Dadri, G. B. Nagar, Uttar Pradesh 201314, India.
| | - Veerendra K Sharma
- Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India.
| | - Sajal K Ghosh
- Department of Physics, School of Natural Sciences, Shiv Nadar Institution of Eminence, NH 91, Tehsil Dadri, G. B. Nagar, Uttar Pradesh 201314, India.
| |
Collapse
|
9
|
Hamley IW, Castelletto V. Small-angle scattering techniques for peptide and peptide hybrid nanostructures and peptide-based biomaterials. Adv Colloid Interface Sci 2023; 318:102959. [PMID: 37473606 DOI: 10.1016/j.cis.2023.102959] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/03/2023] [Accepted: 07/04/2023] [Indexed: 07/22/2023]
Abstract
The use of small-angle scattering (SAS) in the study of the self-assembly of peptides and peptide conjugates (lipopeptides, polymer-peptide conjugates and others) is reviewed, highlighting selected research that illustrates different methods and analysis techniques. Both small-angle x-ray scattering (SAXS) and small-angle neutron scattering (SANS) are considered along with examples that exploit their unique capabilities. For SAXS, this includes the ability to perform rapid measurements enabling high throughput or fast kinetic studies and measurements under dilute conditions. For SANS, contrast variation using H2O/D2O mixtures enables the study of peptides interacting with lipids and TR-SANS (time-resolved SANS) studies of exchange kinetics and/or peptide-induced structural changes. Examples are provided of studies measuring form factors of different self-assembled structures (micelles, fibrils, nanotapes, nanotubes etc) as well as structure factors from ordered phases (lyotropic mesophases), peptide gels and hybrid materials such as membranes formed by mixing peptides with polysaccharides or peptide/liposome mixtures. SAXS/WAXS (WAXS: wide-angle x-ray scattering) on peptides and peptide hybrids is also discussed, and the review concludes with a perspective on potential future directions for research in the field.
Collapse
Affiliation(s)
- Ian W Hamley
- Department of Chemistry, University of Reading, Whiteknights, Reading RG6 6AD, UK.
| | - Valeria Castelletto
- Department of Chemistry, University of Reading, Whiteknights, Reading RG6 6AD, UK
| |
Collapse
|
10
|
Clifton LA, Wacklin-Knecht HP, Ådén J, Mushtaq AU, Sparrman T, Gröbner G. Creation of distinctive Bax-lipid complexes at mitochondrial membrane surfaces drives pore formation to initiate apoptosis. SCIENCE ADVANCES 2023; 9:eadg7940. [PMID: 37267355 PMCID: PMC10413641 DOI: 10.1126/sciadv.adg7940] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 04/28/2023] [Indexed: 06/04/2023]
Abstract
Apotosis is an essential process tightly regulated by the Bcl-2 protein family where proapoptotic Bax triggers cell death by perforating the mitochondrial outer membrane. Although intensively studied, the molecular mechanism by which these proteins create apoptotic pores remains elusive. Here, we show that Bax creates pores by extracting lipids from outer mitochondrial membrane mimics by formation of Bax/lipid clusters that are deposited on the membrane surface. Time-resolved neutron reflectometry and Fourier transform infrared spectroscopy revealed two kinetically distinct phases in the pore formation process, both of which were critically dependent on cardiolipin levels. The initially fast adsorption of Bax on the mitochondrial membrane surface is followed by a slower formation of pores and Bax-lipid clusters on the membrane surface. Our findings provide a robust molecular understanding of mitochondrial membrane perforation by cell-killing Bax protein and illuminate the initial phases of programmed cellular death.
Collapse
Affiliation(s)
- Luke A. Clifton
- ISIS Pulsed Neutron and Muon Source, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 OQX, UK
| | - Hanna P. Wacklin-Knecht
- European Spallation Source ERIC, ESS, P.O. Box 176, SE-22100 Lund, Sweden
- Department of Chemistry, Division of Physical Chemistry, Lund University, P.O. Box 124, SE-22100 Lund, Sweden
| | - Jörgen Ådén
- Department of Chemistry, University of Umeå, SE-90187 Umeå, Sweden
| | - Ameeq Ul Mushtaq
- Department of Chemistry, University of Umeå, SE-90187 Umeå, Sweden
| | - Tobias Sparrman
- Department of Chemistry, University of Umeå, SE-90187 Umeå, Sweden
| | - Gerhard Gröbner
- Department of Chemistry, University of Umeå, SE-90187 Umeå, Sweden
| |
Collapse
|
11
|
Nagao M, Seto H. Neutron scattering studies on dynamics of lipid membranes. BIOPHYSICS REVIEWS 2023; 4:021306. [PMID: 38504928 PMCID: PMC10903442 DOI: 10.1063/5.0144544] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 05/01/2023] [Indexed: 03/21/2024]
Abstract
Neutron scattering methods are powerful tools for the study of the structure and dynamics of lipid bilayers in length scales from sub Å to tens to hundreds nm and the time scales from sub ps to μs. These techniques also are nondestructive and, perhaps most importantly, require no additives to label samples. Because the neutron scattering intensities are very different for hydrogen- and deuterium-containing molecules, one can replace the hydrogen atoms in a molecule with deuterium to prepare on demand neutron scattering contrast without significantly altering the physical properties of the samples. Moreover, recent advances in neutron scattering techniques, membrane dynamics theories, analysis tools, and sample preparation technologies allow researchers to study various aspects of lipid bilayer dynamics. In this review, we focus on the dynamics of individual lipids and collective membrane dynamics as well as the dynamics of hydration water.
