1
|
Liu B, Zhang P, Guo J, Yang Y, Zhang H. Enhancing the Performance and Wearability of Chitosan-Based Triboelectric Nanogenerators with Quartz Fibers for Self-Powered Movement Sensing. ACS APPLIED MATERIALS & INTERFACES 2025; 17:10360-10368. [PMID: 39927644 DOI: 10.1021/acsami.4c18241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2025]
Abstract
Currently, triboelectric nanogenerators (TENGs) based on chitosan materials face challenges such as limited output power and suboptimal mechanical performance, restricting their application in biodegradable wearable devices and smart homes. Quartz fiber, an inorganic amorphous dielectric material known for its excellent mechanical robustness, thermal resilience, and electrical insulating characteristics, can positively impact the charge properties of chitosan films. Therefore, an innovative chitosan/quartz fiber TENG (CQ-TENG) has been developed by combining quartz fiber embedding and PVA blending techniques to effectively address the high brittleness and low output performance of chitosan-based TENGs. The interaction between chitosan and quartz fibers increases the number of polarization centers, enhancing the charge retention capacity of the CQ-TENG. As a result, the CQ-TENG achieves a time-averaged power density of 37.8 mW/m2, which is 3.3 times greater than that of a pure chitosan TENG, and is capable of easily powering miniature electronic devices. Additionally, the CQ-TENG demonstrates excellent cyclic stability and has been integrated into a motion sensor capable of detecting motion signals from hand and foot movements. The combination of quartz fiber embedding and PVA blending could also be applicable to other TENGs based on biotic materials with properties similar to those of chitosan. Furthermore, the cost-effective and high-performing TENG is expected to become increasingly prominent in wearable technology and smart homes in the future.
Collapse
Affiliation(s)
- Baocheng Liu
- School of Electrical and Information Engineering, Tianjin University, Tianjin 300072, P. R. China
| | - Ping Zhang
- School of Electrical and Information Engineering, Tianjin University, Tianjin 300072, P. R. China
| | - Jing Guo
- CETC Ocean Information Co.,Ltd., Lingshui 572400, China
| | - Yunxiang Yang
- CETC Ocean Information Co.,Ltd., Lingshui 572400, China
| | - Honghao Zhang
- School of Electrical and Information Engineering, Tianjin University, Tianjin 300072, P. R. China
| |
Collapse
|
2
|
Valle L, Maddalena L, Damonte G, Carosio F, Pellis A, Monticelli O. Biodegradable and gas barrier polylactic acid/star-shaped polycaprolactone blend films functionalized with a bio-sourced polyelectrolyte coating. Colloids Surf B Biointerfaces 2024; 236:113806. [PMID: 38394857 DOI: 10.1016/j.colsurfb.2024.113806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 02/15/2024] [Accepted: 02/18/2024] [Indexed: 02/25/2024]
Abstract
This work aims at improving and disclosing new properties of films based on polylactic acid (PLA) and a star-shaped polycaprolactone (PCL). Indeed, previous works demonstrated that the presence of ad-hoc synthesized PCL, characterized by low molecular weight and carboxyl end groups (coded as PCL-COOH), improves the elongation at break of the films compared to that of neat PLA and increases their functionality. To further improve the properties of the system, alternating layers of chitosan (CH) and DNA were deposited on the surface applying a Layer-by-Layer (LbL) technique. This method was chosen because it allows the properties of the system to be modified without affecting the specific features of the bulk. In addition, the LbL technique is easily scalable and environmentally friendly because it is based on the use of an aqueous solution of two biomaterials, namely DNA and CH, which are not only derived from renewable sources but are also biocompatible and biodegradable. IR measurements on model silicon substrates subjected to the same treatment as the films, pointed out a linear growth of the proposed LbL assembly. Indeed, FE-SEM measurements highlighted the deposition of a uniform coating. The presence of the CH/DNA assembly reduced the oxygen permeability under both dry and humid (50% R.H.) conditions when compared to the uncoated film. In addition, the coating had no relevant effect on the hydrolytic and enzymatic degradation of the system, so that the biodegradability of the film was maintained.
