1
|
Sergi SR, Hastie JJ, Smith FJM, Devlin AG, Bury EG, Paterson ML, Kosednar SB, Sefcik LS, Gordon MB. Swelling-Shrinking Behavior of a Hydrogel with a CO 2-Switchable Volume Phase Transition Temperature. Macromol Rapid Commun 2025; 46:e2400772. [PMID: 39579083 DOI: 10.1002/marc.202400772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Indexed: 11/25/2024]
Abstract
Macromolecules exhibit rich phase behavior that may be exploited for advanced material design. In particular, the volume phase transition in certain crosslinked hydrogels is a key property controlling the transition between a collapsed/dehydrated and a swollen/hydrated state, thereby regulating the release and absorption of water via a temperature change. In this work, a simple and tunable system exhibiting a carbon dioxide (CO2)-switchable volume phase transition is introduced, which displays isothermal swelling-shrinking behavior that is activated by addition and removal of CO2, respectively. Through systematic compositional studies, shifts in phase transition temperatures of up to 8.6 °C are measured upon CO2 exposure, which enables pronounced isothermal swelling in response to CO2, reaching up to a fivefold increase in mass. The shift in transition temperature and the extent of swelling are controlled by the hydrogel composition, thus enabling the transition temperature and swelling degree to be tuned a priori for a particular application. Controlled release experiments from these gels upon a CO2-induced phase transition suggest viability for drug delivery applications. It is anticipated that this work will motivate and expand efforts to exploit phase behavior for smart material development.
Collapse
Affiliation(s)
- Sarah R Sergi
- Department of Chemical and Biomolecular Engineering, Lafayette College, 740 High Street, Easton, PA, 18042, USA
| | - James J Hastie
- Department of Chemical and Biomolecular Engineering, Lafayette College, 740 High Street, Easton, PA, 18042, USA
| | - Finlay J M Smith
- Department of Chemical and Biomolecular Engineering, Lafayette College, 740 High Street, Easton, PA, 18042, USA
| | - Abigail G Devlin
- Department of Chemical and Biomolecular Engineering, Lafayette College, 740 High Street, Easton, PA, 18042, USA
| | - Elizabeth G Bury
- Department of Chemical and Biomolecular Engineering, Lafayette College, 740 High Street, Easton, PA, 18042, USA
| | - Mara L Paterson
- Department of Chemical and Biomolecular Engineering, Lafayette College, 740 High Street, Easton, PA, 18042, USA
| | - Sophia B Kosednar
- Department of Chemical and Biomolecular Engineering, Lafayette College, 740 High Street, Easton, PA, 18042, USA
| | - Lauren S Sefcik
- Department of Chemical and Biomolecular Engineering, Lafayette College, 740 High Street, Easton, PA, 18042, USA
| | - Melissa B Gordon
- Department of Chemical and Biomolecular Engineering, Lafayette College, 740 High Street, Easton, PA, 18042, USA
| |
Collapse
|
2
|
Mustakim N, Song Y, Seo SW. Gold Nanorod-Coated Hydrogel Brush Valves in Macroporous Silicon Membranes for NIR-Driven Localized Chemical Modulation. Gels 2025; 11:25. [PMID: 39851996 PMCID: PMC11764991 DOI: 10.3390/gels11010025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 12/21/2024] [Accepted: 12/26/2024] [Indexed: 01/26/2025] Open
Abstract
A two-dimensional array of microfluidic ports with remote-controlled valve actuation is of great interest for applications involving localized chemical stimulation. Herein, a macroporous silicon-based platform where each pore contains an independently controllable valve made from poly(N-isopropylacrylamide) (PNIPAM) brushes is proposed. These valves are coated with silica-encapsulated gold nanorods (GNRs) for NIR-actuated switching capability. The layer-by-layer (LBL) electrostatic deposition technique was used to attach the GNRs to the PNIPAM brushes. The deposition of GNRs was confirmed by dark-field optical microscopy, and the localized surface plasmon resonance (LSPR) of the deposited GNRs was analyzed using UV-Vis spectra. To evaluate the chemical release behaviors, fluorescein dye was employed as a model substance. The chemical release properties, like OFF-state diffusion through the valve, the ratio between ON-state and OFF-state chemical release, and the rapidness of chemical modulation of the valve, were investigated, varying the PNIPAM brush thickness. The results indicate that enhancing the thickness of the PNIPAM brush in our platform improves control over the chemical modulation properties. However, excessive increases in brush length may lead to entanglement, which negatively impacts the chemical modulation efficiency.
