1
|
Bigaj-Józefowska MJ, Zalewski T, Załęski K, Coy E, Frankowski M, Mrówczyński R, Grześkowiak BF. Three musketeers of PDA-based MRI contrasting and therapy. ARTIFICIAL CELLS, NANOMEDICINE, AND BIOTECHNOLOGY 2024; 52:321-333. [PMID: 38795050 DOI: 10.1080/21691401.2024.2356773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 05/13/2024] [Indexed: 05/27/2024]
Abstract
Polydopamine (PDA) stands as a versatile material explored in cancer nanomedicine for its unique properties, offering opportunities for multifunctional drug delivery platforms. This study explores the potential of utilizing a one-pot synthesis to concurrently integrate Fe, Gd and Mn ions into porous PDA-based theranostic drug delivery platforms called Ferritis, Gadolinis and Manganis, respectively. Our investigation spans the morphology, magnetic properties, photothermal characteristics and cytotoxicity profiles of those potent nanoformulations. The obtained structures showcase a spherical morphology, robust magnetic response and promising photothermal behaviour. All of the presented nanoparticles (NPs) display pronounced paramagnetism, revealing contrasting potential for MRI imaging. Relaxivity values, a key determinant of contrast efficacy, demonstrated competitive or superior performance compared to established, used contrasting agents. These nanoformulations also exhibited robust photothermal properties under near infra-red irradiation, showcasing their possible application for photothermal therapy of cancer. Our findings provide insights into the potential of metal-doped PDA NPs for cancer theranostics.
Collapse
Affiliation(s)
| | - Tomasz Zalewski
- NanoBioMedical Centre, Adam Mickiewicz University in Poznań, Poznań, Poland
| | - Karol Załęski
- NanoBioMedical Centre, Adam Mickiewicz University in Poznań, Poznań, Poland
| | - Emerson Coy
- NanoBioMedical Centre, Adam Mickiewicz University in Poznań, Poznań, Poland
| | - Marcin Frankowski
- Faculty of Chemistry, Adam Mickiewicz University in Poznań, Poznań, Poland
| | - Radosław Mrówczyński
- Faculty of Chemistry, Adam Mickiewicz University in Poznań, Poznań, Poland
- Centre for Advanced Technologies, Adam Mickiewicz University in Poznań, Poznań, Poland
| | | |
Collapse
|
2
|
Kotammagari TK, Al-Waeel M, Lukkari J, Lönnberg T. Organomercury oligonucleotide-polydopamine nanoparticle assemblies discriminate between target sequences by Hg(ii)-mediated base pairing. RSC Adv 2024; 14:38279-38284. [PMID: 39628462 PMCID: PMC11612767 DOI: 10.1039/d4ra07922a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 11/27/2024] [Indexed: 12/06/2024] Open
Abstract
A fluorescently tagged oligonucleotide hybridization probe incorporating a single 5-mercuricytosine residue was synthesized and found to adsorb on polydopamine nanoparticles much more strongly than its unmetallated counterpart. Hybridization with target sequences led to release of the probe from the nanoparticle to varying degrees depending on the nucleobase opposite to 5-mercuricytosine.