Collapse
Affiliation(s)
- Luca Valle
- Dipartimento di Chimica e Chimica Industriale, Università di Genova, Via Dodecaneso, 31, Genova 16146, Italy
| | - Lorenza Maddalena
- Dipartimento di Scienza Applicata e Tecnologia, Politecnico di Torino-sede di Alessandria, viale Teresa Michel, 5, Alessandria 15121, Italy
| | - Giacomo Damonte
- Dipartimento di Chimica e Chimica Industriale, Università di Genova, Via Dodecaneso, 31, Genova 16146, Italy
| | - Federico Carosio
- Dipartimento di Scienza Applicata e Tecnologia, Politecnico di Torino-sede di Alessandria, viale Teresa Michel, 5, Alessandria 15121, Italy
| | - Alessandro Pellis
- Dipartimento di Chimica e Chimica Industriale, Università di Genova, Via Dodecaneso, 31, Genova 16146, Italy
| | - Orietta Monticelli
- Dipartimento di Chimica e Chimica Industriale, Università di Genova, Via Dodecaneso, 31, Genova 16146, Italy.
| |
Collapse
|
3
|
Nair R, Paul P, Maji I, Gupta U, Mahajan S, Aalhate M, Guru SK, Singh PK. Exploring the current landscape of chitosan-based hybrid nanoplatforms as cancer theragnostic. Carbohydr Polym 2024; 326:121644. [PMID: 38142105 DOI: 10.1016/j.carbpol.2023.121644] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 11/24/2023] [Indexed: 12/25/2023]
Abstract
In the last decade, investigators have put significant efforts to develop several diagnostic and therapeutic strategies against cancer. Many novel nanoplatforms, including lipidic, metallic, and inorganic nanocarriers, have shown massive potential at preclinical and clinical stages for cancer diagnosis and treatment. Each of these nano-systems is distinct with its own benefits and limitations. The need to overcome the limitations of single-component nano-systems, improve their morphological and biological features, and achieve multiple functionalities has resulted in the emergence of hybrid nanoparticles (HNPs). These HNPs integrate multicomponent nano-systems with diagnostic and therapeutic functions into a single nano-system serving as promising nanotools for cancer theragnostic applications. Chitosan (CS) being a mucoadhesive, biodegradable, and biocompatible biopolymer, has emerged as an essential element for the development of HNPs offering several advantages over conventional nanoparticles including pH-dependent drug delivery, sustained drug release, and enhanced nanoparticle stability. In addition, the free protonable amino groups in the CS backbone offer flexibility to its structure, making it easy for the modification and functionalization of CS, resulting in better drug targetability and cell uptake. This review discusses in detail the existing different oncology-directed CS-based HNPs including their morphological characteristics, in-vitro/in-vivo outcomes, toxicity concerns, hurdles in clinical translation, and future prospects.
Collapse
Affiliation(s)
- Rahul Nair
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Priti Paul
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Indrani Maji
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Ujala Gupta
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Srushti Mahajan
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Mayur Aalhate
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Santosh Kumar Guru
- Department of Biological Science, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Pankaj Kumar Singh
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India.
| |
Collapse
|
4
|
Vesel A. Deposition of Chitosan on Plasma-Treated Polymers-A Review. Polymers (Basel) 2023; 15:1109. [PMID: 36904353 PMCID: PMC10007447 DOI: 10.3390/polym15051109] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 02/10/2023] [Accepted: 02/21/2023] [Indexed: 02/25/2023] Open
Abstract
Materials for biomedical applications often need to be coated to enhance their performance, such as their biocompatibility, antibacterial, antioxidant, and anti-inflammatory properties, or to assist the regeneration process and influence cell adhesion. Among naturally available substances, chitosan meets the above criteria. Most synthetic polymer materials do not enable the immobilization of the chitosan film. Therefore, their surface should be altered to ensure the interaction between the surface functional groups and the amino or hydroxyl groups in the chitosan chain. Plasma treatment can provide an effective solution to this problem. This work aims to review plasma methods for surface modification of polymers for improved chitosan immobilization. The obtained surface finish is explained in view of the different mechanisms involved in treating polymers with reactive plasma species. The reviewed literature showed that researchers usually use two different approaches: direct immobilization of chitosan on the plasma-treated surface or indirect immobilization by additional chemistry and coupling agents, which are also reviewed. Although plasma treatment leads to remarkably improved surface wettability, this was not the case for chitosan-coated samples, where a wide range of wettability was reported ranging from almost superhydrophilic to hydrophobic, which may have a negative effect on the formation of chitosan-based hydrogels.