Collapse
Affiliation(s)
- Nafis Mustakim
- Department of Electrical Engineering, The City College of New York, 160 Convent Avenue, New York, NY 10031, USA; (N.M.); (Y.S.)
| | - Youngsik Song
- Department of Electrical Engineering, The City College of New York, 160 Convent Avenue, New York, NY 10031, USA; (N.M.); (Y.S.)
- Department of Engineering Technology, SUNY Westchester Community College, 75 Grasslands Rd., Valhalla, NY 10595, USA
| | - Sang-Woo Seo
- Department of Electrical Engineering, The City College of New York, 160 Convent Avenue, New York, NY 10031, USA; (N.M.); (Y.S.)
| |
Collapse
|
3
|
Sun Q, Tao S, Bovone G, Han G, Deshmukh D, Tibbitt MW, Ren Q, Bertsch P, Siqueira G, Fischer P. Versatile Mechanically Tunable Hydrogels for Therapeutic Delivery Applications. Adv Healthc Mater 2024; 13:e2304287. [PMID: 38488218 DOI: 10.1002/adhm.202304287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Indexed: 04/02/2024]
Abstract
Hydrogels provide a versatile platform for biomedical material fabrication that can be structurally and mechanically fine-tuned to various tissues and applications. Applications of hydrogels in biomedicine range from highly dynamic injectable hydrogels that can flow through syringe needles and maintain or recover their structure after extrusion to solid-like wound-healing patches that need to be stretchable while providing a selective physical barrier. In this study, a toolbox is designed using thermo-responsive poly(N-isopropylacrylamide) (PNIPAM) polymeric matrices and nanocelluloses as reinforcing agent to obtain biocompatible hydrogels with altering mechanical properties, from a liquid injectable to a solid-like elastic hydrogel. The liquid hydrogels possess low viscosity and shear-thinning properties at 25 °C, which allows facile injection at room temperature, while they become viscoelastic gels at body temperature. In contrast, the covalently cross-linked solid-like hydrogels exhibit enhanced viscoelasticity. The liquid hydrogels are biocompatible and are able to delay the in vitro release and maintain the bioactivity of model drugs. The antimicrobial agent loaded solid-like hydrogels are effective against typical wound-associated pathogens. This work presents a simple method of tuning hydrogel mechanical strength to easily adapt to applications in different soft tissues and broaden the potential of renewable bio-nanoparticles in hybrid biomaterials with controlled drug release capabilities.
