1
|
Rahman MK, Yamada T, Yamada NL, Higuchi Y, Seto H. Hydration Water Dynamics in Zwitterionic Phospholipid Membranes Mixed with Charged Phospholipids. J Phys Chem B 2025; 129:3998-4004. [PMID: 40215264 DOI: 10.1021/acs.jpcb.4c07371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2025]
Abstract
The effect of adding charged lipids on the hydration water dynamics near lipid membranes was investigated using quasi-elastic neutron scattering (QENS) experiments and molecular dynamics (MD) simulations. This study focused on the zwitterionic lipid 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) mixed with the anionic lipid 1,2-dimyristoyl-sn-glycero-3-phospho-l-serine (DMPS). QENS profiles were analyzed based on four different types of hydration water dynamics. Three slower modes were identified as tightly bound, loosely bound, and free water, as previously reported, while the fastest mode was attributed to the rotational motion of the water molecules. The diffusion coefficients of the three types of hydration water increased with the addition of charged lipids, and the rotational motion of water molecules was also accelerated. The numbers of loosely and tightly bound water molecules changed slightly, whereas free water remained largely unchanged. These findings suggest that the charged headgroups of the DMPS disrupted the hydrogen-bonding network among water molecules, as supported by MD results.
Collapse
Affiliation(s)
- Md Khalidur Rahman
- Institute of Materials Structure Science, High Energy Accelerator Research Organization, Tsukuba, Ibaraki 305-0801, Japan
| | - Takeshi Yamada
- Neutron Science and Technology Center, Comprehensive Research Organization for Science and Society (CROSS), Tokai, Naka, Ibaraki 319-1106, Japan
| | - Norifumi L Yamada
- Institute of Materials Structure Science, High Energy Accelerator Research Organization, Tsukuba, Ibaraki 305-0801, Japan
| | - Yuji Higuchi
- Research Institute for Information Technology, Kyushu University, 744 Motooka, Nishi-Ku, Fukuoka 819-0395, Japan
| | - Hideki Seto
- Institute of Materials Structure Science, High Energy Accelerator Research Organization, Tsukuba, Ibaraki 305-0801, Japan
| |
Collapse
|
2
|
Shikata K, Kasahara K, Watanabe NM, Umakoshi H, Kim K, Matubayasi N. Influence of cholesterol on hydrogen-bond dynamics of water molecules in lipid-bilayer systems at varying temperatures. J Chem Phys 2024; 161:015102. [PMID: 38958163 DOI: 10.1063/5.0208008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 06/17/2024] [Indexed: 07/04/2024] Open
Abstract
Cholesterol (Chol) plays a crucial role in shaping the intricate physicochemical attributes of biomembranes, exerting a considerable influence on water molecules proximal to the membrane interface. In this study, we conducted molecular dynamics simulations on the bilayers of two lipid species, dipalmitoylphosphatidylcholine (DPPC) and palmitoyl sphingomyelin; they are distinct with respect to the structures of the hydrogen-bond (H-bond) acceptors. Our investigation focuses on the dynamic properties and H-bonds of water molecules in the lipid-membrane systems, with a particular emphasis on the influence of Chol at varying temperatures. Notably, in the gel phase at 303 K, the presence of Chol extends the lifetimes of H-bonds of the oxygen atoms acting as H-bond acceptors within DPPC with water molecules by a factor of 1.5-2.5. In the liquid-crystalline phase at 323 K, on the other hand, H-bonding dynamics with lipid membranes remain largely unaffected by Chol. This observed shift in H-bonding states serves as a crucial key to unraveling the subtle control mechanisms governing water dynamics in lipid-membrane systems.
