1
|
Wang N, Yu H, Yin J, Yu X. pH-responsive nano-vaccine combined with anti-PD-1 antibodies for enhanced immunotherapy of breast cancer. Theranostics 2025; 15:6022-6043. [PMID: 40365283 PMCID: PMC12068292 DOI: 10.7150/thno.107200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 04/18/2025] [Indexed: 05/15/2025] Open
Abstract
Objective: This study aimed to investigate the therapeutic potential and underlying mechanisms of a novel pH-responsive nano-vaccine in combination with anti-Programmed Cell Death Protein 1 (PD-1) antibodies for the treatment of breast cancer (BC), with a focus on tumor growth inhibition, metastasis prevention, and immune microenvironment modulation. Methods: A pH-responsive amphiphilic diblock copolymer was synthesized using reversible addition-fragmentation chain transfer (RAFT) polymerization and conjugated with STING agonist ADU-S100 and mannose to specifically target dendritic cells (DCs). The nano-vaccine was further formulated with antigen peptides and polyethyleneimine (PEI) to enhance antigen delivery. Its particle size, stability, and surface charge were characterized using dynamic light scattering (DLS) and zeta potential analysis. In vitro, the immunostimulatory capacity of the nano-vaccine was evaluated via flow cytometry (FCM) analysis of DC activation markers. In vivo, mouse immune and tumor recurrence models were used to assess the its effects on T-cell activation, tumor suppression, and immune memory induction. The therapeutic efficacy of nano-vaccine/anti-PD-1 combination therapy was further assessed. Results: The nano-vaccine efficiently activated DCs and promoted antigen presentation, as indicated by increased CD80, CD86, and MHC-II expression in vitro. In mouse models, it effectively inhibited tumor growth, induced antigen-specific T-cell responses, and suppressed recurrent and metastatic tumor progression. The combination with anti-PD-1 antibodies further enhanced tumor control, immune cell infiltration, and survival rates compared to monotherapy. Conclusion: The pH-responsive nano-vaccine combined with anti-PD-1 antibodies showed remarkable synergistic effects in BC treatment, highlighting its potential to enhance immune checkpoint blockade therapy and offer a promising strategy for clinical applications in solid tumors.
Collapse
Affiliation(s)
- Ning Wang
- Department of Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Hong Yu
- Department of Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Jianqiao Yin
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Xiaopeng Yu
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| |
Collapse
|
2
|
Yang C, Liu P. Disulfide/α-Amide-Bridged Doxorubicin Dimeric Prodrug: Effect of Aggregation Structures on pH/GSH Dual-Triggered Drug Release. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:11098-11105. [PMID: 38739904 DOI: 10.1021/acs.langmuir.4c00663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Disulfide bonding has attracted intense interest in the tumor intracellular microenvironment-activated drug delivery systems (DDSs) in the last decades. Although various molecular structures of redox-responsive disulfide-containing DDSs have been developed, no investigation was reported on the effect of aggregation structures. Here, the effect of aggregation structures on pH/GSH dual-triggered drug release was investigated with the simplest pH/GSH dual-triggered doxorubicin-based drug self-delivery system (DSDS), the disulfide/α-amide-bridged doxorubicin dimeric prodrug (DDOX), as a model. By fast precipitation or slow self-assembly, DDOX nanoparticles were obtained. With similar diameters, they exhibited different pH/GSH dual-triggered drug releases, demonstrating the effect of aggregation structures. The π-π stacking in different degrees was revealed by the UV-vis, fluorescence, and BET analysis of the DDOX nanoparticles. The effect of the π-π stacking between the dimeric prodrug and its activated products on drug release was also explored with the molecular simulation approach. The finding opens new ideas in the design of high-performance DDSs for future precise tumor treatment.
