1
|
Luo Y, Fu K, Wang D, Luo J. Nanobubble-Driven Interfacial Interactions of Carbon-Based Adsorbents with Legacy PFAS: Impact of Concentration, pH, and Coexisting Ions. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:6900-6914. [PMID: 40152332 DOI: 10.1021/acs.est.4c14726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
Nanobubbles (NBs) have been utilized to enhance the removal of perfluoroalkyl and polyfluoroalkyl substances (PFAS) from water. However, the effectiveness of NBs under various operational conditions, including varying PFAS concentrations, pH levels, and the presence of coexisting ions, has remained insufficiently explored. A deeper understanding of these interfacial interactions is crucial to optimizing and maximizing the efficiency of NBs in PFAS removal. This study aims to bridge these knowledge gaps by systematically exploring the role of NBs in augmenting the adsorption of legacy PFAS on various carbon-based adsorbents, including granular activated carbon (GAC), carbon nanotubes (CNTs), and graphene. Our experimental results demonstrated a significant improvement in PFAS adsorption on carbon-based adsorbents in the presence of NBs, with the enhancement effect particularly pronounced at a high initial PFAS concentration (50 mg L-1). Acidic conditions notably facilitated PFAS removal in the NB-assisted carbon adsorption system, aligning well with the predictions from the Derjaguin-Landau-Verwey-Overbeek (DLVO) theory. Furthermore, ionic strength was found to play a critical role, with lower levels stabilizing NBs and promoting interactions with adsorbent surfaces, while higher levels reduced the effectiveness of NBs. Additionally, multivalent cations (particularly Fe3+) showed a substantially greater enhancement in PFAS removal efficiency compared to Na+ and Ca2+. This study deepens the understanding of NB-assisted PFAS removal using carbon-based adsorbents and provides practical insights into optimizing treatment processes.
Collapse
Affiliation(s)
- Yuetong Luo
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Kaixing Fu
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Dawei Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, P. R. China
| | - Jinming Luo
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| |
Collapse
|
2
|
Dutta N, Mitra S, Nirmalkar N. Understanding the Role of Surface Charge on Nanobubble Capillary Bridging during Particle-Particle Interaction. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:4475-4488. [PMID: 38356240 DOI: 10.1021/acs.langmuir.3c03963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
The interactions between particles due to long-range hydrophobic forces have been extensively investigated. The hydrophobic force is likely a capillary force that arises from the formation of capillary bridges due to the merging of nanobubbles. In this study, we aim to investigate the impact of the nanobubble surface charge on the capillary bridge and, subsequently, the interaction between particles. The surface charge of the nanobubbles was altered in the presence of various surfactants (cationic, anionic, and nonionic) and salts (mono-, di-, and trivalent). The particle-particle interaction was quantified by measuring the aggregate size of the hydrophobized glass particles. Both experimental and theoretical findings confirm that the interaction between particles was enhanced when the surface potential of the nanobubble was around the neutral regime. This is probably because, when the surface potential was close to neutral, the interaction between two surface-deposited nanobubbles dominated over electrostatic repulsion, which was more conducive to the formation of the nanobubble capillary bridge. The estimation of the constrained Gibbs potential also showed the capillary bridge to be more stable when surface charge density along the bridge gas-liquid interface was minimal.
Collapse
Affiliation(s)
- Nilanjan Dutta
- Department of Chemical Engineering, Indian Institute of Technology Ropar, Punjab 140001, India
| | - Subhasish Mitra
- ARC Center of Excellence for Enabling Eco-efficient Beneficiation of Minerals, School of Engineering, The University of Newcastle, New South Wales 2308, Australia
| | - Neelkanth Nirmalkar
- Department of Chemical Engineering, Indian Institute of Technology Ropar, Punjab 140001, India
| |
Collapse
|
3
|
Niwano M, Ma T, Iwata K, Tadaki D, Yamamoto H, Kimura Y, Hirano-Iwata A. Two-dimensional water-molecule-cluster layers at nanobubble interfaces. J Colloid Interface Sci 2023; 652:1775-1783. [PMID: 37678082 DOI: 10.1016/j.jcis.2023.08.173] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 08/18/2023] [Accepted: 08/27/2023] [Indexed: 09/09/2023]
Abstract
HYPOTHESIS Bulk nanobubbles (NBs) have high surface charge densities and long lifetimes. Despite several attempts to understand the lifetime of NBs, their interfacial layer structure remains unknown. It is hypothesized that a specific interfacial layer exists with a hydrogen bond network that stabilizes NBs. EXPERIMENTS In situ infrared reflectance-absorption spectroscopy and density functional theory were used to determine the interfacial layer structure of NBs. Furthermore, nuclear magnetic resonance spectroscopy was used to examine the interfacial layer hardness of bubbles filled with N2, O2, and CO2, which was expected to depend on the encapsulated gas species. FINDINGS The interfacial layer was composed of three-, four-, and five-membered ring clusters of water molecules. An interface model was proposed in which a two-dimensional layer of clusters with large electric dipole moments is oriented toward the endohedral gas, and the hydrophobic surface is adjacent to the free water. The interfacial layer hardness was dependent on the interaction with the gas (N2 > O2 > CO2), which supports the proposed interface model. These findings can be generalized to the structure of water at gas-water interfaces.