Collapse
Affiliation(s)
| | - Majid Al-Waeel
- Department of Chemistry, University of Turku Henrikinkatu 2 20500 Turku Finland
| | - Jukka Lukkari
- Department of Chemistry, University of Turku Henrikinkatu 2 20500 Turku Finland
| | - Tuomas Lönnberg
- Department of Chemistry, University of Turku Henrikinkatu 2 20500 Turku Finland
| |
Collapse
|
3
|
Huang D, Yang D, Li K, Wang J, Zheng X, Long J, Liu L. A multifunctional collagen-base bilayer membrane integrated with a bimetallic/polydopamine network for enhanced guided bone regeneration. J Mater Chem B 2024; 12:7171-7190. [PMID: 38932580 DOI: 10.1039/d4tb00512k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
The guided bone regeneration (GBR) technique is an effective treatment for small and medium-sized bone defects in the oral and maxillofacial region. However, currently available collagen membranes have limited functionality and are inadequate for clinical requirements. To address this challenge, this study pioneeringly developed a multifunctional bilayer membrane. Specifically, a bimetallic/polydopamine network (BPN), consisting of silver, magnesium, and dopamine, was successfully synthesized for the first time and integrated with collagen and hydroxyapatite. The resulting material was characterized, and its physicochemical properties, along with its barrier, osteogenic, angiogenic, antibacterial, hemostatic, and biosafety effects, were evaluated through both in vitro and in vivo studies. The results indicated that the BPN, composed of magnesium ions, silver nanoparticles (Ag NPs), and polydopamine (PDA), exhibited excellent thermal stability and slow release of silver and magnesium elements. The BPN/Col-HA membrane featured a bilayer structure with uniform distribution of silver and magnesium. It also demonstrated good hydrophilicity, suitable degradation and mechanical properties, as well as sustained release of silver and magnesium. In vitro experiments showed that the BPN/Col-HA membrane possessed desirable barrier, osteogenic, angiogenic, antibacterial, hemostatic, and biocompatible properties. In vivo results further confirmed its biosafety, hemostatic efficacy, and ability to effectively promote bone defect repair and angiogenesis. Thus, the BPN/Col-HA membrane emerges as a multifunctional GBR membrane with potential for clinical translation.
Collapse
Affiliation(s)
- Dou Huang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| | - Die Yang
- Department of Pharmaceutics and Bioengineering, School of Chemical Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Kaide Li
- The Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, 310009, P. R. China
| | - Jiran Wang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| | - Xiaohui Zheng
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| | - Jie Long
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| | - Lei Liu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
4
|
Yang W, Ni L, Zhu M, Zhang X, Feng L. Mg 2+- or Ca 2+-regulated aptamer adsorption on polydopamine-coated magnetic nanoparticles for fluorescence detection of ochratoxin A. Mikrochim Acta 2024; 191:157. [PMID: 38409486 DOI: 10.1007/s00604-024-06252-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 02/05/2024] [Indexed: 02/28/2024]
Abstract
It has been observed that polyvalent metal ions can mediate the adsorption of DNA on polydopamine (PDA) surfaces. Exploiting this, we used two divalent metal ions (Mg2+ or Ca2+) to promote the adsorption of fluorescence-labelled ochratoxin A (OTA) aptamers on PDA-coated magnetic nanoparticles (Fe3O4@PDA). Based on the different adsorption affinities of free aptamers and OTA-bound aptamers, a facile assay method was established for OTA detection. The aptamers adsorbed on Fe3O4@PDA were removed via simple magnetic separation, and the remaining aptamers in the supernatant exhibited a positive correlation with the OTA concentration. The concentrations of Mg2+ and Ca2+ were finely tuned to attain the optimal adsorption affinity and sensitivity for OTA detection. In addition, other factors, including the Fe3O4@PDA dosage, pH, mixing order, and incubation time, were studied. Finally, under optimized conditions, a detection limit (3σ/s) of 1.26 ng/mL was achieved for OTA. Real samples of spiked red wine were analysed with this aptamer-based method. This is the first report of regulating aptamer adsorption on the PDA surface with polyvalent metal ions for OTA detection. By changing the aptamers, the method can be easily extended to other target analytes.
Collapse
Affiliation(s)
- Wei Yang
- Department of Instrumentation and Analytical Chemistry, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, People's Republic of China
| | - Lanxiu Ni
- Department of Instrumentation and Analytical Chemistry, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, People's Republic of China
| | - Mingzhen Zhu
- Department of Instrumentation and Analytical Chemistry, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Xiaobo Zhang
- Department of Instrumentation and Analytical Chemistry, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Liang Feng
- Department of Instrumentation and Analytical Chemistry, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, People's Republic of China.