Collapse
Affiliation(s)
| | - Hideki Seto
- Institute of Materials Structure Science, High Energy Accelerator Research Organization, Tsukuba, Ibaraki 305-0801, Japan
| |
Collapse
|
12
|
Sun K, Shoaib T, Rutland MW, Beller J, Do C, Espinosa-Marzal RM. Insight into the assembly of lipid-hyaluronan complexes in osteoarthritic conditions. Biointerphases 2023; 18:021005. [PMID: 37041102 DOI: 10.1116/6.0002502] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2023] Open
Abstract
Interactions between molecules in the synovial fluid and the cartilage surface may play a vital role in the formation of adsorbed films that contribute to the low friction of cartilage boundary lubrication. Osteoarthritis (OA) is the most common degenerative joint disease. Previous studies have shown that in OA-diseased joints, hyaluronan (HA) not only breaks down resulting in a much lower molecular weight (MW), but also its concentration is reduced ten times. Here, we have investigated the structural changes of lipid-HA complexes as a function of HA concentration and MW to simulate the physiologically relevant conditions that exist in healthy and diseased joints. Small angle neutron scattering and dynamic light scattering were used to determine the structure of HA-lipid vesicles in bulk solution, while a combination of atomic force microscopy and quartz crystal microbalance was applied to study their assembly on a gold surface. We infer a significant influence of both MW and HA concentrations on the structure of HA-lipid complexes in bulk and assembled on a gold surface. Our results suggest that low MW HA cannot form an amorphous layer on the gold surface, which is expected to negatively impact the mechanical integrity and longevity of the boundary layer and could contribute to the increased wear of the cartilage that has been reported in joints diseased with OA.
Collapse
Affiliation(s)
- Kangdi Sun
- Materials Science and Engineering Department, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | - Tooba Shoaib
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830
| | - Mark W Rutland
- KTH Royal Institute of Technology, Department of Chemistry, Stockholm SE-100 44, Sweden; School of Chemistry, University of New South Wales, Sydney 2052, Australia; Laboratoire de Tribologie et Dynamique des Systèmes, École Centrale de Lyon, Lyon 69130, France; and Bioeconomy and Health, Materials and Surface Design, RISE Research Institutes of Sweden, Stockholm, Sweden
| | | | - Changwoo Do
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830
| | - Rosa M Espinosa-Marzal
- Materials Science and Engineering Department, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| |
Collapse
|
13
|
Dave R, Patel R, Patel M. Hybrid Lipid-Polymer Nanoplatform: A Systematic Review for Targeted Colorectal Cancer Therapy. Eur Polym J 2023. [DOI: 10.1016/j.eurpolymj.2023.111877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
14
|
Kangarlou B, Hoy D, Scott HL, Pingali SV, Khalil N, Chung B, Katsaras J, Nieh MP. Water Content in Nanoparticles Determined by Small-Angle Neutron Scattering and Light Scattering. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:227-235. [PMID: 36580910 DOI: 10.1021/acs.langmuir.2c02420] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The amount of water in therapeutic nanoparticles (NPs) is of great importance to the pharmaceutical industry, as water content reflects the volume occupied by the solid components. For example, certain biomolecules, such as mRNA, can undergo conformational change or degradation when exposed to water. Using static light scattering (SLS) and dynamic light scattering (DLS), we estimated the water content of NPs, including extruded liposomes of two different sizes and polystyrene (PS) Latex NPs. In addition, we used small-angle neutron scattering (SANS) to independently access the water content of the samples. The water content of NPs estimated by SLS/DLS was systematically higher than that from SANS. The discrepancy is most likely attributed to the larger radius determined by DLS, in contrast to the SANS-derived radius observed by SANS. However, because of low accessibility to the neutron facilities, we validate the combined SLS/DLS to be a reasonable alternative to SANS for determining the water (or solvent) content of NPs.