Collapse
Affiliation(s)
- Qiyao Sun
- Department of Health Science and Technology, ETH Zurich, Zurich, 8092, Switzerland
| | - Siyuan Tao
- Laboratory for Biointerfaces, Empa, St. Gallen, 9014, Switzerland
| | - Giovanni Bovone
- Macromolecular Engineering Laboratory, D-MAVT, ETH Zurich, Zurich, 8092, Switzerland
| | - Garam Han
- Department of Health Science and Technology, ETH Zurich, Zurich, 8092, Switzerland
| | - Dhananjay Deshmukh
- Macromolecular Engineering Laboratory, D-MAVT, ETH Zurich, Zurich, 8092, Switzerland
- Institute for Mechanical Systems, D-MAVT, ETH Zurich, Zurich, 8092, Switzerland
| | - Mark W Tibbitt
- Macromolecular Engineering Laboratory, D-MAVT, ETH Zurich, Zurich, 8092, Switzerland
| | - Qun Ren
- Laboratory for Biointerfaces, Empa, St. Gallen, 9014, Switzerland
| | - Pascal Bertsch
- Drug Delivery and Biophysics of Biopharmaceuticals, Department of Pharmacy, University of Copenhagen, Copenhagen, 2100, Denmark
| | - Gilberto Siqueira
- Cellulose & Wood Materials Laboratory, EMPA, Dübendorf, 8600, Switzerland
| | - Peter Fischer
- Department of Health Science and Technology, ETH Zurich, Zurich, 8092, Switzerland
| |
Collapse
|
4
|
Khodadadi Yazdi M, Zarrintaj P, Saeb MR, Mozafari M, Bencherif SA. Progress in ATRP-derived materials for biomedical applications. PROGRESS IN MATERIALS SCIENCE 2024; 143:101248. [DOI: 10.1016/j.pmatsci.2024.101248] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/07/2025]
|
5
|
Mor S, Yadav R, Bhakuni K, Rawat P, Bisht M, Deenadayalu N, Venkatesu P. Unraveling the Role of Deep Eutectic Solvents with Varying Hydrogen-Bond Acceptors on the Thermoresponsive Polymer Poly( N-isopropylacrylamide). J Phys Chem B 2024. [PMID: 38683962 DOI: 10.1021/acs.jpcb.4c00888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Deep eutectic solvents (DESs) have emerged as promising tools for crafting polymeric materials across diverse domains. This study delves into the impact of a series of DESs on the phase behavior of poly(N-isopropylacrylamide) (PNIPAM) in aqueous environments, presenting compelling insights into their performance. Specifically, we explore the conformational phase behavior of PNIPAM in the presence of four distinct lactic acid (LA)-based DESs: LA-betaine (LA-BET), LA-proline (LA-PRO), LA-choline chloride (LA-CC), and LA-urea (LA-U). By maintaining a consistent hydrogen-bond donor (HBD) while varying the hydrogen-bond acceptor (HBA), we unravel how different DES compositions modulate the phase transition behavior of PNIPAM. Our findings underscore the profound influence of DESs comprising LA as the HBD and diverse HBAs-BET, PRO, CC, and U on the thermoresponsive behavior of PNIPAM. Employing spectroscopic techniques such as ultraviolet-visible (UV-vis) spectroscopy, steady-state fluorescence, Fourier transform infrared spectroscopy (FTIR), dynamic light scattering (DLS), ζ-potential, and transmission electron microscopy (TEM), we elucidate the preferential interactions between the HBA groups within DESs and the hydration layer of PNIPAM. Notably, temperature-dependent DLS analyses reveal a discernible decrease in the lower critical solution temperature (LCST) of PNIPAM with increasing DES concentration, ultimately disrupting the hydrogen-bond interactions and resulting in early hydrophobic collapse of the polymer, which can be clearly seen in the TEM micrographs. Furthermore, the formation of polymer composites within the mixed system leads to notable alterations in the physiochemical properties of PNIPAM, as evidenced by shifts in its LCST value in the presence of DESs. This perturbation disrupts hydrogen-bond interactions, inducing hydrophobic collapse of the polymers, a phenomenon vividly captured in TEM micrographs. In essence, our study sheds new light on the pivotal role of varying HBA groups within DESs in modulating the conformational transitions of PNIPAM. These insights not only enrich our fundamental understanding but also hold immense promise for the development of smart polymeric systems with multifaceted applications spanning bioimaging, biomedical science, polymer science, and beyond.