Collapse
Affiliation(s)
- Chen Yang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Peng Liu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
3
|
Liu P. Molecular Design and Controlled Self-Assembly of Copolymers as Core-Shell-Corona Nanoparticles for Smarter Tumor Treatment. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:1143-1149. [PMID: 38166440 DOI: 10.1021/acs.langmuir.3c02032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
Copolymer-based core-shell-corona nanoparticles have attracted more interest for tumor chemotherapy, owing to their unique multifunctionality benefiting from their unique multilevel topological structure in comparison with the conventional core-shell ones. Here, the recent progress in such core-shell-corona nanoparticle-based drug delivery systems (DDSs) in tumor chemotherapy was reviewed, focusing on additive functionality of the shell layer for controlled drug release performance from the viewpoints of the molecular design and controlled self-assembly, such as stimuli-responsive gatekeepers, independent loading of active substances, and so on. Moreover, future perspectives have been prospected for smarter tumor treatment.
Collapse
Affiliation(s)
- Peng Liu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou730000, China
| |
Collapse
|
4
|
Aliabadi A, Hasannia M, Vakili-Azghandi M, Araste F, Abnous K, Taghdisi SM, Ramezani M, Alibolandi M. Synthesis approaches of amphiphilic copolymers for spherical micelle preparation: application in drug delivery. J Mater Chem B 2023; 11:9325-9368. [PMID: 37706425 DOI: 10.1039/d3tb01371e] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
The formation of polymeric micelles in aqueous environments through the self-assembly of amphiphilic polymers can provide a versatile platform to increase the solubility and permeability of hydrophobic drugs and pave the way for their administration. In comparison to various self-assembly-based vehicles, polymeric micelles commonly have a smaller size, spherical morphology, and simpler scale up process. The use of polymer-based micelles for the encapsulation and carrying of therapeutics to the site of action triggered a line of research on the synthesis of various amphiphilic polymers in the past few decades. The extended knowledge on polymers includes biocompatible smart amphiphilic copolymers for the formation of micelles, therapeutics loading and response to external stimuli, micelles with a tunable drug release pattern, etc. Different strategies such as ring-opening polymerization, atom transfer radical polymerization, reversible addition-fragmentation chain-transfer, nitroxide mediated polymerization, and a combination of these methods were employed to synthesize copolymers with diverse compositions and topologies with the proficiency of self-assembly into well-defined micellar structures. The current review provides a summary of the important polymerization techniques and recent achievements in the field of drug delivery using micellar systems. This review proposes new visions for the design and synthesis of innovative potent amphiphilic polymers in order to benefit from their application in drug delivery fields.
Collapse
Affiliation(s)
- Ali Aliabadi
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
- Medicinal Chemistry Department, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maliheh Hasannia
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Masoume Vakili-Azghandi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Fatemeh Araste
- Department of Medical Biotechnology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Khalil Abnous
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Seyed Mohammad Taghdisi
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Pharmaceutical Biotechnology Department, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Ramezani
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
- Pharmaceutical Biotechnology Department, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mona Alibolandi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
- Pharmaceutical Biotechnology Department, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
5
|
Shi Y, Hou X, Yu S, Pan X, Yang M, Hu J, Wang X. Targeted delivery of doxorubicin into tumor cells to decrease the in vivo toxicity of glutathione-sensitive prodrug-poloxamer188-b-polycaprolactone nanoparticles and improve their anti-tumor activities. Colloids Surf B Biointerfaces 2022; 220:112874. [DOI: 10.1016/j.colsurfb.2022.112874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 09/12/2022] [Accepted: 09/21/2022] [Indexed: 11/25/2022]
|
6
|