Collapse
Affiliation(s)
- Kokoro Shikata
- Division of Chemical Engineering, Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Kento Kasahara
- Division of Chemical Engineering, Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Nozomi Morishita Watanabe
- Division of Chemical Engineering, Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Hiroshi Umakoshi
- Division of Chemical Engineering, Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Kang Kim
- Division of Chemical Engineering, Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Nobuyuki Matubayasi
- Division of Chemical Engineering, Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| |
Collapse
|
3
|
Higuchi Y, Saleh MA, Anada T, Tanaka M, Hishida M. Rotational Dynamics of Water near Osmolytes by Molecular Dynamics Simulations. J Phys Chem B 2024; 128:5008-5017. [PMID: 38728154 DOI: 10.1021/acs.jpcb.3c08470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2024]
Abstract
The behavior of water molecules around organic molecules has attracted considerable attention as a crucial factor influencing the properties and functions of soft matter and biomolecules. Recently, it has been suggested that the change in protein stability upon the addition of small organic molecules (osmolytes) is dominated by the change in the water dynamics caused by the osmolyte, where the dynamics of not only the directly interacting water molecules but also the long-range hydration layer affect the protein stability. However, the relation between the long-range structure of hydration water in various solutions and the water dynamics remains unclear at the molecular level. We performed density-functional tight-binding molecular dynamics simulations to elucidate the varying rotational dynamics of water molecules in 15 osmolyte solutions. A positive correlation was observed between the rotational relaxation time and our proposed normalized parameter obtained by dividing the number of hydrogen bonds between water molecules by the number of nearest-neighbor water molecules. For the 15 osmolyte solutions, an increase or a decrease in the value of the normalized parameter for the second hydration shell tended to result in water molecules with slow and fast rotational dynamics, respectively, thus illustrating the importance of the second hydration shell for the rotational dynamics of water molecules. Our simulation results are anticipated to advance the current understanding of water dynamics around organic molecules and the long-range structure of water molecules.
Collapse
Affiliation(s)
- Yuji Higuchi
- Research Institute for Information Technology, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Md Abu Saleh
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, Fukuoka 819-0395, Japan
| | - Takahisa Anada
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, Fukuoka 819-0395, Japan
- Institute for Materials Chemistry and Engineering, Kyushu University, Fukuoka 819-0395, Japan
| | - Masaru Tanaka
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, Fukuoka 819-0395, Japan
- Institute for Materials Chemistry and Engineering, Kyushu University, Fukuoka 819-0395, Japan
| | - Mafumi Hishida
- Department of Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku, Tokyo 162-8601, Japan
| |
Collapse
|
4
|
Hishida M. Correlation between Hydration States and Self-assembly Structures of Phospholipid and Surfactant Studied by Terahertz Spectroscopy. J Oleo Sci 2024; 73:419-427. [PMID: 38556277 DOI: 10.5650/jos.ess23188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2024] Open
Abstract
Phospholipids and surfactants form membranes and other self-assembled structures in water. However, it is not fully understood how the surrounding water (hydration water) is involved in their structure formation. In this paper, I summarize the results of our investigation of the long-range hydration state of phospholipids and surfactants at their surfaces by means of terahertz spectroscopy. By observing the collective rotational dynamics of water in the picosecond time scale, this technique allows us to observe not only the water directly bound to the solute, but also the weakly affected water outside of it. For example, PC phospholipids inhibit water dynamics over long distances, whereas PE phospholipids make water more mobile than bulk water. The causes of this difference in hydration and how it is involved in the structural formation of the membrane are reviewed.
