1
|
Yuan J, Wang S, Wei H, Shu G, Pan J. Molecular Dynamics Insights into the Stability of Bulk Hydrogen Nanobubbles in Water and Methanol. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025. [PMID: 40432383 DOI: 10.1021/acs.langmuir.5c01659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2025]
Abstract
Bulk hydrogen nanobubbles (NBs) play a key role in hydrogen generation and utilization. However, their stabilization mechanisms in different solvents remain not fully understood. This study employs molecular dynamics simulations to investigate the stability and evolution of bulk hydrogen NBs in water and methanol, with experimental measurements providing validation. The results show that NBs in methanol tend to dissolve at lower initial gas densities, indicating a lower stability compared to those in water. Under stable conditions, approximately 80% of hydrogen molecules remain inside NBs in water, while only about 40% remain in methanol, consistent with methanol's higher hydrogen solubility observed experimentally. Further analysis reveals that hydrogen NBs in water exhibit a thinner gas-liquid interface as well as lower internal pressure and gas density, mainly related to its lower hydrogen solubility. Utilizing mechanical equilibrium and critical radius theory, we identify the hydrogen concentration thresholds for NB stability to be 0.96-1.44 mol/L in water and 2.69-2.88 mol/L in methanol. Additionally, hydrogen molecules in methanol exhibit more vigorous motion, stronger gas-liquid interactions, and a weaker hydrogen bond network. This study provides molecular-level insights into the stabilization of bulk hydrogen NBs in different solvents.
Collapse
Affiliation(s)
- Jianping Yuan
- State Key Laboratory of Engines, Tianjin University, Tianjin 300072, China
| | - Shiduo Wang
- State Key Laboratory of Engines, Tianjin University, Tianjin 300072, China
| | - Haiqiao Wei
- State Key Laboratory of Engines, Tianjin University, Tianjin 300072, China
| | - Gequn Shu
- State Key Laboratory of Engines, Tianjin University, Tianjin 300072, China
| | - Jiaying Pan
- State Key Laboratory of Engines, Tianjin University, Tianjin 300072, China
| |
Collapse
|
2
|
Lu X, Yadav D, He B, Zhou Y, Zhou L, Zeng Z, Ma L, Jing D. Unveiling micro- and nanoscale bubble dynamics for enhanced electrochemical water splitting. Adv Colloid Interface Sci 2025; 343:103544. [PMID: 40382849 DOI: 10.1016/j.cis.2025.103544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 03/31/2025] [Accepted: 05/07/2025] [Indexed: 05/20/2025]
Abstract
Bubbles generated during electrochemical and photoelectrochemical water splitting critically influence efficiency through complex factors, including chemical reactions, species transport, mass transfer at the three-phase interface, and bubble coverage. A detailed understanding of the nucleation, growth, coalescence, and detachment of micro- and nanoscale bubbles is vital for advancing water splitting technologies. Surface-attached bubbles significantly reduce the electrocatalytically active area of electrodes, leading to increased surface overpotential at a given current density. Consequently, their effective removal is pivotal for optimizing the electrolysis process. However, the intricate interplay among single bubble evolution, mass transport, bubble coverage, and overpotential remain inadequately understood. This review explores the fundamental mechanisms underpinning bubble evolution, with an emphasis on the Marangoni effect and its influence on bubble dynamics. Furthermore, recent advancements in understanding individual bubbles on micro and nano-electrodes are highlighted, offering valuable insights into scale-dependent bubble behavior. These findings enrich our knowledge of gas-liquid interfacial phenomena and underscore their industrial significance, presenting opportunities to enhance water splitting performance through optimized bubble dynamics.
Collapse
Affiliation(s)
- Xinlong Lu
- International Research Center for Renewable Energy & State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Devendra Yadav
- Department of Chemical Engineering, Technion - Israel Institute of Technology, Haifa 3200003, Israel
| | - Baichuan He
- International Research Center for Renewable Energy & State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Yu Zhou
- International Research Center for Renewable Energy & State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Liwu Zhou
- International Research Center for Renewable Energy & State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Zilong Zeng
- College of Mechanical Engineering, Xi'an Shiyou University, Xi'an, Shaanxi 710065, China
| | - Lijing Ma
- International Research Center for Renewable Energy & State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Dengwei Jing
- International Research Center for Renewable Energy & State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China.
