1
|
Yang L, Sun X, Li H, Hao R, Liu F. New insights into microalgal-bacterial immobilization systems for wastewater treatment: mechanisms, enhancement strategies, and application prospects. BIORESOURCE TECHNOLOGY 2025; 431:132609. [PMID: 40315931 DOI: 10.1016/j.biortech.2025.132609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 04/28/2025] [Accepted: 04/29/2025] [Indexed: 05/04/2025]
Abstract
The wastewater treatment based on the symbiosis of microalgae and bacteria has attracted increasing attention for its excellent pollutant removal efficiency, energy savings, and resource recovery. Among them, the microalgae-bacteria immobilization (MABI) system stands out by enhancing the electron transfer efficiency through carrier domain confinement, thereby overcoming bottlenecks of low light energy utilization and challenging biomass recycling. MABI is considered a key breakthrough for advancing engineering applications. However, a comprehensive exploration of MABI systems remains lacking. This review systematically summarizes the latest advancements, covering major immobilization techniques and the intrinsic mechanisms underlying microalgae-bacteria interactions and electron transport. Additionally, it explores enhancement strategies aimed at balancing microbial light energy allocation, optimizing nutrient supply, and constructing complementary ecological niches. The advantages and application prospects of MABI systems are highlighted. The review contributes to structuring the knowledge framework of MABI research and identifies critical gaps for future investigation.
Collapse
Affiliation(s)
- Lili Yang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Xin Sun
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Hongwei Li
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Ran Hao
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Fengling Liu
- Faculty of Architecture, Planning and Surveying, Universiti Teknologi MARA, 40450 Shah Alam, Selangor Darul Ehsan, Malaysia
| |
Collapse
|
2
|
Benjamin Ocheja O, Wahid E, Honorio Franco J, Trotta M, Guaragnella C, Marsili E, Guaragnella N, Grattieri M. Polydopamine-immobilized yeast cells for portable electrochemical biosensors applied in environmental copper sensing. Bioelectrochemistry 2024; 157:108658. [PMID: 38309107 DOI: 10.1016/j.bioelechem.2024.108658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/18/2024] [Accepted: 01/24/2024] [Indexed: 02/05/2024]
Abstract
The coupling of biological organisms with electrodes enables the development of sustainable, low cost, and potentially self-sustained biosensors. A critical aspect is to obtain portable bioelectrodes where the biological material is immobilized on the electrode surface to be utilized on demand. Herein, we developed an approach for the rapid entrapment and immobilization of metabolically active yeast cells in a biocompatible polydopamine layer, which does not require a separate and time-consuming synthesis. The reported approach allows obtaining the "electrical wire" of intact and active yeast cells with resulting current generation from glucose oxidation. Additionally, the electrochemical performance of the biohybrid yeast-based system has been characterized in the presence of CuSO4, a widely used pesticide, in the environmentally relevant concentration range of 20-100 μM. The system enabled the rapid preliminary monitoring of the contaminant based on variations in current generation, with a limit of detection of 12.5 μM CuSO4. The present approach for the facile preparation of portable yeast-based electrochemical biosensors paves the way for the future development of sustainable systems for environmental monitoring.
Collapse
Affiliation(s)
- Ohiemi Benjamin Ocheja
- Department of Biosciences, Biotechnologies and Environment - University of Bari "A. Moro", Bari, Italy
| | - Ehthisham Wahid
- Department of Electrical and Information Engineering, Politecnico di Bari, Bari, Italy
| | - Jefferson Honorio Franco
- Department of Chemistry, Università degli Studi di Bari "Aldo Moro", via E. Orabona 4, Bari 70125, Italy
| | - Massimo Trotta
- Istituto per i Processi Chimico Fisici (CNR-IPCF), Consiglio Nazionale delle Ricerche, via E. Orabona 4, Bari 70125, Italy
| | - Cataldo Guaragnella
- Department of Electrical and Information Engineering, Politecnico di Bari, Bari, Italy
| | - Enrico Marsili
- Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute, Ningbo, China
| | - Nicoletta Guaragnella
- Department of Biosciences, Biotechnologies and Environment - University of Bari "A. Moro", Bari, Italy.
| | - Matteo Grattieri
- Department of Chemistry, Università degli Studi di Bari "Aldo Moro", via E. Orabona 4, Bari 70125, Italy; Istituto per i Processi Chimico Fisici (CNR-IPCF), Consiglio Nazionale delle Ricerche, via E. Orabona 4, Bari 70125, Italy.