Collapse
Affiliation(s)
- Sanjay Mor
- Department of Chemistry, University of Delhi, Delhi 110007, India
| | - Ritu Yadav
- Department of Chemistry, University of Delhi, Delhi 110007, India
| | - Kavya Bhakuni
- Department of Chemistry, St. Stephen's College, University of Delhi, Delhi 110007, India
| | - Pradeep Rawat
- Department of Chemistry, University of Delhi, Delhi 110007, India
| | - Meena Bisht
- Department of Chemistry, Sri Venkateswara College, University of Delhi, Delhi 110007, India
| | - Nirmala Deenadayalu
- Department of Chemistry, Durban University of Technology, Durban4000, South Africa
| | | |
Collapse
|
6
|
Forg S, Guo X, von Klitzing R. Influence of Dopamine Methacrylamide on Swelling Behavior and Nanomechanical Properties of PNIPAM Microgels. ACS APPLIED MATERIALS & INTERFACES 2024; 16:1521-1534. [PMID: 38146181 DOI: 10.1021/acsami.3c15134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
The combination of the catechol-containing comonomer dopamine methacrylamide (DMA) with stimuli-responsive poly(N-isopropylacrylamide) (PNIPAM) microgels bears a huge potential in research and for applications due to the versatile properties of catechols. This research gives the first detailed insights into the influence of DMA on the swelling of PNIPAM microgels and their nanomechanical properties. Dynamic light scattering measurements showed that DMA decreases the volume phase transition temperature and completion temperature due to its higher hydrophobicity when compared to NIPAM, while sharpening the transition. The cross-linking ability of DMA decreases the swelling ratios and mesh sizes of the microgels. Microgels adsorbed at the solid surface are characterized by atomic force microscopy─as the DMA content increases, microgels protrude more from the surface. Force spectroscopy measurements below and above the volume phase transition temperature display a stiffening of the microgels with the incorporation of DMA and upon heating across its entire cross section as evidenced by an increase in the E modulus. This confirms the cross-linking ability of DMA. The affine network factor β, derived from the Flory-Rehner theory, is linearly correlated with the E moduli of both pure PNIPAM and P(NIPAM-co-DMA) microgels. However, large DMA amounts hinder the microgel shrinking while maintaining mechanical stiffness, possibly due to catechol interactions within the microgel network.
Collapse
Affiliation(s)
- Sandra Forg
- Soft Matter at Interfaces (SMI), Institute for Physics of Condensed Matter, Technical University of Darmstadt, 64289 Darmstadt, Germany
| | - Xuhong Guo
- School of Chemical Engineering, East China University of Science and Technology, 200231 Shanghai, China
| | - Regine von Klitzing
- Soft Matter at Interfaces (SMI), Institute for Physics of Condensed Matter, Technical University of Darmstadt, 64289 Darmstadt, Germany
| |
Collapse
|
7
|
Antioxidant ability and increased mechanical stability of hydrogel nanocomposites based on N-isopropylacrylamide crosslinked with Laponite and modified with polydopamine. Eur Polym J 2023. [DOI: 10.1016/j.eurpolymj.2023.111876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
8
|
Schlattmann D, Schönhoff M. Interplay of the Influence of Crosslinker Content and Model Drugs on the Phase Transition of Thermoresponsive PNiPAM-BIS Microgels. Gels 2022; 8:gels8090571. [PMID: 36135283 PMCID: PMC9498534 DOI: 10.3390/gels8090571] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/02/2022] [Accepted: 09/05/2022] [Indexed: 11/16/2022] Open
Abstract
The phase transition behavior of differently crosslinked poly(N-isopropylacrylamide)/N,N’-methylenebisacrylamide (PNiPAM/BIS) microgels with varying crosslinker content is investigated in presence of aromatic additives. The influence of meta-hydroxybenzaldehyde (m-HBA) and 2,4-dihydroxybenzaldehyde (2,4-DHBA), chosen as model drugs, on the volume phase transition temperature (VPTT) is analyzed by dynamic light scattering (DLS), differential scanning calorimetry (DSC), and 1H-NMR, monitoring and comparing the structural, calorimetric, and dynamic phase transition, respectively. Generally, the VPTT is found to increase with crosslinker content, accompanied by a drastic decrease of transition enthalpy. The presence of an additive generally decreases the VPTT, but with distinct differences concerning the crosslinker content. While the structural transition is most affected at lowest crosslinker content, the calorimetric and dynamic transitions are most affected for an intermediate crosslinker content. Additive uptake of the collapsed gel is largest for low crosslinked microgels and in case of large additive-induced temperature shifts. Furthermore, as temperature is successively raised, 1H NMR data, aided by spin relaxation rates, reveal an interesting uptake behavior, as the microgels act in a sponge-like fashion including a large initial uptake and a squeeze-out phase above VPTT.