Collapse
Affiliation(s)
- Alenka Vesel
- Department of Surface Engineering, Jozef Stefan Institute, Jamova cesta 39, 1000 Ljubljana, Slovenia
| |
Collapse
|
5
|
Sit I, Quirk E, Hettiarachchi E, Grassian VH. Differential Surface Interactions and Surface Templating of Nucleotides (dGMP, dCMP, dAMP, and dTMP) on Oxide Particle Surfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:15038-15049. [PMID: 36445255 PMCID: PMC9753757 DOI: 10.1021/acs.langmuir.2c01604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 11/07/2022] [Indexed: 06/16/2023]
Abstract
The fate of biomolecules in the environment depends in part on understanding the surface chemistry occurring at the biological-geochemical (bio-geo) interface. Little is known about how environmental DNA (eDNA) or smaller components, like nucleotides and oligonucleotides, persist in aquatic environments and the role of surface interactions. This study aims to probe surface interactions and adsorption behavior of nucleotides on oxide surfaces. We have investigated the interactions of individual nucleotides (dGMP, dCMP, dAMP, and dTMP) on TiO2 particle surfaces as a function of pH and in the presence of complementary and noncomplementary base pairs. Using attenuated total reflectance-Fourier transform infrared spectroscopy, there is an increased number of adsorbed nucleotides at lower pH with a preferential interaction of the phosphate group with the oxide surface. Additionally, differential adsorption behavior is seen where purine nucleotides are preferentially adsorbed, with higher surface saturation coverage, over their pyrimidine derivatives. These differences may be a result of intermolecular interactions between coadsorbed nucleotides. When the TiO2 surface was exposed to two-component solutions of nucleotides, there was preferential adsorption of dGMP compared to dCMP and dTMP, and dAMP compared to dTMP and dCMP. Complementary nucleotide base pairs showed hydrogen-bond interactions between a strongly adsorbed purine nucleotide layer and a weaker interacting hydrogen-bonded pyrimidine second layer. Noncomplementary base pairs did not form a second layer. These results highlight several important findings: (i) there is differential adsorption of nucleotides; (ii) complementary coadsorbed nucleotides show base pairing with a second layer, and the stability depends on the strength of the hydrogen bonding interactions and; (iii) the first layer coverage strongly depends on pH. Overall, the importance of surface interactions in the adsorption of nucleotides and the templating of specific interactions between nucleotides are discussed.
Collapse
Affiliation(s)
- Izaac Sit
- Department
of Nanoengineering and Department of Chemistry & Biochemistry, University of California San Diego, La Jolla, California 92093, United States
| | - Eleanor Quirk
- Department
of Nanoengineering and Department of Chemistry & Biochemistry, University of California San Diego, La Jolla, California 92093, United States
| | - Eshani Hettiarachchi
- Department
of Nanoengineering and Department of Chemistry & Biochemistry, University of California San Diego, La Jolla, California 92093, United States
| | - Vicki H. Grassian
- Department
of Nanoengineering and Department of Chemistry & Biochemistry, University of California San Diego, La Jolla, California 92093, United States
| |
Collapse
|
6
|
Aghbashlo M, Amiri H, Moosavi Basri SM, Rastegari H, Lam SS, Pan J, Gupta VK, Tabatabaei M. Tuning chitosan’s chemical structure for enhanced biological functions. Trends Biotechnol 2022; 41:785-797. [PMID: 36535818 DOI: 10.1016/j.tibtech.2022.11.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 11/09/2022] [Accepted: 11/25/2022] [Indexed: 12/23/2022]
Abstract
Chitosan, an amino polysaccharide mostly derived from crustaceans, has been recently highlighted for its biological activities that depend on its molecular weight (MW), degree of deacetylation (DD), and acetylation pattern (AP). More importantly, for some advanced biomaterials, the homogeneity of the chitosan structure is an important factor in determining its biological activity. Here we review emerging enzymes and cell factories, respectively, for in vitro and in vivo preparation of chitosan oligosaccharides (COSs), focusing on advances in the analysis of the AP and structural modification of chitosan to tune its functions. By 'mapping' current knowledge on chitosan's in vitro and in vivo activity with its MW and AP, this work could pave the way for future studies in the field.
