1
|
Lv S, Hou J, Xu HN. Scaling of the formation of cyclodextrin-based droplets in a flow-focusing microchannel. Carbohydr Polym 2025; 347:122762. [PMID: 39486989 DOI: 10.1016/j.carbpol.2024.122762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/13/2024] [Accepted: 09/15/2024] [Indexed: 11/04/2024]
Abstract
Cyclodextrin (CD)-based droplets have received considerable attention in health and body care applications, and a real-time approach to actively control the size and generation frequency of the droplets is desirable. Here we study the droplet formation experimentally inside a flow-focusing microchannel using aqueous CD solutions as the continuous phase, and different oils including glycerol trioleate (TG), oleic acid (OA) and tetradecane (TD) as the dispersed phase, respectively. We identify three distinct flow regimes: threading, dripping and jamming, whose boundaries change as the oil is varied. We further measure the size and generation frequency of the droplets as a function of the CD concentration and the flow rate ratio of the two liquid phases in the dripping regime. Remarkably the least viscous oil of TD forms droplets with the largest size and lowest generation frequency. Building on our recent findings for the dynamic anchoring patterns of CD microcrystals on droplets, we demonstrate that interfacial elastic behavior plays an important role in the droplet formation, and develop a scaling relation by including the interfacial elasticity to predict the size and generation frequency of the droplets, which is consistent with the experimental results.
Collapse
Affiliation(s)
- Sisi Lv
- State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, People's Republic of China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, People's Republic of China; International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, People's Republic of China
| | - Jie Hou
- State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, People's Republic of China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, People's Republic of China; International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, People's Republic of China
| | - Hua-Neng Xu
- State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, People's Republic of China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, People's Republic of China; International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, People's Republic of China.
| |
Collapse
|
2
|
Hou J, Xu HN. Faceted crystal growth of cyclodextrin-oil inclusion complexes. Carbohydr Polym 2024; 343:122446. [PMID: 39174087 DOI: 10.1016/j.carbpol.2024.122446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/21/2024] [Accepted: 06/27/2024] [Indexed: 08/24/2024]
Abstract
The spontaneous formation of cyclodextrin (CD)-oil inclusion complexes (ICs) and their further growth into patterned crystals present a bottom-up route to the fabrication of periodic macroscopic structure. Although the inclusion processes are well established for the molecules, understanding intermediate structures during the crystal growth and emerging of persistent crystalline order has been lacking. Here we build a hierarchy of oriented micro/nanostructures of CD-oil ICs in solution by choosing different oil guests including several straight-chain alkanes of C12, C14 and C16, oleic acid (OA), glycerol trioleate (TG) and soybean oil (SO), in an attempt to reveal the roles of oil guests in the formation of their crystallites. Remarkably, the ICs tend to grow into clusters and terminate at a certain finite size as long columns or lamella plates with well-defined facets, dependent on the type of oil used. For the first time, we report a non-equilibrium growth of crystallites with surface faceting directed by the guests by means of Arching and Bundling.
Collapse
Affiliation(s)
- Jie Hou
- State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, People's Republic of China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, People's Republic of China; International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, People's Republic of China
| | - Hua-Neng Xu
- State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, People's Republic of China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, People's Republic of China; International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, People's Republic of China.
| |
Collapse
|
3
|
Hou J, Xu HN. Guest-guided anchoring patterns of cyclodextrin supramolecular microcrystals on droplet surfaces. Carbohydr Polym 2024; 337:122142. [PMID: 38710551 DOI: 10.1016/j.carbpol.2024.122142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 04/07/2024] [Accepted: 04/08/2024] [Indexed: 05/08/2024]
Abstract
The growth of cyclodextrin inclusion complexes (ICs) on oil/water interfaces represents a beautiful example of spontaneous pattern formation in nature. How the supramolecules evolve remains a challenge because surface confinement can frustrate microcrystal growth and give rise to unusual phase transitions. Here we investigate the self-assembly of ICs on droplet surfaces using microfluidics, which allows directly visualizing packing, wetting and ordering of the microcrystals anchored on the surface. The oil guests of distinct molecular structures can direct the assembly of the ICs and largely affect anchoring dynamics of the ICs microcrystals, leading to a range of behaviors including orientating, slipping, buckling, jamming, or merging. We discuss the behaviors observed in terms of the flexibility of the building blocks, which offers a new degree of freedom through which to tailor their properties and gives rise to a striking feature of anchoring patterns that have no counterpart in normal colloidal crystals.