Collapse
Affiliation(s)
- Behrad Kangarlou
- Materials Science Program, Institute of Materials Science, University of Connecticut, Storrs, Connecticut06269, United States
| | - Donyeil Hoy
- Department of Biomedical Engineering, University of Connecticut, Storrs, Connecticut06269, United States
| | - Haden L Scott
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee37831, United States
- Shull Wollan Center, Oak Ridge National Laboratory, Oak Ridge, Tennessee37831, United States
| | - Sai Venkatesh Pingali
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee37831, United States
| | - Nora Khalil
- Department of Chemical and Biomolecular Engineering, University of Connecticut, Storrs, Connecticut06269, United States
| | - Benjamin Chung
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut06269, United States
| | - John Katsaras
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee37831, United States
- Shull Wollan Center, Oak Ridge National Laboratory, Oak Ridge, Tennessee37831, United States
| | - Mu-Ping Nieh
- Materials Science Program, Institute of Materials Science, University of Connecticut, Storrs, Connecticut06269, United States
- Department of Biomedical Engineering, University of Connecticut, Storrs, Connecticut06269, United States
- Department of Chemical and Biomolecular Engineering, University of Connecticut, Storrs, Connecticut06269, United States
- Polymer Program, Institute of Materials Science, University of Connecticut, Storrs, Connecticut06269, United States
| |
Collapse
|
15
|
Wu Z, Jayaraman A. Machine Learning-Enhanced Computational Reverse-Engineering Analysis for Scattering Experiments (CREASE) for Analyzing Fibrillar Structures in Polymer Solutions. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c02165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Zijie Wu
- Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy St., Newark, Delaware19716, United States
| | - Arthi Jayaraman
- Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy St., Newark, Delaware19716, United States
- Department of Materials Science and Engineering, University of Delaware, 201 DuPont Hall, Newark, Delaware19716, United States
| |
Collapse
|
16
|
Sumner J, Qian S. DENSS-multiple: A structure reconstruction method using contrast variation of small-angle neutron scattering based on the DENSS algorithm. BBA ADVANCES 2022; 2:100063. [PMID: 37082592 PMCID: PMC10074922 DOI: 10.1016/j.bbadva.2022.100063] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 10/21/2022] [Accepted: 10/24/2022] [Indexed: 11/09/2022] Open
Abstract
The 3D structure of biomacromolecules, such as protein and DNA/RNA, provide keys to understanding their biological functions. Among many structural biology techniques, small-angle scattering techniques with ab initio methods have been widely used to reveal biomolecular structures in relevant solution conditions. Recently, a method called DENsity from Solution Scattering (DENSS) was developed to reconstruct the scattering density directly from biological small-angle X-ray and neutron scattering data instead of using a dummy atom modeling approach. Here, a method named DENSS-Multiple was developed to work simultaneously on multiple datasets from small-angle neutron scattering (SANS) contrast variation data. The easily manipulable neutron contrast has been widely exploited to study the structure and function of biological macromolecules and their complexes in solution. This new method provides a single structural result that includes all the information represented by different contrasts from SANS. The results from DENSS-Multiple generally have better resolution than those from DENSS, and more subtle features are represented by density variations from different phases of a structure. DENSS-Multiple was tested on various examples, including simulated and experimental data. These results, along with DENSS-Multiple's applications and limitations, are discussed herein.
Collapse
Affiliation(s)
- Jacob Sumner
- Neutron Scattering Division, Oak Ridge National Laboratory, United States
| | - Shuo Qian
- Neutron Scattering Division, Oak Ridge National Laboratory, United States
- Spallation Neutron Source Second Target Station Project, Oak Ridge National Laboratory, United States
| |
Collapse
|
17
|
Kumari H, Negin S, Eisenhart A, Patel MB, Beck TL, Heinrich F, Spikes HJ, Gokel GW. Assessment of a host-guest interaction in a bilayer membrane model. RSC Adv 2022; 12:32046-32055. [PMID: 36415550 PMCID: PMC9648047 DOI: 10.1039/d2ra03851j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 10/20/2022] [Indexed: 10/28/2023] Open
Abstract
Supramolecular interactions are well recognized and many of them have been extensively studied in chemistry. The formation of supramolecular complexes that rely on weak force interactions are less well studied in bilayer membranes. Herein, a supported bilayer membrane is used to probe the penetration of a complex between tetracycline and a macrocyclic polyether. In a number of bacterial systems, the presence of the macrocycle has been found to significantly enhance the potency of the antimicrobial in vitro. The crown·tetracycline complex has been characterized in solution, neutron reflectometry has probed complex penetration, and the phenomena have been modeled by computational methods.
Collapse
Affiliation(s)
- Harshita Kumari
- James L. Winkle College of Pharmacy, University of Cincinnati Cincinnati Ohio USA 45267-0514
| | - Saeedeh Negin
- Chemistry & Biochemistry, University of Missouri-St. Louis 1 University Blvd. St. Louis MO 63121 USA
| | | | - Mohit B Patel
- Chemistry & Biochemistry, University of Missouri-St. Louis 1 University Blvd. St. Louis MO 63121 USA
| | - Thomas L Beck
- Department of Chemistry, University of Cincinnati OH 45267 USA
- National Center for Computational Sciences, Oak Ridge National Laboratory Oak Ridge TN 37830 USA
| | - Frank Heinrich
- Department of Physics, Carnegie Mellon University Pittsburgh PA 15213 USA
- NIST Center for Neutron Research, National Institute of Standards and Technology Gaithersburg MD 20899 USA
| | - Helena J Spikes
- Chemistry & Biochemistry, University of Missouri-St. Louis 1 University Blvd. St. Louis MO 63121 USA
| | - George W Gokel
- Chemistry & Biochemistry, University of Missouri-St. Louis 1 University Blvd. St. Louis MO 63121 USA
- Biology, University of Missouri-St. Louis 1 University Blvd. St. Louis MO 63121 USA
| |
Collapse
|
18
|
Sharma VK, Gupta J, Srinivasan H, Bhatt H, García Sakai V, Mitra S. Curcumin Accelerates the Lateral Motion of DPPC Membranes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:9649-9659. [PMID: 35878409 DOI: 10.1021/acs.langmuir.2c01250] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Curcumin, the main ingredient in turmeric, has attracted attention due to its potential anti-inflammatory, anticancer, wound-healing, and antioxidant properties. Though curcumin efficacy is related to its interaction with biomembranes, there are few reports on the effects of curcumin on the lateral motion of lipids, a fundamental process in the cell membrane. Employing the quasielastic neutron scattering technique, we explore the effects of curcumin on the lateral diffusion of the dipalmotylphosphatidylcholine (DPPC) membrane. Our investigation is also supported by Fourier transform infrared spectroscopy, dynamic light scattering, and calorimetry to understand the interaction between curcumin and the DPPC membrane. It is found that curcumin significantly modulates the packing arrangement and conformations of DPPC lipid, leading to enhanced membrane dynamics. In particular, we find that the presence of curcumin substantially accelerates the DPPC lateral motion in both ordered and fluid phases. The effects are more pronounced in the ordered phase where the lateral diffusion coefficient increases by 23% in comparison to 9% in the fluid phase. Our measurements provide critical insights into molecular mechanisms underlying increased lateral diffusion. In contrast, the localized internal motions of DPPC are barely altered, except for a marginal enhancement observed in the ordered phase. In essence, these findings indicate that curcumin is favorably located at the membrane interface rather than in a transbilayer configuration. Further, the unambiguous evidence that curcumin modulates the membrane dynamics at a molecular level supports a possible action mechanism in which curcumin can act as an allosteric regulator of membrane functionality.