Collapse
Affiliation(s)
- Mafumi Hishida
- Department of Chemistry, Faculty of Science, Tokyo University of Science
| |
Collapse
|
5
|
ISHIHARA K. Biomimetic polymers with phosphorylcholine groups as biomaterials for medical devices. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2024; 100:579-606. [PMID: 39662944 PMCID: PMC11704457 DOI: 10.2183/pjab.100.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 10/01/2024] [Indexed: 12/13/2024]
Abstract
Biomimetic molecular designs can yield superior biomaterials. Polymers with a phosphorylcholine group, a polar group of phospholipid molecules, are particularly interesting. A methacrylate monomer, 2-methacryloyloxyethyl phosphorylcholine (MPC), was developed using efficient synthetic reactions and purification techniques. This process has been applied in industrial production to supply MPC globally. Polymers with various structures can be readily synthesized using MPC and their properties have been studied. The MPC polymer surface has a highly hydrated structure in biological conditions, leading to the prevention of adsorption of proteins and lipid molecules, adhesion of cells, and inhibition of bacterial adhesion and biofilm formation. Additionally, it provides an extremely lubricious surface. MPC polymers are used in various applications and can be stably immobilized on material surfaces such as metals and ceramics and polymers such as elastomers. They are also stable under sterilization and in vivo conditions. This makes them ideal for application in the surface treatment of various medical devices, including artificial organs, implanted in humans.
Collapse
Affiliation(s)
- Kazuhiko ISHIHARA
- Division of Materials & Manufacturing Science, Graduate School of Engineering, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
6
|
Onoda-Yamamuro N, Inamura Y, Yamamuro O. Quasielastic Neutron Scattering Study on Thermal Gelation in Aqueous Solution of Agarose. Gels 2023; 9:879. [PMID: 37998969 PMCID: PMC10670504 DOI: 10.3390/gels9110879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 10/30/2023] [Accepted: 10/30/2023] [Indexed: 11/25/2023] Open
Abstract
The dynamics of water and agarose molecules in an agarose aqueous solution has been studied by means of quasielastic neutron scattering (QENS). The dynamic structure factor S (Q,E) of the agarose aqueous solution was fitted well to the sum of the Lorentz and delta function. The former is attributed to the diffusive motion of water molecules and the latter to the local vibrational motion of agarose molecules. The self-diffusion coefficient D of water molecules was obtained from the Q-dependence of the width of the Lorentz function, while the mean square displacement of agarose molecules was obtained from the Q-dependence of the intensity of the delta term. In the cooling direction, both D and decreased with decreasing temperature and showed discontinuous changes around the thermal gelation temperature (around 314 K). In the heating direction, however, D and did not show the obvious change below 343 K, indicating a large hysteresis effect. The present results of and D revealed that the thermal gelation suppresses the motion of the polymer and accelerates the diffusion of water molecules. The activation energy Ea of the diffusion of water in the sol state is the same as that of bulk water, but the Ea in the gel state is clearly smaller than that of bulk water.
Collapse
Affiliation(s)
- Noriko Onoda-Yamamuro
- Department of Natural Sciences, School of Science and Engineering, Tokyo Denki University, Hiki-gun, Saitama 350-0394, Japan
| | - Yasuhiro Inamura
- Neutron Science Laboratory, Institute for Solid State Physics, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8581, Japan; (Y.I.); (O.Y.)
| | - Osamu Yamamuro
- Neutron Science Laboratory, Institute for Solid State Physics, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8581, Japan; (Y.I.); (O.Y.)
| |
Collapse
|
7
|
Jain H, Karathanou K, Bondar AN. Graph-Based Analyses of Dynamic Water-Mediated Hydrogen-Bond Networks in Phosphatidylserine: Cholesterol Membranes. Biomolecules 2023; 13:1238. [PMID: 37627303 PMCID: PMC10452392 DOI: 10.3390/biom13081238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/03/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
Phosphatidylserine lipids are anionic molecules present in eukaryotic plasma membranes, where they have essential physiological roles. The altered distribution of phosphatidylserine in cells such as apoptotic cancer cells, which, unlike healthy cells, expose phosphatidylserine, is of direct interest for the development of biomarkers. We present here applications of a recently implemented Depth-First-Search graph algorithm to dissect the dynamics of transient water-mediated lipid clusters at the interface of a model bilayer composed of 1-palmytoyl-2-oleoyl-sn-glycero-2-phosphatidylserine (POPS) and cholesterol. Relative to a reference POPS bilayer without cholesterol, in the POPS:cholesterol bilayer there is a somewhat less frequent sampling of relatively complex and extended water-mediated hydrogen-bond networks of POPS headgroups. The analysis protocol used here is more generally applicable to other lipid:cholesterol bilayers.