Collapse
Affiliation(s)
- Jie Hou
- State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, People's Republic of China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, People's Republic of China; International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, People's Republic of China
| | - Hua-Neng Xu
- State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, People's Republic of China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, People's Republic of China; International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, People's Republic of China.
| |
Collapse
|
4
|
Hou J, Xu HN. Ejected microcrystals probe jammed states of droplets in cyclodextrin-based emulsions. Carbohydr Polym 2024; 324:121455. [PMID: 37985074 DOI: 10.1016/j.carbpol.2023.121455] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 09/16/2023] [Accepted: 10/01/2023] [Indexed: 11/22/2023]
Abstract
The cyclodextrin (CD)-based emulsions exhibit complex instability behaviors such as rapid flocculation and creaming, and how to capture droplet dispersion states of the emulsions remains a great challenge. Here we prepare the CD-based emulsions with different oil-water volume ratios and CD concentrations by using high-pressure homogenization, and characterize the emulsion droplets by using optical microscopy and confocal laser scanning microscopy. We evaluate the effects of homogenization pressure on the stability of the emulsions, identify armored droplets with different surface features, measure interfacial concentrations of adsorbed ICs microcrystals, and observe ejection of the oil/CD inclusion complexes (ICs) microcrystals from the droplet surface. The droplet dispersion states are sensitive to the dynamic buildup and evolving morphologies of the interfacial microcrystals, and there are clear correlations between the properties of the ejected microcrystals and the characteristics of the emulsions. We ascribe the subsequent ejection of ICs microcrystals from the droplet surface to consolidation and deformation of the films formed between neighboring droplets. The ejection of the ICs microcrystals affords a simple method to detect the droplet-droplet interactions and phase transitions in the CD-based emulsions, which might be a generic feature in the broader context of the creaming processes of emulsions.
Collapse
Affiliation(s)
- Jie Hou
- State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, People's Republic of China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, People's Republic of China; International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, People's Republic of China
| | - Hua-Neng Xu
- State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, People's Republic of China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, People's Republic of China; International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, People's Republic of China.
| |
Collapse
|
5
|
Cen S, Li Z, Guo Z, Shi J, Huang X, Zou X, Holmes M. Fabrication of Pickering emulsions stabilized by citrus pectin modified with β-cyclodextrin and its application in 3D printing. Carbohydr Polym 2023; 312:120833. [PMID: 37059559 DOI: 10.1016/j.carbpol.2023.120833] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 03/13/2023] [Accepted: 03/16/2023] [Indexed: 04/07/2023]
Abstract
Pickering emulsions stabilized by polysaccharide particles have received increasing attention because of their potential applications in three-dimensional (3D) printing. In this study, the citrus pectins (citrus tachibana, shaddock, lemon, orange) modified with β-cyclodextrin (β-CD) were used to stabilize Pickering emulsions reaching the requirements of 3D printing. In terms of pectin chemical structure, the steric hindrance provided by the RG I regions was more conducive to the stability of the complex particles. The modification of pectin by β-CD provided the complexes a better double wettability (91.14 ± 0.14°-109.43 ± 0.22°) and a more negative ζ-potential, which was more beneficial for complexes to anchor at oil-water interface. In addition, the rheological properties, texture properties and stability of the emulsions were more responsive to the ratios of pectin/β-CD (Rβ/C). The results showed that the emulsions stabilized at a φ = 65 % and a Rβ/C = 2:2 achieved the requirements (shear thinning behavior, self-supporting ability, and stability) of 3D printing. Furthermore, the application in 3D printing demonstrated that the emulsions under the optimal condition (φ = 65 % and Rβ/C = 2:2) displayed excellent printing appearance, especially for the emulsions stabilized by β-CD/LP particles. This study provides a basis for the selection of polysaccharide-based particles to prepare 3D printing inks which may be utilized in food manufacturing.