Collapse
Affiliation(s)
- Veerendra Kumar Sharma
- Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400085, India
- Homi Bhabha National Institute, Anushakti Nagar, Mumbai 400094, India
| | - Jyoti Gupta
- Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400085, India
- Homi Bhabha National Institute, Anushakti Nagar, Mumbai 400094, India
| | - Harish Srinivasan
- Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400085, India
- Homi Bhabha National Institute, Anushakti Nagar, Mumbai 400094, India
| | - Himal Bhatt
- Homi Bhabha National Institute, Anushakti Nagar, Mumbai 400094, India
- High Pressure & Synchrotron Radiation Physics Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| | - Victoria García Sakai
- ISIS Neutron and Muon Source, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Didcot OX11 0QX, U.K
| | - Subhankur Mitra
- Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400085, India
- Homi Bhabha National Institute, Anushakti Nagar, Mumbai 400094, India
| |
Collapse
|
19
|
Qian S, Heller W, Chen WR, Christianson A, Do C, Wang Y, Lin JYY, Huegle T, Jiang C, Boone C, Hart C, Graves V. CENTAUR-The small- and wide-angle neutron scattering diffractometer/spectrometer for the Second Target Station of the Spallation Neutron Source. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2022; 93:075104. [PMID: 35922314 DOI: 10.1063/5.0090527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 06/11/2022] [Indexed: 06/15/2023]
Abstract
CENTAUR has been selected as one of the eight initial instruments to be built at the Second Target Station (STS) of the Spallation Neutron Source at Oak Ridge National Laboratory. It is a small-angle neutron scattering (SANS) and wide-angle neutron scattering (WANS) instrument with diffraction and spectroscopic capabilities. This instrument will maximally leverage the high brightness of the STS source, the state-of-the-art neutron optics, and a suite of detectors to deliver unprecedented capabilities that enable measurements over a wide range of length scales with excellent resolution, measurements on smaller samples, and time-resolved investigations of evolving structures. Notably, the simultaneous WANS and diffraction capability will be unique among neutron scattering instruments in the United States. This instrument will provide much needed capabilities for soft matter and polymer sciences, geology, biology, quantum condensed matter, and other materials sciences that need in situ and operando experiments for kinetic and/or out-of-equilibrium studies. Beam polarization and a high-resolution chopper will enable detailed structural and dynamical investigations of magnetic and quantum materials. CENTAUR's excellent resolution makes it ideal for low-angle diffraction studies of highly ordered large-scale structures, such as skyrmions, shear-induced ordering in colloids, and biomembranes. Additionally, the spectroscopic mode of this instrument extends to lower momentum transfers than are currently possible with existing spectrometers, thereby providing a unique capability for inelastic SANS studies.