Collapse
Affiliation(s)
- Honey Jain
- Faculty of Physics, University of Bucharest, Atomiștilor 405, 077125 Măgurele, Romania
- Department of Physics, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | | | - Ana-Nicoleta Bondar
- Faculty of Physics, University of Bucharest, Atomiștilor 405, 077125 Măgurele, Romania
- IAS-5/INM-9, Forschungszentrum Jülich, Institute of Computational Biomedicine, Wilhelm-Johnen Straße, 52428 Jülich, Germany
| |
Collapse
|
8
|
Hishida M, Kaneko A, Yamamura Y, Saito K. Contrasting Changes in Strongly and Weakly Bound Hydration Water of a Protein upon Denaturation. J Phys Chem B 2023; 127:6296-6305. [PMID: 37417885 PMCID: PMC10364084 DOI: 10.1021/acs.jpcb.3c02970] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/21/2023] [Indexed: 07/08/2023]
Abstract
Water is considered integral for the stabilization and function of proteins, which has recently attracted significant attention. However, the microscopic aspects of water ranging up to the second hydration shell, including strongly and weakly bound water at the sub-nanometer scale, are not yet well understood. Here, we combined terahertz spectroscopy, thermal measurements, and infrared spectroscopy to clarify how the strongly and weakly bound hydration water changes upon protein denaturation. With denaturation, that is, the exposure of hydrophobic groups in water and entanglement of hydrophilic groups, the number of strongly bound hydration water decreased, while the number of weakly bound hydration water increased. Even though the constraint of water due to hydrophobic hydration is weak, it extends to the second hydration shell as it is caused by the strengthening of hydrogen bonds between water molecules, which is likely the key microscopic mechanism for the destabilization of the native state due to hydration.
Collapse
Affiliation(s)
- Mafumi Hishida
- Department
of Chemistry, Faculty of Science, Tokyo
University of Science, 1-3 Kagurazaka, Shinjuku, Tokyo 162-8601, Japan
| | - Ayumi Kaneko
- Department
of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8571, Japan
| | - Yasuhisa Yamamura
- Department
of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8571, Japan
| | - Kazuya Saito
- Department
of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8571, Japan
| |
Collapse
|
9
|
Rahman MK, Yamada T, Yamada NL, Hishida M, Higuchi Y, Seto H. Quasi-elastic neutron scattering reveals the relationship between the dynamical behavior of phospholipid headgroups and hydration water. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2023; 10:044701. [PMID: 37637480 PMCID: PMC10449016 DOI: 10.1063/4.0000184] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 08/04/2023] [Indexed: 08/29/2023]
Abstract
The dynamics of hydration water (HW) in 1,2-dimyristoyl-sn-glycero-3-phosphoethanolamine (DMPE) was investigated by means of quasi-elastic neutron scattering (QENS) and compared with those observed in 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC). The headgroup dynamics of DMPE was investigated using a mixture of tail-deuterated DMPE and D2O, and the QENS profiles were interpreted as consisting of three modes. The fast mode comprised the rotation of hydrogen atoms in -NH3+ and -CH2- groups in the headgroup of DMPE, the medium-speed mode comprised fluctuations in the entire DMPE molecule, and the slow mode comprised fluctuations in the membrane. These interpretations were confirmed using molecular dynamics (MD) simulations. The HW dynamics analysis was performed on a tail-deuterated DMPE and H2O mixture. The QENS profiles were analyzed in terms of three modes: (1) a slow mode, identified as loosely bound HW in the DMPC membrane; (2) a medium-speed mode similar to free HW in the DMPC membrane; and (3) a fast mode, identified as rotational motion. The relaxation time for the fast mode was approximately six times shorter than that of rotational water in DMPC, consistent with the results of terahertz time-domain spectroscopy. The activation energy of medium-speed HW in DMPE differed from that of free HW in DMPC, suggesting the presence of different hydration states or hydrogen-bonded networks around the phosphocholine and phosphoethanolamine headgroups.