Collapse
|
6
|
Li W, Faisal S, Guo X, Li S, Shi A, Jiao B, Wang Q. The preparation of Diacylglycerol-rich soybean oil by acetylated modification of arachin nanoparticles for W/O Pickering emulsion system. Food Chem 2023; 426:136615. [PMID: 37331136 DOI: 10.1016/j.foodchem.2023.136615] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 04/18/2023] [Accepted: 06/10/2023] [Indexed: 06/20/2023]
Abstract
Pickering emulsion catalytic system (PEC) stabilized by nanoparticles is an efficient catalytic platform. Herein, a high-performance PEC was constructed by acetylated modification of arachin nanoparticles (AAPs). The results showed the pI of arachin was decreased from pH 5.5 to pH 3.5. The surface hydrophobicity index was significantly increased (from 56.28 ± 4.23 to 120.77 ± 0.79) after acetylated modification. The three-phase contact angle of AAPs was 91.20 ± 0.98°. AAPs were used as lipase immobilization carriers to increase the activity of free lipase fabricating lipase-AAPs. The immobilization efficiency and activity of lipase-AAPs were 12.95 ± 0.03% and 1.74 ± 0.07 U/mg, respectively. Enzymatic reaction kinetics showed that Vm of lipase-AAPs was twice of free lipase. Km was 1/5 of free lipase. The catalytic efficiency of PEC to prepare DAG was 2.36 times of biphasic catalytic system (BCS). This work provided a promising way to promote the efficiency of DAG preparation.
Collapse
Affiliation(s)
- Wei Li
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, P.O. Box 5109, Beijing 100193, China
| | - Shah Faisal
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, P.O. Box 5109, Beijing 100193, China
| | - Xin Guo
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, P.O. Box 5109, Beijing 100193, China
| | - Sisheng Li
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, P.O. Box 5109, Beijing 100193, China
| | - Aimin Shi
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, P.O. Box 5109, Beijing 100193, China
| | - Bo Jiao
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, P.O. Box 5109, Beijing 100193, China.
| | - Qiang Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, P.O. Box 5109, Beijing 100193, China.
| |
Collapse
|
7
|
Zhou F, Yu L, Liu Y, Zeng Z, Li C, Fang Z, Hu B, Chen H, Wang C, Chen S, Wu H, Wu W, Liu Y. Effect of hydroxypropyl-β-cyclodextrin and lecithin co-stabilized nanoemulsions on the konjac glucomannan/pullulan film. Int J Biol Macromol 2023; 235:123802. [PMID: 36842744 DOI: 10.1016/j.ijbiomac.2023.123802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 02/02/2023] [Accepted: 02/18/2023] [Indexed: 02/26/2023]
Abstract
In this study, the various ratio of hydroxypropyl-β-cyclodextrin (HPCD) to lecithin (LEC) was 0:1, 0.5:1, 1:1, 1.5:1 and 2:1 (w/w) co-stabilized cinnamon essential oil (CEO) nanoemulsions were prepared. These nanoemulsions were successfully incorporated in the konjac glucomannan/pullulan polysaccharides-based film matrix. The composition of nanoemulsions and the effect of various nanoemulsions on rheological, mechanical, Water vapor permeability, optical, color, morphology properties, and CEO retention rate of the composite films were characterized. The results demonstrated that HPCD and LEC nanoemulsions had small particle size under 120 nm and high stability during 21 days storage, the incorporation of nanoemulsions reduced the viscosity of film-solution, transmittance, Water vapor permeability and mechanical properties of films, but an appropriate HPCD content 1:1 w/w of nanoemulsions could restored the mechanical properties of the films. Otherwise, 1:1 w/w of nanoemulsion film also exhibited a more compact and uniform structure, Furthermore, 2:1 w/w of nanoemulsion films with high retention rate of CEO, and the antioxidant and better antibacterial activities against E. coli and S. aureus. The nanoemulsion films utilized in this study also prolonged the shelf life of Agaricus bisporus mushrooms and cherries while maintaining their commercial value.