Collapse
Affiliation(s)
- Shuo Qian
- Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, USA
| | - William Heller
- Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, USA
| | - Wei-Ren Chen
- Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, USA
| | | | - Changwoo Do
- Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, USA
| | - Yangyang Wang
- Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, USA
| | - Jiao Y Y Lin
- Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, USA
| | - Thomas Huegle
- Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, USA
| | - Chenyang Jiang
- Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, USA
| | - Cristina Boone
- Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, USA
| | - Cameron Hart
- Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, USA
| | - Van Graves
- Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, USA
| |
Collapse
|
20
|
Sharma VK, Mamontov E. Multiscale lipid membrane dynamics as revealed by neutron spectroscopy. Prog Lipid Res 2022; 87:101179. [PMID: 35780913 DOI: 10.1016/j.plipres.2022.101179] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 06/25/2022] [Accepted: 06/27/2022] [Indexed: 12/22/2022]
Abstract
The plasma membrane is one of the principal structural components of the cell and, therefore, one of the key components of the cellular life. Because the membrane's dynamics links the membrane's structure and function, the complexity and the broad range of the membrane's motions are essential for the enormously diverse functionality of the cell membrane. Even for the main membrane component, the lipid bilayer, considered alone, the range and complexity of the lipid motions are remarkable. Spanning the time scale from sub-picosecond to minutes and hours, the lipid motion in a bilayer is challenging to study even when a broad array of dynamic measurement techniques is employed. Neutron scattering plays a special role among such dynamic measurement techniques, particularly, because it involves the energy transfers commensurate with the typical intra- and inter- molecular dynamics and the momentum transfers commensurate with intra- and inter-molecular distances. Thus, using neutron scattering-based techniques, the spatial and temporal information on the lipid motion can be obtained and analysed simultaneously. Protium vs. deuterium sensitivity and non-destructive character of the neutron probe add to the remarkable prowess of neutron scattering for elucidating the lipid dynamics. Herein we present an overview of the neutron scattering-based studies of lipid dynamics in model membranes, with a discussion of the direct relevance and implications to the real-life cell membranes. The latter are much more complex systems than simple model membranes, consisting of heterogeneous non-stationary domains composed of lipids, proteins, and other small molecules, such as carbohydrates. Yet many fundamental aspects of the membrane behavior and membrane interactions with other molecules can be understood from neutron scattering measurements of the model membranes. For example, such studies can provide a great deal of information on the interactions of antimicrobial compounds with the lipid matrix of a pathogen membrane, or the interactions of drug molecules with the plasma membrane. Finally, we briefly discuss the recently emerging field of neutron scattering membrane studies with a reach far beyond the model membrane systems.
Collapse
Affiliation(s)
- V K Sharma
- Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400085, India; Homi Bhabha National Institute, Mumbai 400094, India.
| | - E Mamontov
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| |
Collapse
|
21
|
Qian S, Zolnierczuk PA. Interaction of a Short Antimicrobial Peptide on Charged Lipid Bilayer: A Case Study on Aurein 1.2 Peptide. BBA ADVANCES 2022; 2:100045. [PMID: 37082600 PMCID: PMC10074906 DOI: 10.1016/j.bbadva.2022.100045] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/21/2022] [Accepted: 02/01/2022] [Indexed: 12/27/2022] Open
Abstract
Aurein 1.2 (aurein) is a short but active α-helical antimicrobial peptide discovered in Australian tree frogs (Litoria aurea). It shows inhibition on a broad spectrum of bacteria and cancer cells. With well-defined helicity, amphipathicity, and cationic charges, it readily binds to membranes and causes membrane change and disruption. This study provides details on how aurein interacts with charged lipid membranes by using neutron membrane diffraction (NMD) and neutron spin echo (NSE) spectroscopy on complex peptide-membrane systems. NMD provides higher resolution lipid bilayer structures than solution scattering. NMD revealed the peptide is mostly associated in the lipid headgroup region. Even at moderately high concentrations (e.g., peptide:lipid ratio of 1:30), aurein is located at the acyl chain-headgroup region without deep penetration into the hydrophobic acyl chain. However, it does reduce the elasticity of the membrane at that concentration, which was corroborated by the NSE results. Furthermore, NSE shows that aurein first softens the membrane, like many other α-helical peptides at low concentration, but then makes the membrane much more rigid, even without membrane pore formation. Combining our previous studies, the evidence shows that aurein at relatively low concentrations still modifies lipid distribution significantly and can cause membrane thinning and lateral segregation of charged lipids. At the same time, the membrane's mechanical properties are modified with much slower lipid diffusion. This suggests that aurein can attack the microbial membrane without the need to form membrane pores or disintegrate membranes; instead, it promotes the formation of domains at low concentration.
Collapse
Affiliation(s)
- Shuo Qian
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830, United States
- Second Target Station, Oak Ridge National Laboratory, Oak Ridge, TN 37830, United States
- Corresponding author.
| | - Piotr A. Zolnierczuk
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830, United States
| |
Collapse
|
22
|
Yang L. Scattering measurements on lipid membrane structures. Methods Enzymol 2022; 677:385-415. [DOI: 10.1016/bs.mie.2022.08.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
23
|
Perez-Salas U, Garg S, Gerelli Y, Porcar L. Deciphering lipid transfer between and within membranes with time-resolved small-angle neutron scattering. CURRENT TOPICS IN MEMBRANES 2021; 88:359-412. [PMID: 34862031 DOI: 10.1016/bs.ctm.2021.10.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
This review focuses on time-resolved neutron scattering, particularly time-resolved small angle neutron scattering (TR-SANS), as a powerful in situ noninvasive technique to investigate intra- and intermembrane transport and distribution of lipids and sterols in lipid membranes. In contrast to using molecular analogues with potentially large chemical tags that can significantly alter transport properties, small angle neutron scattering relies on the relative amounts of the two most abundant isotope forms of hydrogen: protium and deuterium to detect complex membrane architectures and transport processes unambiguously. This review discusses advances in our understanding of the mechanisms that sustain lipid asymmetry in membranes-a key feature of the plasma membrane of cells-as well as the transport of lipids between membranes, which is an essential metabolic process.