Collapse
Affiliation(s)
- Michio Niwano
- Laboratory for Nano-electronics and Spintronics, Research Institute of Electrical Communication, Tohoku University, Sendai, Miyagi 980-8577, Japan.
| | - Teng Ma
- Advanced Institute for Materials Research (AIMR), Tohoku University, Sendai, Miyagi 980-8577, Japan
| | - Kazuki Iwata
- Faculty of Comprehensive Management, Tohoku Fukushi University, Sendai, Miyagi 989-3201, Japan
| | - Daisuke Tadaki
- Laboratory for Nano-electronics and Spintronics, Research Institute of Electrical Communication, Tohoku University, Sendai, Miyagi 980-8577, Japan
| | - Hideaki Yamamoto
- Laboratory for Nano-electronics and Spintronics, Research Institute of Electrical Communication, Tohoku University, Sendai, Miyagi 980-8577, Japan
| | - Yasuo Kimura
- Department of Electric and Electronic Engineering, Tokyo University of Technology, Hachioji, Tokyo 192-0983, Japan
| | - Ayumi Hirano-Iwata
- Laboratory for Nano-electronics and Spintronics, Research Institute of Electrical Communication, Tohoku University, Sendai, Miyagi 980-8577, Japan; Faculty of Comprehensive Management, Tohoku Fukushi University, Sendai, Miyagi 989-3201, Japan
| |
Collapse
|
4
|
Yasui K, Tuziuti T, Kanematsu W. Mechanism of the Decrease in Surface Tension by Bulk Nanobubbles (Ultrafine Bubbles). LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:16574-16583. [PMID: 37934653 DOI: 10.1021/acs.langmuir.3c02545] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
The mechanism of the decrease in the surface tension of water containing bulk nanobubbles (ultrafine bubbles) is studied theoretically by numerical simulations of the adsorption of bulk nanobubbles at the liquid's surface based on the dynamic equilibrium model for the stability of a bulk nanobubble under the conditions of the Tuziuti experiment (Tuziuti, T., et al., Langmuir, 2023, 39, 5771-5778). It is predicted that the concentration of bulk nanobubbles in the bulk liquid decreases considerably with time, as many bulk nanobubbles are gradually adsorbed at the liquid's surface. A part of the decrease in surface tension is due to the Janus-like structure of a bulk nanobubble that could partly break the hydrogen bond network of water molecules at the liquid's surface because more than 50% of the bubble's surface is covered with hydrophobic impurities, according to the dynamic equilibrium model. The theoretically estimated decrease in surface tension due to the Janus-like structure of a bulk nanobubble agrees with the experimental data of the decrease in surface tension solely by bulk nanobubbles obtained by the comparison of before and after the elimination of bulk nanobubbles by the freeze-thaw process. This effect cannot be explained by the electric charge stabilization model widely discussed for the stability of a bulk nanobubble, although the present model is only applicable to the solution containing hydrophobic impurities. Another part of the decrease in surface tension should be due to impurities produced from a nanobubble generator, such as a mechanical seal, which was partly confirmed by the TOC measurements.