Guo Z, Bai G, Zhan X, Zhuo K, Wang J, Wang Y. Supramolecular Vector/Drug Coassemblies of Polyglycerol Dendrons and Rutin Enhance the pH Response. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:3392-3402. [PMID: 35266719 DOI: 10.1021/acs.langmuir.1c03131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
A coassembly strategy for a supramolecular vector/drug was proposed with a biocompatible ternary dodecyl-bi(third-generation polyglycerol (PG) dendrons) (C12-(G3)2) amphiphile, dodecyl sulfobetaine (SB3-12) surfactant, and poorly water-soluble drug rutin. C12-(G3)2 and rutin will mutually enhance their pH response by protonation and deprotonation of dendritic PG and rutin's ionization as the pH changes from the acidic gastric lumen to the weakly alkaline intestine. SB3-12 may increase the payload and bring about sustained release for rutin by intermolecular interactions. Self-assembling behaviors of C12-(G3)2, SB3-12, sodium dodecyl sulfate (SDS), and dodecyl trimethylammonium bromide (DTAB) and their hybrids with rutin were characterized by UV-vis spectroscopy, a fluorescence probe, and 1H NMR. UV-vis and 1H NMR were used to identify the position and orientation of rutin in the vectors. The functions of the vector/drug were confirmed by measuring the solubility and in vitro release of rutin. The ternary coassembling vector/drug easily imparted functions of pH-responsive and sustained release without complex synthetic processes. The nanocaves framed by PG dendrons in the micelles provide pH-responsive compartments for rutin and SB3-12 in the supramolecular vector/drug anchors that accommodate rutin by weak interactions. The finely matched supramolecular vector/drug coassemblies exhibit the pH-responsive function for a potential application in the treatment of inflammatory bowel disease.
Collapse
Affiliation(s)
- Zhijun Guo
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Guangyue Bai
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Xize Zhan
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Kelei Zhuo
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Jianji Wang
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Yujie Wang
- School of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang, Henan 453003, P. R. China
| |
Collapse
|
7
|
Guo C, Su Y, Wang B, Chen Q, Guo H, Kong M, Chen D. Novel polysaccharide building hybrid nanoparticles: remodelling TAMs to target ERα-positive breast cancer. J Drug Target 2021; 30:450-462. [PMID: 34927506 DOI: 10.1080/1061186x.2021.2020798] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
With the increasing number of oncology patients and the use of chemotherapeutic agents, tumour multidrug resistance is becoming more and more prevalent. The search for new tumour treatment strategies to overcome tumour multidrug resistance is urgent. In this study, we designed GSH and ROS dual-responsive tumour-associated macrophages (TAMs)-targeted nanoparticles (NPs) for the co-delivery of the clinical first-line anti-breast cancer chemotherapy drug paclitaxel (PTX) and baicalin (Bai), which re-educates TAMs to alter their phenotype. We synthesised oligohyaluronic acid-mannose-folic acid (oHA-Man-FA, HMF) and astragalus polysaccharide-dithiodipropionic acid-paeoniflorol (APS-S-Pae, ASP), two hybrid materials that can self-assemble in water to form hybrid nanoparticles (HP-NPs) co-loaded with paclitaxel and baicalin (HP-NPs@PTX/Bai). The experimental results show that our designed hybrid nanoparticles can be specifically released in the tumour microenvironment and deliver the antitumor drug PTX as well as Bai, which reshapes the phenotype of TAMs, to the tumour site. The hybrid nanoparticles not only effectively re-educated TAMs from M2 TAM to M1 TAM, but also ameliorated the cytotoxic side effects caused by free PTX and provided better tumour suppression than free PTX and HP.
Collapse
Affiliation(s)
- Chunjing Guo
- College of Marine Life Science, Ocean University of China, Qingdao, PR China
| | - Yanguo Su
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs, Yantai University, Yantai, PR China
| | - Bingjie Wang
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs, Yantai University, Yantai, PR China.,School of Medicine and Pharmacy, Ocean University of China, Qingdao, PR China
| | - Qiang Chen
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs, Yantai University, Yantai, PR China
| | - Huimin Guo
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs, Yantai University, Yantai, PR China
| | - Ming Kong
- College of Marine Life Science, Ocean University of China, Qingdao, PR China
| | - Daquan Chen
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs, Yantai University, Yantai, PR China
| |
Collapse
|