Collapse
Affiliation(s)
- Ursula Perez-Salas
- Physics Department, University of Illinois at Chicago, Chicago, IL, United States.
| | - Sumit Garg
- Physics Department, University of Illinois at Chicago, Chicago, IL, United States
| | - Yuri Gerelli
- Department of Life and Environmental Sciences, Universita` Politecnica delle Marche, Ancona, Italy
| | | |
Collapse
|
24
|
Ye Z, Wu Z, Jayaraman A. Computational Reverse Engineering Analysis for Scattering Experiments (CREASE) on Vesicles Assembled from Amphiphilic Macromolecular Solutions. JACS AU 2021; 1:1925-1936. [PMID: 34841410 PMCID: PMC8611670 DOI: 10.1021/jacsau.1c00305] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Indexed: 05/25/2023]
Abstract
In this paper we present the development and validation of the "Computational Reverse-Engineering Analysis for Scattering Experiments" (CREASE) method for analyzing scattering results from vesicle structures that are commonly found upon assembly of synthetic, biomimetic, or bioderived amphiphilic copolymers in solution. The two-step CREASE method takes the amphiphilic polymer chemistry and small-angle scattering intensity profile, I exp(q), as input and determines the vesicles' structural features on multiple length scales ranging from assembled vesicle wall's individual layer thicknesses to the monomer-level packing and distribution of polymer conformations. In the first step of CREASE, a genetic algorithm (GA) is used to determine the relevant vesicle dimensions from the input macromolecular solution information and I exp(q) by identifying the structure whose computed scattering profile best matches the input I exp(q). Then in the second step, the GA-determined dimensions are used for molecular reconstruction of the vesicle structure. To validate CREASE for vesicles, we test CREASE on input scattering intensity profiles generated mathematically (termed as in silico I exp(q) vs q) from a variety of vesicle sizes with known dimensions. We also test CREASE on in silico I exp(q) vs q generated from vesicles with dispersity in all relevant dimensions, resembling real experiments. After successful validation of CREASE, we compare the CREASE-determined dimensions against those obtained from the traditional approach of fitting the scattering intensity profile to relevant analytical model in SASVIEW package. We show that CREASE performs better than or as well as the core-multishell analytical model's fitting in SASVIEW in determining vesicle dimensions with dispersity. We also show that CREASE provides structural information beyond those possible from traditional scattering analysis using the core-multishell model, such as the distribution of solvophilic monomers between the vesicle wall's inner and outer layers in the vesicle wall and the chain-level packing within each vesicle layer.
Collapse
Affiliation(s)
- Ziyu Ye
- Colburn
Laboratory, Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy Street, Newark, Delaware 19716, United States
| | - Zijie Wu
- Colburn
Laboratory, Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy Street, Newark, Delaware 19716, United States
| | - Arthi Jayaraman
- Colburn
Laboratory, Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy Street, Newark, Delaware 19716, United States
- Department
of Materials Science and Engineering, University
of Delaware, Newark, Delaware 19716, United States
| |
Collapse
|
25
|
Fifty years of the schistosome tegument: discoveries, controversies, and outstanding questions. Int J Parasitol 2021; 51:1213-1232. [PMID: 34767805 DOI: 10.1016/j.ijpara.2021.11.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 11/01/2021] [Accepted: 11/01/2021] [Indexed: 11/21/2022]
Abstract
The unique multilaminate appearance of the tegument surface of schistosomes was first described in 1973, in one of the earliest volumes of the International Journal for Parasitology. The present review, published almost 50 years later, traces the development of our knowledge of the tegument, starting with those earliest cytological advances, particularly the surface plasma membrane-membranocalyx complex, through an era of protein discovery to the modern age of protein characterization, aided by proteomics. More recently, analysis of single cell transcriptomes of schistosomes is providing insight into the organisation of the cell bodies that support the surface syncytium. Our understanding of the tegument, notably the nature of the proteins present within the plasma membrane and membranocalyx, has provided insights into how the schistosomes interact with their hosts but many aspects of how the tegument functions remain unanswered. Among the unresolved aspects are those concerned with maintenance and renewal of the surface membrane complex, and whether surface proteins and membrane components are recycled. Current controversies arising from investigations about whether the tegument is a source of extracellular vesicles during parasitism, and if it is covered with glycolytic enzymes, are evaluated in the light of cytological and proteomic knowledge of the layer.