Collapse
Affiliation(s)
- Kyuichi Yasui
- National Institute of Advanced Industrial Science and Technology (AIST), Nagoya 463-8560, Japan
| | - Toru Tuziuti
- National Institute of Advanced Industrial Science and Technology (AIST), Nagoya 463-8560, Japan
| | - Wataru Kanematsu
- National Institute of Advanced Industrial Science and Technology (AIST), Nagoya 463-8560, Japan
| |
Collapse
|
5
|
Zhang R, Gao Y, Chen L, Li D, Ge G. Tunable Gas-Gas Reactions through Nanobubble Pathway. Chemphyschem 2023; 24:e202300429. [PMID: 37534533 DOI: 10.1002/cphc.202300429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/26/2023] [Accepted: 08/02/2023] [Indexed: 08/04/2023]
Abstract
Combustible gas-gas reactions usually do not occur spontaneously upon mixing without ignition or other triggers to lower the activation energy barrier. Nanobubbles, however, could provide such a possibility in solution under ambient conditions due to high inner pressure and catalytic radicals within their boundary layers. Herein, a tunable gas-gas reaction strategy via bulk nanobubble pathway is developed by tuning the interface charge of one type of bulk nanobubble and promoting its fusion and reaction with another, where the reaction-accompanied size and number concentration change of the bulk nanobubbles and the corresponding thermal effect clearly confirm the occurrence of the nanobubble-based H2 /O2 combustion. In addition, abundant radicals can be detected during the reaction, which is considered to be critical to ignite the gas reaction during the fusion of nanobubbles in water at room temperature. Therefore, the nanobubble-based gas-gas reactions provide a safe and efficient pathway to produce energy and synthesize new matter inaccessible under mild or ambient conditions.
Collapse
Affiliation(s)
- Ruiyi Zhang
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Ya Gao
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Lan Chen
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
| | - Dexing Li
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
| | - Guanglu Ge
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
| |
Collapse
|
6
|
Jia M, Farid MU, Kharraz JA, Kumar NM, Chopra SS, Jang A, Chew J, Khanal SK, Chen G, An AK. Nanobubbles in water and wastewater treatment systems: Small bubbles making big difference. WATER RESEARCH 2023; 245:120613. [PMID: 37738940 DOI: 10.1016/j.watres.2023.120613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 07/22/2023] [Accepted: 09/09/2023] [Indexed: 09/24/2023]
Abstract
Since the discovery of nanobubbles (NBs) in 1994, NBs have been attracting growing attention for their fascinating properties and have been studied for application in various environmental fields, including water and wastewater treatment. However, despite the intensive research efforts on NBs' fundamental properties, especially in the past five years, controversies and disagreements in the published literature have hindered their practical implementation. So far, reviews of NB research have mainly focused on NBs' role in specific treatment processes or general applications, highlighting proof-of-concept and success stories primarily at the laboratory scale. As such, there lacks a rigorous review that authenticates NBs' potential beyond the bench scale. This review aims to provide a comprehensive and up-to-date analysis of the recent progress in NB research in the field of water and wastewater treatment at different scales, along with identifying and discussing the challenges and prospects of the technology. Herein, we systematically analyze (1) the fundamental properties of NBs and their relevancy to water treatment processes, (2) recent advances in NB applications for various treatment processes beyond the lab scale, including over 20 pilot and full-scale case studies, (3) a preliminary economic consideration of NB-integrated treatment processes (the case of NB-flotation), and (4) existing controversies in NBs research and the outlook for future research. This review is organized with the aim to provide readers with a step-by-step understanding of the subject matter while highlighting key insights as well as knowledge gaps requiring research to advance the use of NBs in the wastewater treatment industry.
Collapse
Affiliation(s)
- Mingyi Jia
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong Special Administrative Region
| | - Muhammad Usman Farid
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong Special Administrative Region.
| | - Jehad A Kharraz
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong Special Administrative Region; Department of Chemical and Petroleum Engineering, Khalifa University of Science and Technology, PO Box 127788, Abu Dhabi, UAE
| | - Nallapaneni Manoj Kumar
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong Special Administrative Region; Center for Circular Supplies, HICCER - Hariterde International Council of Circular Economy Research, Palakkad, Kerala 678631, India
| | - Shauhrat S Chopra
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong Special Administrative Region
| | - Am Jang
- Department of Global Smart City, Sungkyunkwan University (SKKU), 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 16419, Republic of Korea
| | - John Chew
- Department of Chemical Engineering, University of Bath, Bath BA2 7AY, UK
| | - Samir Kumar Khanal
- Department of Molecular Biosciences and Bioengineering, University of Hawai'i at Manoa, 1955 East-West Road, Honolulu, HI 96822, United States
| | - Guanghao Chen
- Department of Civil and Environmental Engineering, Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution and Water Technology Center, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Alicia Kyoungjin An
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong Special Administrative Region.