Collapse
Affiliation(s)
| | - Takeshi Yamada
- Neutron Science and Technology Center, Comprehensive Research Organization for Science and Society (CROSS), Tokai, Naka, Ibaraki 319-1106, Japan
| | | | - Mafumi Hishida
- Department of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8571, Japan
| | - Yuji Higuchi
- Research Institute for Information Technology, Kyushu University, 744 Motooka, Nishi-Ku, Fukuoka 819-0395, Japan
| | - Hideki Seto
- Authors to whom correspondence should be addressed: and
| |
Collapse
|
10
|
Sugiyama JI, Tokunaga Y, Hishida M, Tanaka M, Takeuchi K, Satoh D, Imashimizu M. Nonthermal acceleration of protein hydration by sub-terahertz irradiation. Nat Commun 2023; 14:2825. [PMID: 37217486 DOI: 10.1038/s41467-023-38462-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 04/20/2023] [Indexed: 05/24/2023] Open
Abstract
The collective intermolecular dynamics of protein and water molecules, which overlap in the sub-terahertz (THz) frequency region, are relevant for expressing protein functions but remain largely unknown. This study used dielectric relaxation (DR) measurements to investigate how externally applied sub-THz electromagnetic fields perturb the rapid collective dynamics and influence the considerably slower chemical processes in protein-water systems. We analyzed an aqueous lysozyme solution, whose hydration is not thermally equilibrated. By detecting time-lapse differences in microwave DR, we demonstrated that sub-THz irradiation gradually decreases the dielectric permittivity of the lysozyme solution by reducing the orientational polarization of water molecules. Comprehensive analysis combining THz and nuclear magnetic resonance spectroscopies suggested that the gradual decrease in the dielectric permittivity is not induced by heating but is due to a slow shift toward the hydrophobic hydration structure in lysozyme. Our findings can be used to investigate hydration-mediated protein functions based on sub-THz irradiation.
Collapse
Affiliation(s)
- Jun-Ichi Sugiyama
- Nanomaterials Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, 305-8565, Japan
| | - Yuji Tokunaga
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo, Tokyo, 113-0033, Japan
| | - Mafumi Hishida
- Department of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8571, Japan
- Department of Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku, Tokyo, 162-8601, Japan
| | - Masahito Tanaka
- Research Institute for Measurement and Analytical Instrumentation, National Institute of Advanced Industrial Science and Technology, Tsukuba, 305-8568, Japan
| | - Koh Takeuchi
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo, Tokyo, 113-0033, Japan
| | - Daisuke Satoh
- Research Institute for Measurement and Analytical Instrumentation, National Institute of Advanced Industrial Science and Technology, Tsukuba, 305-8568, Japan
| | - Masahiko Imashimizu
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, 305-8565, Japan.
| |
Collapse
|
11
|
Higuchi Y, Bohinc K, Reščič J, Shimokawa N, Ito H. Coarse-grained molecular dynamics simulation of cation distribution profiles on negatively charged lipid membranes during phase separation. SOFT MATTER 2023; 19:3640-3651. [PMID: 37162535 DOI: 10.1039/d3sm00222e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Revealing the ion distributions on a charged lipid membrane in aqueous solution under the influence of long-range interactions is essential for understanding the origin of the stability of the bilayer structure and the interaction between biomembranes and various electrolytes. However, the ion distributions and their dynamics associated with the phase separation process of the lipid bilayer membrane are still unclear. We perform coarse-grained molecular dynamics simulations to reveal the Na+ and Cl- distributions on charged phospholipid bilayer membranes during phase separation. During the phase separation, cations closely follow the position of negatively charged lipids on a microsecond timescale and are rapidly redistributed parallel to the lipid bilayer. In the homogenous mixture of zwitterionic and negatively charged lipids, cations weakly follow negatively charged lipids, indicating the strong interaction between cations and negatively charged lipids. We also compare cation concentrations as a function of surface charge density obtained by our simulation with those obtained by a modified Poisson-Boltzmann theory. Including the ion finite size makes the statistical results consistent, suggesting the importance of the ion-ion interactions in aqueous solution. Our simulation results advance our understanding of ion distribution during phase separation.