| |
Collapse
|
3
|
Li B, Xiang W, Dou X, Wu Y, Zhang W, Wang Z, Wang J. Coarse-Grained Molecular Dynamics Simulation of Nucleation and Stability of Electrochemically Generated Nanobubbles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:8497-8509. [PMID: 40145296 DOI: 10.1021/acs.langmuir.4c04049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/28/2025]
Abstract
With growing concerns over environmental pollution associated with fossil fuels, hydrogen (H2) energy has emerged as a promising alternative. Water electrolysis, a key hydrogen production method, is fundamentally governed by the nucleation and stability of electrochemically generated nanobubbles. This study employs coarse-grained molecular dynamics (MD) simulations incorporating a self-programming gas generation algorithm to investigate the nucleation and growth dynamics of nanobubbles on hydrophilic and hydrophobic electrodes. Key parameters, such as contact angle, electric current, and nanobubble number density, were computed to validate the MD model. The findings reveal a three-stage nucleation process: (i) induction─gas molecules accumulate to form a nucleus, (ii) nucleation and growth─gas nuclei expand into nanobubbles, and (iii) stationary state─nanobubble growth ceases. Increased electrode hydrophilicity resulted in larger nanobubble contact angles, aligning well with classical nucleation theory (CNT) at the nanoscale. Three distinct nanobubble types─surface, solution, and pancake nanobubbles─were identified, each exhibiting unique interfacial behaviors based on electrode properties. Solution nanobubbles primarily formed on hydrophilic electrodes, pancake nanobubbles adhered to hydrophobic electrodes, and surface nanobubbles appeared as spherical caps. Energy analysis and phase mapping further delineated the critical parameter ranges for these nanobubble modes, providing valuable insights for optimizing electrode materials to enhance hydrogen production efficiency.
Collapse
Affiliation(s)
- Bin Li
- School of Energy and Power Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Wei Xiang
- School of Energy and Power Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xiaohui Dou
- School of Energy and Power Engineering, Jiangsu University, Zhenjiang 212013, China
- Petroleum Engineering Technology Research Institute of Sinopec, Jiangsu Oilfield Company, Yangzhou 225009, China
| | - Yan Wu
- School of Energy and Power Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Wei Zhang
- School of Energy and Power Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Zhentao Wang
- School of Energy and Power Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Junfeng Wang
- School of Energy and Power Engineering, Jiangsu University, Zhenjiang 212013, China
- School of Energy and Power Engineering, Chongqing University, Chongqing 400044, China
| |
Collapse
|
4
|
Guo Z, Feng Y, Zhang H, Wang Q, Zhang X, Wang L. The Behaviors of Interfacial Nanobubbles on Flat or Rough Electrode Surfaces in Electrochemistry. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:26661-26671. [PMID: 39642236 DOI: 10.1021/acs.langmuir.4c03771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/08/2024]
Abstract
The existence of interfacial nanobubbles on electrode surfaces is thought to block the active area, leading to a considerable decrease in the energy conversion efficiency. Gaining insight into how bubbles form on electrodes will be beneficial for designing effective electrochemical cells and enhancing the electrolytic efficiency. In this article, molecular dynamics (MD) simulations are employed to make a systematic comparison of behaviors of interfacial nanobubbles on both flat and rough electrode surfaces in electrochemistry. On a flat electrode surface, bubble nucleation can be categorized into single-site and multisite nucleation, influenced by the electrode sizes and electrolytic rates. The various rates of gas production result in three different scenarios for single-site nucleation: "growth-growth," "growth-shrinking," and "growth-stabilization" behaviors. On a rough one, bubbles are pinned at an early stage. Either through cooperative release or self-release, the bubbles continue to grow until the influx and outflux gas of the bubble reach an equilibrium. In addition, the evolutionary mechanism of interface nanobubbles was discussed on a rough nanoelectrode surface. Based on the dynamic equilibrium mechanism, a theoretical relationship between contact angle and base diameter of equilibrium interfacial nanobubbles was developed. The theoretical model can qualitatively describe the simulation observation of how bubble's shape depends on the electrode surface morphology.