Collapse
Affiliation(s)
- Mortaza Aghbashlo
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China; Department of Mechanical Engineering of Agricultural Machinery, Faculty of Agricultural Engineering and Technology, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Hamid Amiri
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan 81746-73441, Iran; Environmental Research Institute, University of Isfahan, Isfahan 81746-73441, Iran
| | | | - Hajar Rastegari
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Su Shiung Lam
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Junting Pan
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China.
| | - Vijai Kumar Gupta
- Biorefining and Advanced Materials Research Center, SRUC, Kings Buildings, West Mains Road, Edinburgh EH9 3JG, UK; Center for Safe and Improved Food, SRUC, Kings Buildings, West Mains Road, Edinburgh EH9 3JG, UK.
| | - Meisam Tabatabaei
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia.
| |
Collapse
|
7
|
Zhang C, Zhao X, Li D, Ji F, Dong A, Chen X, Zhang J, Wang X, Zhao Y, Chen X. Advances in 5-aminoketovaleric acid(5-ALA) nanoparticle delivery system based on cancer photodynamic therapy. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
8
|
Sangboonruang S, Semakul N, Sookkree S, Kantapan J, Ngo-Giang-Huong N, Khamduang W, Kongyai N, Tragoolpua K. Activity of Propolis Nanoparticles against HSV-2: Promising Approach to Inhibiting Infection and Replication. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27082560. [PMID: 35458758 PMCID: PMC9032435 DOI: 10.3390/molecules27082560] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 04/10/2022] [Accepted: 04/13/2022] [Indexed: 11/16/2022]
Abstract
Herpes simplex type 2 (HSV-2) infection causes a significant life-long disease. Long-term side effects of antiviral drugs can lead to the emergence of drug resistance. Thus, propolis, a natural product derived from beehives, has been proposed to prevent or treat HSV-2 infections. Unfortunately, therapeutic applications of propolis are still limited due its poor solubility. To overcome this, a nanoparticle-based drug delivery system was employed. An ethanolic extract of propolis (EEP) was encapsulated in nanoparticles composed of poly(lactic-co-glycolic acid) and chitosan using a modified oil-in-water single emulsion by using the solvent evaporation method. The produced nanoparticles (EEP-NPs) had a spherical shape with a size of ~450 nm and presented satisfactory physicochemical properties, including positively charged surface (38.05 ± 7.65 mV), high entrapment efficiency (79.89 ± 13.92%), and sustained release profile. Moreover, EEP-NPs were less cytotoxic on Vero cells and exhibited anti-HSV-2 activity. EEP-NPs had a direct effect on the inactivation of viral particles, and also disrupted the virion entry and release from the host cells. A significant decrease in the expression levels of the HSV-2 replication-related genes (ICP4, ICP27, and gB) was also observed. Our study suggests that EEP-NPs provide a strong anti-HSV-2 activity and serve as a promising platform for the treatment of HSV-2 infections.
Collapse
Affiliation(s)
- Sirikwan Sangboonruang
- Division of Clinical Microbiology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand; (S.S.); (S.S.); (W.K.)
- Infectious Diseases Research Unit (IDRU), Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Natthawat Semakul
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Sanonthinee Sookkree
- Division of Clinical Microbiology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand; (S.S.); (S.S.); (W.K.)
| | - Jiraporn Kantapan
- Molecular Imaging and Therapy Research Unit, Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Nicole Ngo-Giang-Huong
- Associated Medical Sciences (AMS)-CMU IRD Research Collaboration, Chiang Mai 50200, Thailand;
- Maladies Infectieuses et Vecteurs: Écologie, Génétique, Évolution et Contrôle (MIVEGEC), University of Montpellier, Centre National de la Recherche Scientifique (CNRS), Institut de Recherche Pour le Développement (IRD), 34394 Montpellier, France
| | - Woottichai Khamduang
- Division of Clinical Microbiology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand; (S.S.); (S.S.); (W.K.)
- Infectious Diseases Research Unit (IDRU), Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Natedao Kongyai
- Division of Clinical Microbiology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand; (S.S.); (S.S.); (W.K.)
- Infectious Diseases Research Unit (IDRU), Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
- Correspondence: (N.K.); (K.T.)
| | - Khajornsak Tragoolpua
- Division of Clinical Microbiology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand; (S.S.); (S.S.); (W.K.)
- Infectious Diseases Research Unit (IDRU), Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
- Correspondence: (N.K.); (K.T.)