| |
Collapse
|
5
|
Zandieh M, Liu J. Metal-Mediated DNA Adsorption on Carboxylated, Hydroxylated, and Hydrogenated Nanodiamonds. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:11596-11602. [PMID: 37552885 DOI: 10.1021/acs.langmuir.3c01066] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
Nanodiamonds (NDs) have attracted considerable attention owing to their quantum properties and versatility in biological applications. In this study, we systematically investigated the adsorption of DNA oligonucleotides onto NDs with three types of surface groups: carboxylated (COOH-), hydroxylated (OH-), and hydrogenated (H-). Among them, only the H-NDs showed fluorescence quenching property that is useful for real-time DNA adsorption kinetic studies. The effect of common metal ions on DNA adsorption was studied. In the presence of Na+, the order of DNA adsorption efficiency was H- > OH- > COOH-, whereas all the NDs showed a similar DNA adsorption efficiency in the presence of divalent metal ions such as Ca2+ and Zn2+. Desorption studies revealed that hydrogen bonding and metal-mediated interactions were dominant for the adsorption of DNA, and the H-NDs exhibited extraordinarily tight DNA adsorption. Finally, a fluorescently labeled DNA was adsorbed on NDs for DNA detection, and the COOH-NDs had the highest target specificity, and a detection limit of 1.4 nM was achieved. This study indicates the feasibility of using metal ions to mediate the physical adsorption of DNA to NDs and compares various NDs with graphene oxide for fundamental understanding.
Collapse
Affiliation(s)
- Mohamad Zandieh
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Juewen Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
6
|
Mavridi-Printezi A, Menichetti A, Mordini D, Montalti M. Functionalization of and through Melanin: Strategies and Bio-Applications. Int J Mol Sci 2023; 24:9689. [PMID: 37298641 PMCID: PMC10253489 DOI: 10.3390/ijms24119689] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/25/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023] Open
Abstract
A unique feature of nanoparticles for bio-application is the ease of achieving multi-functionality through covalent and non-covalent functionalization. In this way, multiple therapeutic actions, including chemical, photothermal and photodynamic activity, can be combined with different bio-imaging modalities, such as magnetic resonance, photoacoustic, and fluorescence imaging, in a theragnostic approach. In this context, melanin-related nanomaterials possess unique features since they are intrinsically biocompatible and, due to their optical and electronic properties, are themselves very efficient photothermal agents, efficient antioxidants, and photoacoustic contrast agents. Moreover, these materials present a unique versatility of functionalization, which makes them ideal for the design of multifunctional platforms for nanomedicine integrating new functions such as drug delivery and controlled release, gene therapy, or contrast ability in magnetic resonance and fluorescence imaging. In this review, the most relevant and recent examples of melanin-based multi-functionalized nanosystems are discussed, highlighting the different methods of functionalization and, in particular, distinguishing pre-functionalization and post-functionalization. In the meantime, the properties of melanin coatings employable for the functionalization of a variety of material substrates are also briefly introduced, especially in order to explain the origin of the versatility of melanin functionalization. In the final part, the most relevant critical issues related to melanin functionalization that may arise during the design of multifunctional melanin-like nanoplatforms for nanomedicine and bio-application are listed and discussed.
Collapse
Affiliation(s)
| | | | | | - Marco Montalti
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, Via Selmi 2, 40126 Bologna, Italy; (A.M.-P.); (A.M.); (D.M.)
| |
Collapse
|
7
|
Du G, Wang H, Liu J, Sun P, Chen T. Hierarchically Porous Mesostructured Polydopamine Nanospheres and Derived Carbon for Supercapacitors. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:8964-8974. [PMID: 35839381 DOI: 10.1021/acs.langmuir.2c01141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Polydopamine (PDA), with similar chemical and physical properties to eumelanin, is a typical artificial melanin material. With various functional groups, good biocompatibility, and photothermal conversion ability, PDA attracts great interest and is extensively studied. Endowing PDA with a porous structure would increase its specific surface area, therefore would significantly improve its performance in different application fields. However, creating abundant pores within the PDA matrix is a great challenge. Herein, a self-assembly/etching method is proposed to prepare hierarchically porous mesostructured PDA nanospheres. The oxidative polymerization of dopamine and hydrolysis of tetraethyl orthosilicate were coupled to co-assemble with a polyelectrolyte-surfactant complex template to form a mesostructured PDA/silicate nanocomposite. After removing templates and etching of silica, hierarchically porous PDA nanospheres were obtained with specific surface area and pore volume as high as 302 m2 g-1 and 0.67 cm3 g-1, respectively. Moreover, via subsequent carbonization and silica-etching, ordered mesoporous N-doped carbon microspheres (OMCMs) with ∼2 nm ordered mesopores and ∼20 nm secondary nanopores could be obtained. When used as electrodes of supercapacitors, the OMCMs exhibited a specific capacity of 341 F g-1 at 1 A g-1 with excellent rate capability, and the OMCM-based symmetric supercapacitor delivered a high energy density of 14.1 W h kg-1 at a power density of 250 W kg-1 and minor capacitance fading (only 2.6%) after 10,000 cycles at 2 A g-1.