Collapse
Affiliation(s)
- Yuji Higuchi
- Research Institute for Information Technology, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan.
| | - Klemen Bohinc
- Faculty of Health Sciences, University of Ljubljana, Zdravstvena 5, SI 1000 Ljubljana, Slovenia
| | - Jurij Reščič
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Vecna pot 113, 1000 Ljubljana, Slovenia
| | - Naofumi Shimokawa
- School of Materials Science, Japan Advanced Institute of Science and Technology, Ishikawa 923-1292, Japan
| | - Hiroaki Ito
- Department of Physics, Graduate School of Science, Chiba University, Chiba 263-8522, Japan
| |
Collapse
|
12
|
Ishihara K. Biomimetic materials based on zwitterionic polymers toward human-friendly medical devices. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2022; 23:498-524. [PMID: 36117516 PMCID: PMC9481090 DOI: 10.1080/14686996.2022.2119883] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/26/2022] [Accepted: 08/28/2022] [Indexed: 06/01/2023]
Abstract
This review summarizes recent research on the design of polymer material systems based on biomimetic concepts and reports on the medical devices that implement these systems. Biomolecules such as proteins, nucleic acids, and phospholipids, present in living organisms, play important roles in biological activities. These molecules are characterized by heterogenic nature with hydrophilicity and hydrophobicity, and a balance of positive and negative charges, which provide unique reaction fields, interfaces, and functionality. Incorporating these molecules into artificial systems is expected to advance material science considerably. This approach to material design is exceptionally practical for medical devices that are in contact with living organisms. Here, it is focused on zwitterionic polymers with intramolecularly balanced charges and introduce examples of their applications in medical devices. Their unique properties make these polymers potential surface modification materials to enhance the performance and safety of conventional medical devices. This review discusses these devices; moreover, new surface technologies have been summarized for developing human-friendly medical devices using zwitterionic polymers in the cardiovascular, cerebrovascular, orthopedic, and ophthalmology fields.
Collapse
Affiliation(s)
- Kazuhiko Ishihara
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, Osaka, Japan
| |
Collapse
|
13
|
Nishida K, Anada T, Tanaka M. Roles of interfacial water states on advanced biomedical material design. Adv Drug Deliv Rev 2022; 186:114310. [PMID: 35487283 DOI: 10.1016/j.addr.2022.114310] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 04/12/2022] [Accepted: 04/21/2022] [Indexed: 12/15/2022]
Abstract
When biomedical materials come into contact with body fluids, the first reaction that occurs on the material surface is hydration; proteins are then adsorbed and denatured on the hydrated material surface. The amount and degree of denaturation of adsorbed proteins affect subsequent cell behavior, including cell adhesion, migration, proliferation, and differentiation. Biomolecules are important for understanding the interactions and biological reactions of biomedical materials to elucidate the role of hydration in biomedical materials and their interaction partners. Analysis of the water states of hydrated materials is complicated and remains controversial; however, knowledge about interfacial water is useful for the design and development of advanced biomaterials. Herein, we summarize recent findings on the hydration of synthetic polymers, supramolecular materials, inorganic materials, proteins, and lipid membranes. Furthermore, we present recent advances in our understanding of the classification of interfacial water and advanced polymer biomaterials, based on the intermediate water concept.