| |
Collapse
|
9
|
Riccucci G, Ferraris S, Reggio C, Bosso A, Örlygsson G, Ng CH, Spriano S. Polyphenols from Grape Pomace: Functionalization of Chitosan-Coated Hydroxyapatite for Modulated Swelling and Release of Polyphenols. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:14793-14804. [PMID: 34905366 PMCID: PMC8717632 DOI: 10.1021/acs.langmuir.1c01930] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 11/16/2021] [Indexed: 06/12/2023]
Abstract
Chitosan is known for its specific antibacterial mechanism and biodegradability, while polyphenols are known for their antioxidant and anti-inflammatory properties: coupling these properties on a surface for bone contact, such as hydroxyapatite, is of great interest. The system developed here allows the combination of hydroxyapatite, chitosan, and polyphenol properties in the same multifunctional biomaterial in order to modulate the host response after implantation. Crosslinked chitosan is used in this research to create a stable coating on hydroxyapatite, and then it is functionalized for a smart release of the polyphenols. The release is higher in inflammatory conditions and lower in physiological conditions. The properties of the coated and functionalized samples are characterized on the as-prepared samples and after the samples are immersed (for 24 h) in solutions, which simulate the inflammatory and physiological conditions. Characterization is performed in order to confirm the presence of polyphenols grafted within the chitosan coating, the stability of grafting as a function of pH, the morphology of the coating and distribution of polyphenols on the surface, and the redox reactivity and radical scavenging activity of the functionalized coating. All the results are in line with previous results, which show a successful coating with chitosan and functionalization with polyphenols. Moreover, the polyphenols have a different release kinetics that is faster in a simulated inflammatory environment compared to that in the physiological environment. Even after the release tests, a fraction of polyphenols are still bound on the surface, maintaining the antioxidant and radical scavenging activity for a longer time. An electrostatic bond occurs between the negative-charged polar groups of polyphenols (carboxyls and/or phenols) and the positive amide groups of the chitosan coating, and the substitution of the crosslinker by the polyphenols occurs during the functionalization process.
Collapse
Affiliation(s)
- Giacomo Riccucci
- Politecnico
di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
| | - Sara Ferraris
- Politecnico
di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
| | - Camilla Reggio
- Politecnico
di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
| | - Antonella Bosso
- Consiglio
per la ricerca in agricoltura e l’analisi dell’economia
agraria—Centro di Ricerca Viticoltura ed Enologia, via P. Micca 35, 14100 Asti, Italy
| | | | - Chuen H. Ng
- Genis
hf., Adalgata 34, 580 Siglufjördur, Iceland
| | - Silvia Spriano
- Politecnico
di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
| |
Collapse
|
10
|
Kołodziejska M, Jankowska K, Klak M, Wszoła M. Chitosan as an Underrated Polymer in Modern Tissue Engineering. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:3019. [PMID: 34835782 PMCID: PMC8625597 DOI: 10.3390/nano11113019] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/29/2021] [Accepted: 11/03/2021] [Indexed: 12/16/2022]
Abstract
Chitosan is one of the most well-known and characterized materials applied in tissue engineering. Due to its unique chemical, biological and physical properties chitosan is frequently used as the main component in a variety of biomaterials such as membranes, scaffolds, drug carriers, hydrogels and, lastly, as a component of bio-ink dedicated to medical applications. Chitosan's chemical structure and presence of active chemical groups allow for modification for tailoring material to meet specific requirements according to intended use such as adequate endurance, mechanical properties or biodegradability time. Chitosan can be blended with natural (gelatin, hyaluronic acid, collagen, silk, alginate, agarose, starch, cellulose, carbon nanotubes, natural rubber latex, κ-carrageenan) and synthetic (PVA, PEO, PVP, PNIPPAm PCL, PLA, PLLA, PAA) polymers as well as with other promising materials such as aloe vera, silica, MMt and many more. Chitosan has several derivates: carboxymethylated, acylated, quaternary ammonium, thiolated, and grafted chitosan. Its versatility and comprehensiveness are confirming by further chitosan utilization as a leading constituent of innovative bio-inks applied for tissue engineering. This review examines all the aspects described above, as well as is focusing on a novel application of chitosan and its modifications, including the 3D bioprinting technique which shows great potential among other techniques applied to biomaterials fabrication.
Collapse
Affiliation(s)
- Marta Kołodziejska
- Foundation of Research and Science Development, 01-793 Warsaw, Poland; (M.K.); (K.J.); (M.W.)
| | - Kamila Jankowska
- Foundation of Research and Science Development, 01-793 Warsaw, Poland; (M.K.); (K.J.); (M.W.)
| | - Marta Klak
- Foundation of Research and Science Development, 01-793 Warsaw, Poland; (M.K.); (K.J.); (M.W.)
- Polbionica Ltd., 01-793 Warsaw, Poland
| | - Michał Wszoła
- Foundation of Research and Science Development, 01-793 Warsaw, Poland; (M.K.); (K.J.); (M.W.)
- Polbionica Ltd., 01-793 Warsaw, Poland
| |
Collapse
|