| |
Collapse
|
7
|
Yasui K. The Reducing Agents in Sonochemical Reactions without Any Additives. Molecules 2023; 28:molecules28104198. [PMID: 37241940 DOI: 10.3390/molecules28104198] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/10/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023] Open
Abstract
It has been experimentally reported that not only oxidation reactions but also reduction reactions occur in aqueous solutions under ultrasound without any additives. According to the numerical simulations of chemical reactions inside an air or argon bubble in water without any additives under ultrasound, reducing agents produced from the bubbles are H, H2, HO2 (which becomes superoxide anion (O2-) in liquid water), NO, and HNO2 (which becomes NO2- in liquid water). In addition, H2O2 sometimes works as a reducing agent. As the reduction potentials of H and H2 (in strongly alkaline solutions for H2) are higher than those of RCHOH radicals, which are usually used to reduce metal ions, H and H2 generated from cavitation bubbles are expected to reduce metal ions to produce metal nanoparticles (in strongly alkaline solutions for H2 to work). It is possible that the superoxide anion (O2-) also plays some role in the sonochemical reduction of some solutes. In strongly alkaline solutions, hydrated electrons (e-aq) formed from H atoms in liquid water may play an important role in the sonochemical reduction of solutes because the reduction potential is extremely high. The influence of ultrasonic frequency on the amount of H atoms produced from a cavitation bubble is also discussed.
Collapse
Affiliation(s)
- Kyuichi Yasui
- National Institute of Advanced Industrial Science and Technology (AIST), Nagoya 463-8560, Japan
| |
Collapse
|
8
|
Yasui K. Critical Roles of Impurities and Imperfections in Various Phases of Materials. MATERIALS (BASEL, SWITZERLAND) 2023; 16:1612. [PMID: 36837241 PMCID: PMC9960772 DOI: 10.3390/ma16041612] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/08/2023] [Accepted: 02/13/2023] [Indexed: 06/01/2023]
Abstract
In many materials, impurities and imperfections play a critical role on the physical and chemical properties. In the present review, some examples of such materials are discussed. A bulk nanobubble (an ultrafine bubble) is stabilized against dissolution by hydrophobic impurities attached to the bubble surface. An acoustic cavitation threshold in various liquids decreases significantly by the presence of impurities such as solid particles, etc. The strength of brittle ceramics is determined by the size and number of pre-existing microcracks (imperfections) in the specimen. The size effect of a BaTiO3 nanocrystal is influenced by the amount and species of adsorbates (impurities) on its surface as adsorbate-induced charge-screening changes the free energy. The dielectric constant of an assembly of BaTiO3 nanocubes is influenced by a small tilt angle (imperfection) between two attached nanocubes, which induces strain inside a nanocube, and is also influenced by the spatial strain-relaxation due to defects and dislocations (imperfections), resulting in flexoelectric polarization.
Collapse
Affiliation(s)
- Kyuichi Yasui
- National Institute of Advanced Industrial Science and Technology (AIST), Nagoya 463-8560, Japan
| |
Collapse
|
9
|
Yasui K. On Some Aspects of Nanobubble-Containing Systems. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:2175. [PMID: 35808010 PMCID: PMC9268271 DOI: 10.3390/nano12132175] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 06/17/2022] [Accepted: 06/22/2022] [Indexed: 11/17/2022]
Abstract
Theoretical studies are reviewed for bulk nanobubbles (ultrafine bubbles (UFBs)), which are gas bubbles smaller than 1 μm in diameter. The dynamic equilibrium model is discussed as a promising model for the stability of a UFB against dissolution; more than half of the surface of a UFB should be covered with hydrophobic material (impurity). OH radicals are produced during hydrodynamic or acoustic cavitation to produce UFBs. After stopping cavitation, OH radicals are generated through chemical reactions of H2O2 and O3 in the liquid water. The possibility of radical generation during the bubble dissolution is also discussed based on numerical simulations. UFBs are concentrated on the liquid surface according to the dynamic equilibrium model. As a result, rupture of liquid film is accelerated by the presence of UFBs, which results in a reduction in "surface tension", measured by the du Noüy ring method. Finally, the interaction of UFBs with a solid surface is discussed.
Collapse
Affiliation(s)
- Kyuichi Yasui
- National Institute of Advanced Industrial Science and Technology (AIST), Nagoya 463-8560, Japan
| |
Collapse
|