Collapse
Affiliation(s)
- Kei Nishida
- Institute for Materials Chemistry and Engineering Kyushu university, 744 Motooka, Nishi-ku Fukuoka 819-0395, Japan; Department of Life Science and Technology, School of Life Science and Technology, Tokyo Institute of Technology, Japan(1)
| | - Takahisa Anada
- Institute for Materials Chemistry and Engineering Kyushu university, 744 Motooka, Nishi-ku Fukuoka 819-0395, Japan
| | - Masaru Tanaka
- Institute for Materials Chemistry and Engineering Kyushu university, 744 Motooka, Nishi-ku Fukuoka 819-0395, Japan.
| |
Collapse
|
14
|
Zhang R, Cross TA, Peng X, Fu R. Surprising Rigidity of Functionally Important Water Molecules Buried in the Lipid Headgroup Region. J Am Chem Soc 2022; 144:7881-7888. [PMID: 35439409 PMCID: PMC9165019 DOI: 10.1021/jacs.2c02145] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Understanding water dynamics and structure is an important topic in biological systems. It is generally held in the literature that the interfacial water of hydrated phospholipids is highly mobile, in fast exchange with the bulk water ranging from the nano- to femtosecond timescale. Although nuclear magnetic resonance (NMR) is a powerful tool for structural and dynamic studies, direct probing of interfacial water in hydrated phospholipids is formidably challenging due to the extreme population difference between bulk and interfacial water. We developed a novel 17O solid-state NMR technique in combination with an ultra-high-field magnet (35.2 T) to directly probe the functionally important interfacial water. By selectively suppressing the dominant bulk water signal, we observed two distinct water species in the headgroup region of hydrated dimyristoylphosphatidylcholine (DMPC) lipid bilayers for the first time. One water species denoted as "confined water" is chemically and dynamically different from the bulk water (∼0.17 ppm downfield and a slightly shorter spin-lattice relaxation time). Another water species denoted as "bound water" has severely restricted motion and a distinct chemical shift (∼12 ppm upfield). Additionally, the bulk water is not as "free" as pure water, resulting from the fast exchange with the water molecules that weakly and transiently interact with the lipid choline groups. These new discoveries clearly indicate the existence of the interfacial water molecules that are relatively stable over the NMR timescale (on the order of milliseconds), providing an opportunity to characterize water dynamics on the millisecond or slower timescale in biomacromolecules.
Collapse
Affiliation(s)
- Rongfu Zhang
- National High Magnetic Field Laboratory, 1800 East Paul Dirac Drive, Tallahassee, Florida 32310, United States.,Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32301, United States
| | - Timothy A Cross
- National High Magnetic Field Laboratory, 1800 East Paul Dirac Drive, Tallahassee, Florida 32310, United States.,Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32301, United States
| | - Xinhua Peng
- CAS Key Laboratory of Microscale Magnetic Resonance and Department of Modern Physics, University of Science and Technology of China, Hefei 230026, China
| | - Riqiang Fu
- National High Magnetic Field Laboratory, 1800 East Paul Dirac Drive, Tallahassee, Florida 32310, United States
| |
Collapse
|
15
|
Hishida M, Anjum R, Anada T, Murakami D, Tanaka M. Effect of Osmolytes on Water Mobility Correlates with Their Stabilizing Effect on Proteins. J Phys Chem B 2022; 126:2466-2475. [DOI: 10.1021/acs.jpcb.1c10634] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Mafumi Hishida
- Department of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8571, Japan
| | - Rubaiya Anjum
- Department of Chemistry and Biochemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Takahisa Anada
- Department of Chemistry and Biochemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
- Institute for Materials Chemistry and Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Daiki Murakami
- Department of Chemistry and Biochemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
- Institute for Materials Chemistry and Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Masaru Tanaka
- Department of Chemistry and Biochemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
- Institute for Materials Chemistry and Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|