Collapse
|
26
|
Ilangumaran Ponmalar I, Sarangi NK, Basu JK, Ayappa KG. Pore Forming Protein Induced Biomembrane Reorganization and Dynamics: A Focused Review. Front Mol Biosci 2021; 8:737561. [PMID: 34568431 PMCID: PMC8459938 DOI: 10.3389/fmolb.2021.737561] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 07/30/2021] [Indexed: 11/13/2022] Open
Abstract
Pore forming proteins are a broad class of pathogenic proteins secreted by organisms as virulence factors due to their ability to form pores on the target cell membrane. Bacterial pore forming toxins (PFTs) belong to a subclass of pore forming proteins widely implicated in bacterial infections. Although the action of PFTs on target cells have been widely investigated, the underlying membrane response of lipids during membrane binding and pore formation has received less attention. With the advent of superresolution microscopy as well as the ability to carry out molecular dynamics (MD) simulations of the large protein membrane assemblies, novel microscopic insights on the pore forming mechanism have emerged over the last decade. In this review, we focus primarily on results collated in our laboratory which probe dynamic lipid reorganization induced in the plasma membrane during various stages of pore formation by two archetypal bacterial PFTs, cytolysin A (ClyA), an α-toxin and listeriolysin O (LLO), a β-toxin. The extent of lipid perturbation is dependent on both the secondary structure of the membrane inserted motifs of pore complex as well as the topological variations of the pore complex. Using confocal and superresolution stimulated emission depletion (STED) fluorescence correlation spectroscopy (FCS) and MD simulations, lipid diffusion, cholesterol reorganization and deviations from Brownian diffusion are correlated with the oligomeric state of the membrane bound protein as well as the underlying membrane composition. Deviations from free diffusion are typically observed at length scales below ∼130 nm to reveal the presence of local dynamical heterogeneities that emerge at the nanoscale-driven in part by preferential protein binding to cholesterol and domains present in the lipid membrane. Interrogating the lipid dynamics at the nanoscale allows us further differentiate between binding and pore formation of β- and α-PFTs to specific domains in the membrane. The molecular insights gained from the intricate coupling that occurs between proteins and membrane lipids and receptors during pore formation are expected to improve our understanding of the virulent action of PFTs.
Collapse
Affiliation(s)
| | - Nirod K. Sarangi
- School of Chemical Science, Dublin City University, Dublin, Ireland
| | - Jaydeep K. Basu
- Department of Physics, Indian Institute of Science, Bangalore, India
| | - K. Ganapathy Ayappa
- Center for BioSystems Science and Engineering, Indian Institute of Science, Bangalore, India
- Department of Chemical Engineering, Indian Institute of Science, Bengaluru, India
| |
Collapse
|
27
|
Methods for the solubilisation of membrane proteins: the micelle-aneous world of membrane protein solubilisation. Biochem Soc Trans 2021; 49:1763-1777. [PMID: 34415288 PMCID: PMC8421053 DOI: 10.1042/bst20210181] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/02/2021] [Accepted: 08/03/2021] [Indexed: 12/14/2022]
Abstract
The solubilisation of membrane proteins (MPs) necessitates the overlap of two contradictory events; the extraction of MPs from their native lipid membranes and their subsequent stabilisation in aqueous environments. Whilst the current myriad of membrane mimetic systems provide a range of modus operandi, there are no golden rules for selecting the optimal pipeline for solubilisation of a specific MP hence a miscellaneous approach must be employed balancing both solubilisation efficiency and protein stability. In recent years, numerous diverse lipid membrane mimetic systems have been developed, expanding the pool of available solubilisation strategies. This review provides an overview of recent developments in the membrane mimetic field, with particular emphasis placed upon detergents, polymer-based nanodiscs and amphipols, highlighting the latest reagents to enter the toolbox of MP research.
Collapse
|
28
|
Abstract
Cell membranes - primarily composed of lipids, sterols, and proteins - form a dynamic interface between living cells and their environment. They act as a mechanical barrier around the cell while selectively facilitating material transport, signal transduction, and various other functions necessary for the cell viability. The complex functionality of cell membranes and the hierarchical motions and responses they exhibit demand a thorough understanding of the origin of different membrane dynamics and how they are influenced by molecular additives and environmental cues. These dynamic modes include single-molecule diffusion, thermal fluctuations, and large-scale membrane deformations, to name a few. This review highlights advances in investigating structure-driven dynamics associated with model cell membranes, with a particular focus on insights gained from neutron scattering and spectroscopy experiments. We discuss the uniqueness of neutron contrast variation and its remarkable potential in probing selective membrane structure and dynamics on spatial and temporal scales over which key biological functions occur. We also present a summary of current and future opportunities in synergistic combinations of neutron scattering with molecular dynamics (MD) simulations to gain further understanding of the molecular mechanisms underlying complex membrane functions.
Collapse
Affiliation(s)
- Sudipta Gupta
- Department of Physics, Virginia Tech, Blacksburg, VA 24061, USA. and Center for Soft Matter and Biological Physics, Virginia Tech, Blacksburg, VA 24061, USA
| | - Rana Ashkar
- Department of Physics, Virginia Tech, Blacksburg, VA 24061, USA. and Center for Soft Matter and Biological Physics, Virginia Tech, Blacksburg, VA 24061, USA
| |
Collapse
|
29
|
Unravelling the structural complexity of protein-lipid interactions with neutron reflectometry. Biochem Soc Trans 2021; 49:1537-1546. [PMID: 34240735 DOI: 10.1042/bst20201071] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 06/02/2021] [Accepted: 06/14/2021] [Indexed: 11/17/2022]
Abstract
Neutron reflectometry (NR) is a large-facility technique used to examine structure at interfaces. In this brief review an introduction to the utilisation of NR in the study of protein-lipid interactions is given. Cold neutron beams penetrate matter deeply, have low energies, wavelengths in the Ångstrom regime and are sensitive to light elements. High differential hydrogen sensitivity (between protium and deuterium) enables solution and sample isotopic labelling to be utilised to enhance or diminish the scattering signal of individual components within complex biological structures. The combination of these effects means NR can probe buried structures such as those at the solid-liquid interface and encode molecular level structural information on interfacial protein-lipid complexes revealing the relative distribution of components as well as the overall structure. Model biological membrane sample systems can be structurally probed to examine phenomena such as antimicrobial mode of activity, as well as structural and mechanistic properties peripheral/integral proteins within membrane complexes. Here, the example of the antimicrobial protein α1-purothionin binding to a model Gram negative bacterial outer membrane is used to highlight the utilisation of this technique, detailing how changes in the protein/lipid distributions across the membrane before and after the protein interaction can be easily encoded using hydrogen isotope labelling.