Collapse
Affiliation(s)
- Feng Zhou
- College of Food Science Sichuan, Agricultural University, Yaan 625014, China
| | - Linman Yu
- College of Food Science Sichuan, Agricultural University, Yaan 625014, China
| | - Yang Liu
- College of Food Science Sichuan, Agricultural University, Yaan 625014, China
| | - Zhen Zeng
- College of Food Science Sichuan, Agricultural University, Yaan 625014, China.
| | - Cheng Li
- College of Food Science Sichuan, Agricultural University, Yaan 625014, China
| | - Zhengfeng Fang
- College of Food Science Sichuan, Agricultural University, Yaan 625014, China
| | - Bin Hu
- College of Food Science Sichuan, Agricultural University, Yaan 625014, China
| | - Hong Chen
- College of Food Science Sichuan, Agricultural University, Yaan 625014, China
| | - Caixia Wang
- College of Food Science Sichuan, Agricultural University, Yaan 625014, China
| | - Saiyan Chen
- College of Food Science Sichuan, Agricultural University, Yaan 625014, China
| | - Hejun Wu
- College of Science, Sichuan Agricultural University, Yaan 625014, China
| | - Wenjuan Wu
- College of Science, Sichuan Agricultural University, Yaan 625014, China
| | - Yuntao Liu
- College of Food Science Sichuan, Agricultural University, Yaan 625014, China.
| |
Collapse
|
8
|
|
9
|
Kou X, Zhang X, Ke Q, Meng Q. Pickering emulsions stabilized by β-CD microcrystals: Construction and interfacial assembly mechanism. Front Nutr 2023; 10:1161232. [PMID: 37032777 PMCID: PMC10073450 DOI: 10.3389/fnut.2023.1161232] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 02/28/2023] [Indexed: 04/11/2023] Open
Abstract
β-Cyclodextrin (β-CD) can combine with oil and other guest molecules to form amphiphilic inclusion complexes (ICs), which can be adsorbed on the oil-water interface to reduce the interfacial tension and stabilize Pickering emulsions. However, the subtle change of β-CD in the process of emulsion preparation is easily ignored. In this study, β-CD and ginger oil (GO) were used to prepare the Pickering emulsion by high-speed shearing homogenization without an exogenous emulsifier. The stability of the emulsion was characterized by microscopic observation, staining analysis, and creaming index (CI). Results showed that the flocculation of the obtained Pickering emulsion was serious, and the surface of the droplets was rough with lamellar particles. In order to elucidate the formation process of the layered particles, the GO/β-CD ICs were further prepared by ball milling method, and the X-ray diffraction (XRD), scanning electron microscope (SEM), Fourier transform infrared spectroscopy (FTIR), and interfacial tension analyses found that β-CD and GO first formed amphiphilic nanoscale small particles (ICs) through the host-guest interaction, and the formed small particles were further self-assembled into lamellar micron-scale amphiphilic ICs microcrystals. These amphiphilic ICs and microcrystals aggregated at the oil-water interface and finally formed the Pickering emulsion. In this study, by exploring the formation process and evolution of GO/β-CD self-assembly, the formation process and stabilization mechanism of the β-CD-stabilized GO Pickering emulsion were clarified preliminarily, with the aim of providing a theoretical basis for the development of high-performance CD-stabilized Pickering emulsions.