Collapse
|
9
|
Zheng H, Wang C, Pavase TR, Xue C. Fabrication of copolymer brushes grafted superporous agarose gels: Towards the ultimate ideal particles for efficient affinity chromatography. Colloids Surf B Biointerfaces 2022; 217:112705. [PMID: 35863235 DOI: 10.1016/j.colsurfb.2022.112705] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 06/27/2022] [Accepted: 07/12/2022] [Indexed: 10/17/2022]
Abstract
A composite immobilized-metal affinity agarose particle was designed for the selective separation and purification of histidine-tagged proteins from complicated biological samples. The composite particle was constructed using superporous agarose particles as supporting matrix, flexible copolymer brushes as scaffolds to render higher ligand densities, and Ni2+-chelated iminodiacetic acids as recognition elements. Superporous agarose composite particles endow high permeability and interfering substance tolerance. The copolymer brush was prepared by surface-initiated atom transfer radical polymerization of N-isopropylacrylamide and glycidyl methacrylate, followed by iminodiacetic acids and Ni2+ ions. The physical and chemical properities of the composite particle were thoroughly investigated. The composite particles were shown to be able to selectively separate histidine-tagged recombinant proteins in the presence of high quantities of interfering chemicals in a model protein-binding experiment. By altering the temperature, the protein binding of the composite particles can be modulated. The superporous agarose particles supported polymer brush enables fast and efficient separation and purification of target proteins with high permeability, low backpressure, and high interfering matrix tolerance, which pave the path for bioseparation through designing and fabrication of novel agarose particles-based functional materials.
Collapse
Affiliation(s)
- Hongwei Zheng
- College of Food Science & Engineering, Ocean University of China, Qingdao 266003, China; Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China; Qingdao Institute of Marine Bioresources for Nutrition & Health Innovation, Qingdao 266109, China
| | - Changyun Wang
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China; Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Tushar Ramesh Pavase
- College of Food Science & Engineering, Ocean University of China, Qingdao 266003, China
| | - Changhu Xue
- College of Food Science & Engineering, Ocean University of China, Qingdao 266003, China; Qingdao Institute of Marine Bioresources for Nutrition & Health Innovation, Qingdao 266109, China; Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| |
Collapse
|
10
|
EL-Ghoul Y, Alminderej FM, Alsubaie FM, Alrasheed R, Almousa NH. Recent Advances in Functional Polymer Materials for Energy, Water, and Biomedical Applications: A Review. Polymers (Basel) 2021; 13:4327. [PMID: 34960878 PMCID: PMC8708011 DOI: 10.3390/polym13244327] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/02/2021] [Accepted: 12/06/2021] [Indexed: 01/10/2023] Open
Abstract
Academic research regarding polymeric materials has been of great interest. Likewise, polymer industries are considered as the most familiar petrochemical industries. Despite the valuable and continuous advancements in various polymeric material technologies over the last century, many varieties and advances related to the field of polymer science and engineering still promise a great potential for exciting new applications. Research, development, and industrial support have been the key factors behind the great progress in the field of polymer applications. This work provides insight into the recent energy applications of polymers, including energy storage and production. The study of polymeric materials in the field of enhanced oil recovery and water treatment technologies will be presented and evaluated. In addition, in this review, we wish to emphasize the great importance of various functional polymers as effective adsorbents of organic pollutants from industrial wastewater. Furthermore, recent advances in biomedical applications are reviewed and discussed.