Collapse
Affiliation(s)
- Zhenjiang Guo
- State Key Laboratory of Mesoscience and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Yuntong Feng
- Haide College, Ocean University of China, Qingdao 266100, Shandong, China
| | - Huahai Zhang
- State Key Laboratory of Mesoscience and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Qian Wang
- State Key Laboratory of Mesoscience and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- Beijing Key Laboratory of Ionic Liquids Clean Process, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Xianren Zhang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Limin Wang
- State Key Laboratory of Mesoscience and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
5
|
Kempler PA, Coridan RH, Luo L. Gas Evolution in Water Electrolysis. Chem Rev 2024; 124:10964-11007. [PMID: 39259040 DOI: 10.1021/acs.chemrev.4c00211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Gas bubbles generated by the hydrogen evolution reaction and oxygen evolution reaction during water electrolysis influence the energy conversion efficiency of hydrogen production. Here, we survey what is known about the interaction of gas bubbles and electrode surfaces and the influence of gas evolution on practicable devices used for water electrolysis. We outline the physical processes occurring during the life cycle of a bubble, summarize techniques used to characterize gas evolution phenomena in situ and in practical device environments, and discuss ways that electrodes can be tailored to facilitate gas removal at high current densities. Lastly, we review efforts to model the behavior of individual gas bubbles and multiphase flows produced at gas-evolving electrodes. We conclude our review with a short summary of outstanding questions that could be answered by future efforts to characterize gas evolution in electrochemical device environments or by improved simulations of multiphase flows.
Collapse
Affiliation(s)
- Paul A Kempler
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon 97403, United States
- Oregon Center for Electrochemistry, University of Oregon, Eugene, Oregon 97403, United States
| | - Robert H Coridan
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas 72701, United States
| | - Long Luo
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| |
Collapse
|
6
|
Zhang Y, Zhu X, Wood JA, Lohse D. Threshold current density for diffusion-controlled stability of electrolytic surface nanobubbles. Proc Natl Acad Sci U S A 2024; 121:e2321958121. [PMID: 38748584 PMCID: PMC11126992 DOI: 10.1073/pnas.2321958121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 03/29/2024] [Indexed: 05/27/2024] Open
Abstract
Understanding the stability mechanism of surface micro/nanobubbles adhered to gas-evolving electrodes is essential for improving the efficiency of water electrolysis, which is known to be hindered by the bubble coverage on electrodes. Using molecular simulations, the diffusion-controlled evolution of single electrolytic nanobubbles on wettability-patterned nanoelectrodes is investigated. These nanoelectrodes feature hydrophobic islands as preferential nucleation sites and allow the growth of nanobubbles in the pinning mode. In these simulations, a threshold current density distinguishing stable nanobubbles from unstable nanobubbles is found. When the current density remains below the threshold value, nucleated nanobubbles grow to their equilibrium states, maintaining their nanoscopic size. However, for the current density above the threshold value, nanobubbles undergo unlimited growth and can eventually detach due to buoyancy. Increasing the pinning length of nanobubbles increases the degree of nanobubble instability. By connecting the current density with the local gas oversaturation, an extension of the stability theory for surface nanobubbles [Lohse and Zhang, Phys. Rev. E 91, 031003(R) (2015)] accurately predicts the nanobubble behavior found in molecular simulations, including equilibrium contact angles and the threshold current density. For larger systems that are not accessible to molecular simulations, continuum numerical simulations with the finite difference method combined with the immersed boundary method are performed, again demonstrating good agreement between numerics and theories.