Collapse
Affiliation(s)
- Guo Du
- Institute of New Catalytic Materials Science, School of Materials Science and Engineering, Key Laboratory of Advanced Energy Materials Chemistry (MOE), Nankai University, Tianjin 300350, PR China
| | - Huan Wang
- Institute of New Catalytic Materials Science, School of Materials Science and Engineering, Key Laboratory of Advanced Energy Materials Chemistry (MOE), Nankai University, Tianjin 300350, PR China
| | - Jiawei Liu
- Institute of New Catalytic Materials Science, School of Materials Science and Engineering, Key Laboratory of Advanced Energy Materials Chemistry (MOE), Nankai University, Tianjin 300350, PR China
| | - Pingchuan Sun
- Key Laboratory of Functional Polymer Materials (MOE), College of Chemistry, Nankai University, Tianjin 300071, PR China
| | - Tiehong Chen
- Institute of New Catalytic Materials Science, School of Materials Science and Engineering, Key Laboratory of Advanced Energy Materials Chemistry (MOE), Nankai University, Tianjin 300350, PR China
| |
Collapse
|
8
|
Yuan Q, Liang Z, Wang S, Zuo P, Wang Y, Luo Y. Size-controlled mesoporous magnetic silica beads effectively extract extracellular DNA in the absence of chaotropic solutions. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128831] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
9
|
Zhang H, Luo B, An P, Zhan X, Lan F, Wu Y. Interaction of Nucleic Acids with Metal-Organic Framework Nanosheets by Fluorescence Spectroscopy and Molecular Dynamics Simulations. ACS APPLIED BIO MATERIALS 2022; 5:3500-3508. [PMID: 35731983 DOI: 10.1021/acsabm.2c00431] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The integration of nanomaterials and nucleic acids has attracted great attention in various research fields, especially biomedical applications. Designing two-dimensional nanomaterials and studying the mechanism of their interaction with nucleic acids are still attractive tasks. Herein, we designed and prepared a class of ultrathin two-dimensional metal-organic framework (MOF) nanosheets, named Zr-BTB MOF nanosheets, composed of Zr-O clusters and 1,3,5-benzenetribenzoate by a bottom-up synthesis strategy. The Zr-BTB MOF nanosheets possessed inherent excellent performance such as a high specific surface area, porosity, and biocompatibility. In addition, we clarified the interaction difference between the Zr-BTB MOF nanosheets and fluorophore-labeled double-stranded DNA and single-stranded DNA via molecular dynamics simulations and fluorescence measurement. Through molecular dynamics simulations, specific interactions between DNA and nanosheets such as forces, binding energies, and binding modes were deeply analyzed and clearly presented. Based on the affinity difference, the system showed the biosensing potential for target DNA detection with considerable specificity, sensitivity, and linearity. Our research results presented the Zr-BTB MOF nanosheet as a platform for nucleic acid detection, showing the potential for hybridization-based biosensing and related biological applications.
Collapse
Affiliation(s)
- Huinan Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, P. R. China
| | - Bin Luo
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, P. R. China
| | - Peng An
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, P. R. China
| | - Xiaohui Zhan
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, P. R. China
| | - Fang Lan
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, P. R. China
| | - Yao Wu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, P. R. China
| |
Collapse
|
10
|
Zandieh M, Patel K, Liu J. Adsorption of Linear and Spherical DNA Oligonucleotides onto Microplastics. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:1915-1922. [PMID: 35094514 DOI: 10.1021/acs.langmuir.1c03190] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Microplastic pollution of water and food chains can endanger human health. It has been reported that environmental DNA can be carried by microplastics and spread into the ecosystem. To better comprehend the interactions between microplastics and DNA, we herein investigated the adsorption of DNA oligonucleotides on a few important microplastics. The microplastics were prepared using common plastic objects made of polyethylene (PE), polypropylene (PP), polystyrene (PS), polyvinyl chloride (PVC), composite of PS/PVC, and polyethylene terephthalate (PET). The effect of environmentally abundant metal ions such as Na+, Mg2+, and Ca2+ on the adsorption was also studied. Among the microplastics, PET and PS had the highest efficiency for the adsorption of linear DNA, likely due to the interactions provided by their aromatic rings. The study of DNA desorption from PET revealed the important role of hydrogen bonding and metal-mediated adsorption, while van der Waals force and hydrophobic interactions were also involved in the adsorption mechanism. The adsorption of spherical DNA (SNA) made of a high density of DNA coated on gold nanoparticles (AuNPs) was also studied, where the adsorption affinity order was found to be PET > PS/PVC > PS. Moreover, a tighter DNA adsorption was achieved in the presence of Ca2+ and Mg2+ compared to Na+.