Collapse
Affiliation(s)
- Xingran Kou
- Collaborative Innovation Center of Fragrance Flavor and Cosmetics, School of Perfume and Aroma Technology (Shanghai Research Institute of Fragrance and Flavour Industry), Shanghai Institute of Technology, Shanghai, China
- Key Laboratory of Textile Science and Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai, China
| | - Xinping Zhang
- Collaborative Innovation Center of Fragrance Flavor and Cosmetics, School of Perfume and Aroma Technology (Shanghai Research Institute of Fragrance and Flavour Industry), Shanghai Institute of Technology, Shanghai, China
| | - Qinfei Ke
- Collaborative Innovation Center of Fragrance Flavor and Cosmetics, School of Perfume and Aroma Technology (Shanghai Research Institute of Fragrance and Flavour Industry), Shanghai Institute of Technology, Shanghai, China
- Key Laboratory of Textile Science and Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai, China
- *Correspondence: Qinfei Ke
| | - Qingran Meng
- Collaborative Innovation Center of Fragrance Flavor and Cosmetics, School of Perfume and Aroma Technology (Shanghai Research Institute of Fragrance and Flavour Industry), Shanghai Institute of Technology, Shanghai, China
- Qingran Meng
| |
Collapse
|
10
|
Li X, Fan L, Li J. Extrusion-based 3D printing of high internal phase emulsions stabilized by co-assembled β-cyclodextrin and chitosan. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.108036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
11
|
Zhang Y, Yang S, Tang H, Wan S, Qin W, Zeng Q, Huang J, Yu G, Feng Y, Li J. Depletion stabilization of emulsions based on bacterial cellulose/carboxymethyl chitosan complexes. Carbohydr Polym 2022; 297:119904. [DOI: 10.1016/j.carbpol.2022.119904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 07/17/2022] [Accepted: 07/17/2022] [Indexed: 11/28/2022]
|
12
|
Jie Y, Chen F, Zhu T, Lv D. High internal phase emulsions stabilized solely by carboxymethyl chitosan. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107554] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
13
|
Hou J, Xu HN, Wang L, Zhang L. Droplet Dispersion States of Cyclodextrin-Based Emulsions from Nonlinear Rheological Properties. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:4599-4605. [PMID: 35380852 DOI: 10.1021/acs.langmuir.1c03372] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Polymers are desirable to improve emulsion stability by stuffing them into the continuous phase. How to get information on the droplet dispersion states of the emulsions remains a challenge, as the emulsion characteristics are dictated by two intertwining components, the polymer matrix and the droplets. Herein, we use an amphiphilic polymer, gum arabic (GA), to mediate the droplet flocculation of cyclodextrin (CD)-based emulsions and compare them with our previous studies on the stabilization of CD-based emulsions by a nonamphiphilic polymer, methylcellulose (MC). We characterize the emulsions by using optical microscopy, confocal laser scanning microscopy, and laser particle analysis, explore their rheological behavior through large-amplitude oscillatory shear experiments, and analyze the nonlinear viscoelasticities through Fourier transform (FT)-rheology and Lissajous-Bowditch plots. There is a great difference between GA and MC in the viscosity effect and the arrangement around emulsion droplets. GA is not an effective flocculation inhibitor due to a bridging flocculation mechanism rather than a direct viscosity effect. Our analysis highlights the role of the intrinsic nonlinearity parameter (Q0) extracted by FT analysis in reflecting the droplet dispersion states of the emulsions by decoupling structural contributions from the polymers and the emulsion droplets.
Collapse
Affiliation(s)
- Jie Hou
- State Key Laboratory of Food Science and Technology, and School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, People's Republic of China
| | - Hua-Neng Xu
- State Key Laboratory of Food Science and Technology, and School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, People's Republic of China
| | - Li Wang
- State Key Laboratory of Food Science and Technology, and School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, People's Republic of China
| | - Lianfu Zhang
- State Key Laboratory of Food Science and Technology, and School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, People's Republic of China
| |
Collapse
|