Collapse
Affiliation(s)
- Yixin Zhang
- Physics of Fluids Group, Max Planck Center Twente for Complex Fluid Dynamics and Johannes Martinus Burgers Centre for Fluid Dynamics, University of Twente, 7500 AEEnschede, The Netherlands
| | - Xiaojue Zhu
- Max Planck Institute for Solar System Research, 37077Göttingen, Germany
| | - Jeffery A. Wood
- Membrane Science and Technology Cluster, MESA+ Institute for Nanotechnology, University of Twente, 7500 AEEnschede, The Netherlands
| | - Detlef Lohse
- Physics of Fluids Group, Max Planck Center Twente for Complex Fluid Dynamics and Johannes Martinus Burgers Centre for Fluid Dynamics, University of Twente, 7500 AEEnschede, The Netherlands
- Max Planck Institute for Dynamics and Self-Organization, 37077Göttingen, Germany
| |
Collapse
|
7
|
Zhang H, Ma Y, Huang M, Mutschke G, Zhang X. Solutal Marangoni force controls lateral motion of electrolytic gas bubbles. SOFT MATTER 2024; 20:3097-3106. [PMID: 38333960 DOI: 10.1039/d3sm01646c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
Electrochemical gas-evolving reactions have been widely used for industrial energy conversion and storage processes. Gas bubbles form frequently at the electrode surface due to a small gas solubility, thereby reducing the effective reaction area and increasing the over-potential and ohmic resistance. However, the growth and motion mechanisms for tiny gas bubbles on the electrode remains elusive. Combining molecular dynamics (MD) and fluid dynamics simulations (CFD), we show that there exists a lateral solutal Marangoni force originating from an asymmetric distribution of dissolved gas near the bubble. Both MD and CFD simulations deliver a similar magnitude of the Marangoni force of ∼0.01 nN acting on the bubble. We demonstrate that this force may lead to lateral bubble oscillations and analyze the phenomenon of dynamic self-pinning of bubbles at the electrode boundary.
Collapse
Affiliation(s)
- Hongguang Zhang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Yunqing Ma
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Mengyuan Huang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China.
- Institute of Fluid Dynamics, Helmholtz-Zentrum Dresden-Rossendorf, Dresden 01328, Germany.
| | - Gerd Mutschke
- Institute of Fluid Dynamics, Helmholtz-Zentrum Dresden-Rossendorf, Dresden 01328, Germany.
| | - Xianren Zhang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
8
|
Ghate PP, Hanson KM, Lam K, Al-Kaysi RO, Bardeen CJ. Generating Stable Nitrogen Bubble Layers on Poly(methyl methacrylate) Films by Photolysis of 2-Azidoanthracene. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:4054-4062. [PMID: 38353460 DOI: 10.1021/acs.langmuir.3c02869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
2-Azidoanthracene (2N3-AN) can act as a photochemical source of N2 gas when dissolved in an optically transparent polymer such as poly(methyl methacrylate) (PMMA). Irradiation at 365 or 405 nm of a 150 μm-thick polymer film submerged in water causes the rapid appearance of a surface layer of bubbles. The rapid appearance of surface bubbles cannot be explained by normal diffusion of N2 through the polymer and likely results from internal gas pressure buildup during the reaction. For an azide concentration of 0.1 M and a light intensity of 140 mW/cm2, the yield of gas bubbles is calculated to be approximately 40%. The dynamics of bubble growth depend on the surface morphology, light intensity, and 2N3-AN concentration. A combination of nanoscale surface roughness, high azide concentration, and high light intensity is required to attain the threshold N2 gas density necessary for rapid, high-yield bubble formation. The N2 bubbles adhered to the PMMA surface and survived for days under water. The ability to generate stable gas bubbles "on demand" using light permits the demonstration of photoinduced flotation and patterned bubble arrays.
Collapse
Affiliation(s)
- Pranaya P Ghate
- Department of Chemical and Environmental Engineering, University of California, Riverside, Riverside, California 92521, United States
| | - Kerry M Hanson
- Department of Chemistry, University of California, Riverside, Riverside, California 92521, United States
| | - Kevin Lam
- Department of Chemistry, University of California, Riverside, Riverside, California 92521, United States
| | - Rabih O Al-Kaysi
- College of Science and Health Professions-3124, King Saud bin Abdulaziz University for Health Sciences, and King Abdullah International Medical Research Center (Nanomedicine), Ministry of National Guard Health Affairs, Riyadh 11426, Kingdom of Saudi Arabia
| | - Christopher J Bardeen
- Department of Chemistry, University of California, Riverside, Riverside, California 92521, United States
| |
Collapse
|
9
|
Zhao Z, Ma Y, Xie Z, Wu F, Fan J, Kou J. Molecular Mechanisms of the Generation and Accumulation of Gas at the Interface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024. [PMID: 38293869 DOI: 10.1021/acs.langmuir.3c02701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Gas-evolving reactions are widespread in chemical and energy fields. However, the generated gas will accumulate at the interface, which reduces the rate of gas generation. Understanding the microscopic processes of the generation and accumulation of gas at the interface is crucial for improving the efficiency of gas generation. Here, we develop an algorithm to reproduce the process of catalytic gas generation at the molecular scale based on the all-atom molecular dynamics simulations and obtain the quantitative evolution of the gas generation, which agrees well with the experimental results. In addition, we demonstrate that under an external electric field, the generated gas molecules do not accumulate at the electrode surface, which implies that the electric field can significantly increase the rate of the gas generation. The results suggest that the external electric field changes the structure of the water molecules near the electrode surface, making it difficult for gas molecules to accumulate on the electrode surface. Furthermore, it is found that gas desorption from the electrode surface is an entropy-driven process, and its accumulation at the electrode surface depends mainly on the competition between the entropy and the enthalpy of the water molecules under the influence of the electric field. These results provide deep insight into gas generation and inhibition of gas accumulation.