Collapse
Affiliation(s)
- Yassine EL-Ghoul
- Department of Chemistry, College of Science, Qassim University, King Abdulaziz Rd, P.O. Box 1162, Buraidah 51452, Saudi Arabia
- Textile Engineering Laboratory, University of Monastir, Monastir 5019, Tunisia
| | - Fahad M. Alminderej
- Department of Chemistry, College of Science, Qassim University, King Abdulaziz Rd, P.O. Box 1162, Buraidah 51452, Saudi Arabia
| | - Fehaid M. Alsubaie
- National Center for Chemical Catalysis Technology, King Abdulaziz City for Science and Technology, P.O. Box 6086, Riyadh 11442, Saudi Arabia;
| | - Radwan Alrasheed
- National Center for Desalination & Water Treatment Technology, King Abdulaziz City for Science and Technology, P.O. Box 6086, Riyadh 11442, Saudi Arabia;
| | - Norah H. Almousa
- National Center for Chemical Catalysis Technology, King Abdulaziz City for Science and Technology, P.O. Box 6086, Riyadh 11442, Saudi Arabia;
| |
Collapse
|
11
|
Ma P, Ma X, Chen F. The Construction of Stimulus‐responsive Film Electrode by the Cu‐catalyzed Radical Polymerization and its Application in Multi‐valued Biologic Systems. ELECTROANAL 2021. [DOI: 10.1002/elan.202100374] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Pengcheng Ma
- The Key Laboratory of Space Applied Physics and Chemistry, Ministry of Education Northwestern Polytechnical University Xi'an 710129 PR China
| | - Xiaoyan Ma
- The Key Laboratory of Space Applied Physics and Chemistry, Ministry of Education Northwestern Polytechnical University Xi'an 710129 PR China
| | - Fang Chen
- The Key Laboratory of Space Applied Physics and Chemistry, Ministry of Education Northwestern Polytechnical University Xi'an 710129 PR China
| |
Collapse
|
12
|
Gautam B, Ali SA, Chen JT, Yu HH. Hybrid "Kill and Release" Antibacterial Cellulose Papers Obtained via Surface-Initiated Atom Transfer Radical Polymerization. ACS APPLIED BIO MATERIALS 2021; 4:7893-7902. [PMID: 35006770 DOI: 10.1021/acsabm.1c00817] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Infectious diseases triggered by bacteria cause a severe risk to human health. To counter this issue, surfaces coated with antibacterial materials have been widely used in daily life to kill these bacteria. The substrates enabled with a hybrid kill and release strategy can be employed not only to kill the bacteria but also to wash them using external stimuli (temperature, pH, etc.). Utilizing this concept, we develop thermoresponsive antibacterial-cellulose papers to exhibit hybrid kill and release properties. Thermoresponsive copolymers [p(NIPAAm-co-AEMA)] are grafted on cellulose papers using a surface-initiated atom transfer radical polymerization approach for bacterial debris release. Later for antibacterial properties, silver nanoparticles (AgNPs) are immobilized on thermoresponsive copolymer-grafted cellulose papers using electrostatic interactions. We confirm the thermoresponsive copolymer grafting and AgNP coating by attenuated total reflection Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, and scanning electron microscopy. Thermoresponsiveness and reusability of the modified cellulose papers are confirmed through water contact angle measurements. The interaction potency between AgNPs and modified cellulose is validated by inductively coupled plasma atomic emission spectroscopy analysis. Gram-negative bacteria Escherichia coli (E. coli DH5-α) is used to demonstrate antibacterial hybrid kill and release performance. Agar-diffusion testing demonstrates the antibacterial nature of the modified cellulose papers. The fluorescence micrograph reveals that modified cellulose papers can effectively release almost all the dead bacterial debris from their surfaces after thermal stimulus wash. The modified cellulose paper surfaces are expected to have wide applications in the field of exploring more antibacterial and smart surfaces.