Collapse
|
30
|
Benedetto A, Kearley GJ. Experimental demonstration of the novel "van-Hove integral method (vHI)" for measuring diffusive dynamics by elastic neutron scattering. Sci Rep 2021; 11:14093. [PMID: 34238981 PMCID: PMC8266890 DOI: 10.1038/s41598-021-93463-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 06/24/2021] [Indexed: 11/09/2022] Open
Abstract
Quasi-elastic neutron scattering (QENS)-based on the seminal work of Nobel Laureate Brockhouse-has been one of the major methods for studying pico-second to nano-second diffusive dynamics over the past 70 years. This is regarded as an "inelastic" method for dynamics. In contrast, we recently proposed a new neutron-scattering method for dynamics, which uses the elastic line of the scattering to access system dynamics directly in the time domain (Benedetto and Kearley in Sci Rep 9:11284, 2019). This new method has been denoted "vHI" that stands for "van Hove Integral". The reason is that, under certain conditions, the measured elastic intensity corresponds to the running-time integral of the intermediate scattering function, [Formula: see text], up to a time that is inversely proportional to the energy band-width incident on the sample. As a result, [Formula: see text] is accessed from the time derivative of the measured vHI profile. vHI has been supported by numerical and Monte-Carlo simulations, but has been difficult to validate experimentally due to the lack of a suitable instrument. Here we show that vHI works in practice, which we achieved by using a simple modification to the standard QENS backscattering spectrometer methodology. Basically, we varied the neutron-energy band-widths incident at the sample via a step-wise variation of the frequency of the monochromator Doppler-drive. This provides a measurement of the vHI profile at the detectors. The same instrument and sample were also used in standard QENS mode for comparison. The intermediate scattering functions, [Formula: see text], obtained by the two methods-vHI and QENS-are strikingly similar providing a direct experimental validation of the vHI method. Perhaps surprisingly, the counting statistics of the two methods are comparable even though the instrument used was expressly designed for QENS. This shows that the methodology modification adopted here can be used in practice to access vHI profiles at many of the backscattering spectrometers worldwide. We also show that partial integrations of the measured QENS spectrum cannot provide the vHI profile, which clarifies a common misconception. At the same time, we show a novel approach which does access [Formula: see text] from QENS spectra.
Collapse
Affiliation(s)
- Antonio Benedetto
- School of Physics, University College Dublin, Dublin 4, Ireland.
- Conway Institute, University College Dublin, Dublin 4, Ireland.
- Department of Sciences, University of Roma Tre, Rome, Italy.
- Laboratory for Neutron Scattering, Paul Scherrer Institute, Villigen, Switzerland.
| | - Gordon J Kearley
- School of Physics, University College Dublin, Dublin 4, Ireland
- School of Chemistry, University College Dublin, Dublin 4, Ireland
| |
Collapse
|
31
|
Guo R, Sumner J, Qian S. Structure of Diisobutylene Maleic Acid Copolymer (DIBMA) and Its Lipid Particle as a “Stealth” Membrane-Mimetic for Membrane Protein Research. ACS APPLIED BIO MATERIALS 2021; 4:4760-4768. [DOI: 10.1021/acsabm.0c01626] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Rong Guo
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
- Grinnell College, Grinnell, Iowa 50112, United States
| | - Jacob Sumner
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Shuo Qian
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| |
Collapse
|
32
|
Persano F, Gigli G, Leporatti S. Lipid-polymer hybrid nanoparticles in cancer therapy: current overview and future directions. NANO EXPRESS 2021. [DOI: 10.1088/2632-959x/abeb4b] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Abstract
Cancer remains one of the leading cause of death worldwide. Current therapies are still ineffective in completely eradicating the disease. In the last two decades, the use of nanodelivery systems has emerged as an effective way to potentiate the therapeutic properties of anti-cancer drugs by improving their solubility and stability, prolong drug half-lives in plasma, minimize drug’s toxicity by reducing its off-target distribution, and promote drugs’ accumulation at the desired target site. Liposomes and polymer nanoparticles are the most studied and have demonstrated to be the most effective delivery systems for anti-cancer drugs. However, both liposomes and polymeric nanoparticles suffer from limitations, including high instability, rapid drug release, limited drug loading capacity, low biocompatibility and lack of suitability for large-scale production. To overcome these limitations, lipid-polymer hybrid nanoparticles (LPHNPs) have been developed to merge the advantages of both lipid- and polymer-based nanocarriers, such as high biocompatibility and stability, improved drug loading and controlled release, as well as increased drug half-lives and therapeutic efficacy. This review provides an overview on the synthesis, properties and application of LPHNPs for cancer therapy.
Collapse
|