Collapse
Affiliation(s)
- Zhigao Zhao
- Institute of Condensed Matter Physics, Zhejiang Institute of Photoelectronics & Zhejiang Institute for Advanced Light Source, Zhejiang Normal University, Jinhua 321004, China
| | - Yunqiu Ma
- Institute of Condensed Matter Physics, Zhejiang Institute of Photoelectronics & Zhejiang Institute for Advanced Light Source, Zhejiang Normal University, Jinhua 321004, China
| | - Zhang Xie
- Institute of Condensed Matter Physics, Zhejiang Institute of Photoelectronics & Zhejiang Institute for Advanced Light Source, Zhejiang Normal University, Jinhua 321004, China
| | - Fengmin Wu
- Institute of Condensed Matter Physics, Zhejiang Institute of Photoelectronics & Zhejiang Institute for Advanced Light Source, Zhejiang Normal University, Jinhua 321004, China
| | - Jintu Fan
- Institute of Textiles and Clothing, The Hong Kong Polytechnic University Hung Hom, Kowloon, Hong Kong 999077, China
- Department of Fiber Science and Apparel Design, Cornell University, Ithaca, New York 14853-4401, United States
| | - Jianlong Kou
- Institute of Condensed Matter Physics, Zhejiang Institute of Photoelectronics & Zhejiang Institute for Advanced Light Source, Zhejiang Normal University, Jinhua 321004, China
| |
Collapse
|
10
|
Suvira M, Ahuja A, Lovre P, Singh M, Draher GW, Zhang B. Imaging Single H 2 Nanobubbles Using Off-Axis Dark-Field Microscopy. Anal Chem 2023; 95:15893-15899. [PMID: 37851536 DOI: 10.1021/acs.analchem.3c02132] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
A robust and detailed physicochemical description of electrochemically generated surface nanobubbles and their effects on electrochemical systems remains at large. Herein, we report the development and utilization of an off-axis, dark-field microscopy imaging tool for probing the dynamic process of generating single H2 nanobubbles at the surface of a carbon nanoelectrode. A change in the direction of the incident light is made to significantly reduce the intensity of the background light, which enables us to image both the nanoelectrode and nanobubble on the electrode surface or the metal nanoparticles in the vicinity of the electrode. The correlated electrochemical and optical response provides novel insights regarding bubble nucleation and dissolution on a nanoelectrode previously unattainable solely from its current-voltage response.
Collapse
Affiliation(s)
- Milomir Suvira
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, United States
| | - Ananya Ahuja
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, United States
| | - Pascal Lovre
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, United States
| | - Mantak Singh
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, United States
| | - Gracious Wyatt Draher
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, United States
| | - Bo Zhang
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, United States
| |
Collapse
|
11
|
Cui LF, Yu RJ, Ma H, Hu P, Ying YL. Electrically controlled silver salt oxide particle synthesis on a closed wireless nanopore electrode. Electrochim Acta 2023. [DOI: 10.1016/j.electacta.2023.142348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
|
12
|
Li D, Gu J, Li Y, Zhang Z, Ji Y. Manipulating Trapped Nanobubbles Moving and Coalescing with Surface Nanobubbles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:12991-12998. [PMID: 36228139 DOI: 10.1021/acs.langmuir.2c02593] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Trapped nanobubbles are observed nucleating at nanopits on a pitted substrate, while surface nanobubbles are usually formed on the smooth solid surface in water. In this work, trapped nanobubbles and surface nanobubbles were captured by a tapping-mode atomic force microscope (AFM) on a nanopitted substrate based on the temperature difference method. A single trapped nanobubble was manipulated to change into a surface nanobubble, then to change into the trapped nanobubble again. At the same time, surface nanobubbles can be moved to merge into a trapped nanobubble. Our results show that the scan load and the size of the scan area were the main factors that significantly affect the mobility of surface/trapped nanobubbles. The coalescence and mutual transformation of the two kinds of nanobubbles indicate that trapped nanobubbles and surface nanobubbles have the same chemical nature, which also provides vital experimental proof of the existence of nanobubbles in the course of contact line depinning. Our results are of great significance for understanding nanobubble stability and providing guidelines in some industrial applications.