Collapse
Affiliation(s)
- Bhaskarchand Gautam
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu, Taiwan 300
| | - Syed Atif Ali
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu, Taiwan 300
| | - Jiun-Tai Chen
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu, Taiwan 300
| | | |
Collapse
|
13
|
Lu R, Zhang X, Cheng X, Zan X, Geng W. Secondary Structure-Dominated Layer-by-Layer Growth Mode of Protein Coatings. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:13000-13011. [PMID: 34723563 DOI: 10.1021/acs.langmuir.1c02062] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Benefiting from the luxury functions of proteins, protein coatings have been extended to various applications, including tissue engineering scaffolds, drug delivery, antimicrobials, sensing and diagnostic equipment, food packaging, etc. Fast construction of protein coatings is always interesting to materials science and significant to industrialization. Here, we report a layer-by-layer (LbL) multilayer-constructed coating of tannic acid (TA) and lysozyme (Lyz), in which the secondary conformations of Lyz dominate the growth rate of the TA/Lyz coating. As well characterized by various techniques (quartz crystal microbalance with dissipation (QCM-D), circular dichroism (CD) spectra, Fourier transform infrared (FTIR) spectroscopy, atomic force microscopy (AFM), contact angle, etc.), TA-induced conformational transition of Lyz to α-helices occurs at pH 8 from other secondary structures (β-sheets, β-turns, and random coils), which leads to the very fast growth of TA/Lyz with a number of deposited bilayers, with thicknesses of more than 90 nm for six bilayers. In contrast to the leading conformation of α-helices at pH 8, Lyz displayed multiple conformations (α-helices, β-sheets, β-turns, and random coils) at pH 6, which resulted in coating thicknesses of less than 30 nm for six bilayers. By the addition of NaCl, Tween 20, and urea, we further confirmed that the secondary conformations of Lyz relied greatly on the interactions between TA and Lyz and dominated the growth rate of the multilayers. We believe that these findings will help to understand the transformation of secondary conformations by TA or other polyphenols and inspire a new route to quickly build protein coatings.
Collapse
Affiliation(s)
- Ruofei Lu
- Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoqiang Zhang
- Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinxiu Cheng
- Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xingjie Zan
- Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China
| | - Wujun Geng
- Wenzhou Key Laboratory of Perioperative Medicine, Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| |
Collapse
|
14
|
Lee JH, Seo HJ, Lee SY, Cho WK, Son K. On‐Surface RAFT Polymerization using Oxygen to form Triblock Copolymer Brushes. MACROMOL CHEM PHYS 2021. [DOI: 10.1002/macp.202100270] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Ji Hoon Lee
- Department of Chemistry Chungnam National University Daejeon 34134 Republic of Korea
| | - Hyun Ji Seo
- Department of Chemistry Chungnam National University Daejeon 34134 Republic of Korea
| | - Seung Yeon Lee
- Department of Chemistry Chungnam National University Daejeon 34134 Republic of Korea
| | - Woo Kyung Cho
- Department of Chemistry Chungnam National University Daejeon 34134 Republic of Korea
| | - Kyung‐sun Son
- Department of Chemistry Chungnam National University Daejeon 34134 Republic of Korea
| |
Collapse
|
15
|
Rana MM, De la Hoz Siegler H. Tuning the Properties of PNIPAm-Based Hydrogel Scaffolds for Cartilage Tissue Engineering. Polymers (Basel) 2021; 13:3154. [PMID: 34578055 PMCID: PMC8467289 DOI: 10.3390/polym13183154] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/13/2021] [Accepted: 09/14/2021] [Indexed: 01/15/2023] Open
Abstract