Collapse
Affiliation(s)
- Mohamad Zandieh
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo Waterloo, Ontario N2L 3G1, Canada
| | - Kshiti Patel
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo Waterloo, Ontario N2L 3G1, Canada
| | - Juewen Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
11
|
Zhang T, Pan W, Zhang Z, Qi N, Chen Z. Theoretical Study of Small Molecules Adsorption on Pristine and Transition Metal Doped GeSe Monolayer for Gas Sensing Application. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:1287-1295. [PMID: 35021624 DOI: 10.1021/acs.langmuir.1c03232] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
By using first-principles calculations, the sensing properties of pristine and transition metal (TM) atoms (Ti, V, and Co) embedded germanium selenide (GeSe) monolayer toward small gas molecules (H2, NH3, CO, O2, SO2, NO, and NO2) were investigated. The adsorption energies, electronic structure, optical properties, and recovery time of the adsorption systems were calculated and analyzed in detail. The results indicate that TM doped GeSe has stronger interaction with gas molecules compared with the pristine GeSe monolayer. Especially for Ti- and V-GeSe monolayer, the absolute value of adsorption energies are up to 2 eV for O2, NO, and NO2. The doping with TM atoms also changes the charge transfer and electronic structures of adsorption systems. Combined with the result of the calculated optical properties and recovery time, it can be concluded that Ti-GeSe monolayer has great potential for NH3 detection, while Co-GeSe monolayer can be very promising SO2 gas sensors.
Collapse
Affiliation(s)
- Tingting Zhang
- Hubei Nuclear Solid Physics Key Laboratory, Department of Physics, Wuhan University, Wuhan 430072, China
| | - Wenfeng Pan
- College of Basic Sciences, Zhengzhou University of Technology, Zhengzhou 450044, China
| | - Ziye Zhang
- Hubei Nuclear Solid Physics Key Laboratory, Department of Physics, Wuhan University, Wuhan 430072, China
| | - Ning Qi
- Hubei Nuclear Solid Physics Key Laboratory, Department of Physics, Wuhan University, Wuhan 430072, China
| | - Zhiquan Chen
- Hubei Nuclear Solid Physics Key Laboratory, Department of Physics, Wuhan University, Wuhan 430072, China
| |
Collapse
|
12
|
Pavadai R, Perumal P. Versatile Sensing Platform of Innovative Copper Oxide Assisted Cu-Phenolic Coordination Nanosheet mediated Fluorophore tagged GT-rich SSA based Fluorescence ON-OFF Biosensor for Subsequent Detection of Cd2+ and S2− Ions. NEW J CHEM 2022. [DOI: 10.1039/d1nj05804e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Increased levels of toxic metal/non-metal ions Cadmium (Cd2+) and Sulfide (S2−) in the environment can be detrimental to human health. Given the circumstances, the detection and measurement of Cd2+ and...
Collapse
|
13
|
Pavadai R, Amalraj A, Perumal P. Cobalt based Bi-functional Metal Organic Framework mediated Fluorescent Bio-sensing System for Hypersensitive Detection of Ag+ Ions through Catalytic Hairpin Assembly. NEW J CHEM 2022. [DOI: 10.1039/d2nj02622h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Silver is often used as a water disinfectant in healthcare institutions as well as in potable water purifiers. Even though there are no strict regulations regarding the amount of silver...
Collapse
|