Collapse
Affiliation(s)
- Dayong Li
- School of Electromechanical and Automotive Engineering, Yantai University, Yantai 264005, China
| | - Juan Gu
- School of Mathematics and Information Science, Yantai University, Yantai 264005, China
| | - Yong Li
- School of Electromechanical and Automotive Engineering, Yantai University, Yantai 264005, China
| | - Ziqun Zhang
- School of Electromechanical and Automotive Engineering, Yantai University, Yantai 264005, China
| | - Yutong Ji
- School of Electromechanical and Automotive Engineering, Yantai University, Yantai 264005, China
| |
Collapse
|
13
|
Chen Q, Zhao J, Deng X, Shan Y, Peng Y. Single-Entity Electrochemistry of Nano- and Microbubbles in Electrolytic Gas Evolution. J Phys Chem Lett 2022; 13:6153-6163. [PMID: 35762985 DOI: 10.1021/acs.jpclett.2c01388] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Gas bubbles are found in diverse electrochemical processes, ranging from electrolytic water splitting to chlor-alkali electrolysis, as well as photoelectrochemical processes. Understanding the intricate influence of bubble evolution on the electrode processes and mass transport is key to the rational design of efficient devices for electrolytic energy conversion and thus requires precise measurement and analysis of individual gas bubbles. In this Perspective, we review the latest advances in single-entity measurement of gas bubbles on electrodes, covering the approaches of voltammetric and galvanostatic studies based on nanoelectrodes, probing bubble evolution using scanning probe electrochemistry with spatial information, and monitoring the transient nature of nanobubble formation and dynamics with opto-electrochemical imaging. We emphasize the intrinsic and quantitative physicochemical interpretation of single gas bubbles from electrochemical data, highlighting the fundamental understanding of the heterogeneous nucleation, dynamic state of the three-phase boundary, and the correlation between electrolytic bubble dynamics and nanocatalyst activities. In addition, a brief discussion of future perspectives is presented.
Collapse
Affiliation(s)
- Qianjin Chen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Jiao Zhao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Xiaoli Deng
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Yun Shan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Yu Peng
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| |
Collapse
|
14
|
Suvira M, Zhang B. Single-Molecule Interactions at a Surfactant-Modified H 2 Surface Nanobubble. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:13816-13823. [PMID: 34788049 DOI: 10.1021/acs.langmuir.1c01686] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In schematics and cartoons, the gas-liquid interface is often drawn as solid lines that aid in distinguishing the separation of the two phases. However, on the molecular level, the structure, shape, and size of the gas-liquid interface remain elusive. Furthermore, the interactions of molecules at gas-liquid interfaces must be considered in various contexts, including atmospheric chemical reactions, wettability of surfaces, and numerous other relevant phenomena. Hence, understanding the structure and interactions of molecules at the gas-liquid interface is critical for further improving technologies that operate between the two phases. Electrochemically generated surface nanobubbles provide a stable, reproducible, and high-throughput platform for the generation of a nanoscale gas-liquid boundary. We use total internal reflection fluorescence microscopy to image single-fluorophore labeling of surface nanobubbles in the presence of a surfactant. The accumulation of a surfactant on the nanobubble surface changes the interfacial properties of the gas-liquid interface. The single-molecule approach reveals that the fluorophore adsorption and residence lifetime at the interface is greatly impacted by the charge of the surfactant layer at the bubble surface. We demonstrate that the fluorescence readout is either short- or long-lived depending on the repulsive or attractive environment, respectively, between fluorophores and surfactants. Additionally, we investigated the effect of surfactant chain length and salt type and concentration on the fluorophore lifetime at the nanobubble surface.
Collapse
Affiliation(s)
- Milomir Suvira
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, United States
| | - Bo Zhang
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, United States
| |
Collapse
|