Poly(N-isopropylacrylamide) (PNIPAm) is a three-dimensional (3D) crosslinked polymer that can interact with human cells and play an important role in the development of tissue morphogenesis in both in vitro and in vivo conditions. PNIPAm-based scaffolds possess many desirable structural and physical properties required for tissue regeneration, but insufficient mechanical strength, biocompatibility, and biomimicry for tissue development remain obstacles for their application in tissue engineering. The structural integrity and physical properties of the hydrogels depend on the crosslinks formed between polymer chains during synthesis. A variety of design variables including crosslinker content, the combination of natural and synthetic polymers, and solvent type have been explored over the past decade to develop PNIPAm-based scaffolds with optimized properties suitable for tissue engineering applications. These design parameters have been implemented to provide hydrogel scaffolds with dynamic and spatially patterned cues that mimic the biological environment and guide the required cellular functions for cartilage tissue regeneration. The current advances on tuning the properties of PNIPAm-based scaffolds were searched for on Google Scholar, PubMed, and Web of Science. This review provides a comprehensive overview of the scaffolding properties of PNIPAm-based hydrogels and the effects of synthesis-solvent and crosslinking density on tuning these properties. Finally, the challenges and perspectives of considering these two design variables for developing PNIPAm-based scaffolds are outlined.
Collapse
Affiliation(s)
- Md Mohosin Rana
- Biomedical Engineering Graduate Program, Schulich School of Engineering, University of Calgary, Calgary, AB T2N 1N4, Canada;
| | - Hector De la Hoz Siegler
- Biomedical Engineering Graduate Program, Schulich School of Engineering, University of Calgary, Calgary, AB T2N 1N4, Canada;
- Department of Chemical and Petroleum Engineering, Schulich School of Engineering, University of Calgary, Calgary, AB T2N 1N4, Canada
| |
Collapse
|
16
|
Saftics A, Kurunczi S, Peter B, Szekacs I, Ramsden JJ, Horvath R. Data evaluation for surface-sensitive label-free methods to obtain real-time kinetic and structural information of thin films: A practical review with related software packages. Adv Colloid Interface Sci 2021; 294:102431. [PMID: 34330074 DOI: 10.1016/j.cis.2021.102431] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 04/16/2021] [Accepted: 04/18/2021] [Indexed: 02/07/2023]
Abstract
Interfacial layers are important in a wide range of applications in biomedicine, biosensing, analytical chemistry and the maritime industries. Given the growing number of applications, analysis of such layers and understanding their behavior is becoming crucial. Label-free surface sensitive methods are excellent for monitoring the formation kinetics, structure and its evolution of thin layers, even at the nanoscale. In this paper, we review existing and commercially available label-free techniques and demonstrate how the experimentally obtained data can be utilized to extract kinetic and structural information during and after formation, and any subsequent adsorption/desorption processes. We outline techniques, some traditional and some novel, based on the principles of optical and mechanical transduction. Our special focus is the current possibilities of combining label-free methods, which is a powerful approach to extend the range of detected and deduced parameters. We summarize the most important theoretical considerations for obtaining reliable information from measurements taking place in liquid environments and, hence, with layers in a hydrated state. A thorough treamtmaent of the various kinetic and structural quantities obtained from evaluation of the raw label-free data are provided. Such quantities include layer thickness, refractive index, optical anisotropy (and molecular orientation derived therefrom), degree of hydration, viscoelasticity, as well as association and dissociation rate constants and occupied area of subsequently adsorbed species. To demonstrate the effect of variations in model conditions on the observed data, simulations of kinetic curves at various model settings are also included. Based on our own extensive experience with optical waveguide lightmode spectroscopy (OWLS) and the quartz crystal microbalance (QCM), we have developed dedicated software packages for data analysis, which are made available to the scientific community alongside this paper.
Collapse
|