| |
Collapse
|
3
|
Ge-Zhang S, Cai T, Song M. Life in biophotovoltaics systems. FRONTIERS IN PLANT SCIENCE 2023; 14:1151131. [PMID: 37615025 PMCID: PMC10444202 DOI: 10.3389/fpls.2023.1151131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 07/03/2023] [Indexed: 08/25/2023]
Abstract
As the most suitable potential clean energy power generation technology, biophotovoltaics (BPV) not only inherits the advantages of traditional photovoltaics, such as safety, reliability and no noise, but also solves the disadvantages of high pollution and high energy consumption in the manufacturing process, providing new functions of self-repair and natural degradation. The basic idea of BPV is to collect light energy and generate electric energy by using photosynthetic autotrophs or their parts, and the core is how these biological materials can quickly and low-loss transfer electrons to the anode through mediators after absorbing light energy and generating electrons. In this mini-review, we summarized the biological materials widely used in BPV at present, mainly cyanobacteria, green algae, biological combinations (using multiple microorganisms in the same BPV system) and isolated products (purified thylakoids, chloroplasts, photosystem I, photosystem II), introduced how researchers overcome the shortcomings of low photocurrent output of BPV, pointed out the limitations that affected the development of BPV' biological materials, and put forward reasonable assumptions accordingly.
Collapse
Affiliation(s)
| | - Taoyang Cai
- Aulin College, Northeast Forestry University, Harbin, China
| | - Mingbo Song
- College of Forestry, Northeast Forestry University, Harbin, China
| |
Collapse
|
4
|
Assessment of WO 3 electrode modified with intact chloroplasts as a novel biohybrid platform for photocurrent improvement. Bioelectrochemistry 2022; 147:108177. [PMID: 35752030 DOI: 10.1016/j.bioelechem.2022.108177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 06/02/2022] [Accepted: 06/04/2022] [Indexed: 11/21/2022]
Abstract
The present work describes an easy way to prepare a Chloroplast/PDA@WO3 biohybrid platform based on the deposition of chloroplasts on WO3 substrate previously modified with polydopamine (PDA) film as anchoring agent. The use of PDA as an immobilization matrix for chloroplasts, and also as an electron mediator under LED irradiation, resulted in enhanced photocurrents. The use of the chloroplasts amplified the photocurrent, when compared to the bare substrate (WO3). The best electrode performance was obtained using high intensity LED irradiation at 395 nm, for the electrode exposed for 10 min to 150 μg mL-1 of intact chloroplasts. Amperometric curves obtained by on/off cycles using an applied potential of +0.50 V, in PBS electrolyte (pH 7.0), showed that the presence of 0.2 × 10-3 mol L-1 of simazine caused an approximately 50% decrease of the photobiocurrent. Preliminary studies indicated that the synthesized platform based on intact chloroplasts is a good strategy for studying the behavior of photosynthetic entities, using an LED light-responsive WO3 semiconductor substrate. This work contributes to the understanding of photobiocatalysts that emerge as a new class of materials with sophisticated and intricate structures. These are promising materials with remarkably improved quantum efficiency with potential applications in photobioelectrocatalysis.
Collapse
|
5
|
Beaver K, Gaffney EM, Minteer SD. Understanding metabolic bioelectrocatalysis of the purple bacterium Rhodobacter capsulatus through substrate modulation. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140291] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
6
|
The periodic table of photosynthetic purple non-sulfur bacteria: intact cell-metal ions interactions. Photochem Photobiol Sci 2021; 21:101-111. [PMID: 34748197 DOI: 10.1007/s43630-021-00116-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 10/12/2021] [Indexed: 10/19/2022]
Abstract
Photosynthetic purple non-sulfur bacteria (PNB) have been widely utilized as model organisms to study bacterial photosynthesis. More recently, the remarkable resistance of these microorganisms to several metals ions called particular interest. As a result, several research efforts were directed toward clarifying the interactions of metal ions with PNB. The mechanisms of metal ions active uptake and bioabsorption have been studied in detail, unveiling that PNB enable harvesting and removing various toxic ions, thus fostering applications in environmental remediation. Herein, we present the most important achievements in the understanding of intact cell-metal ions interactions and the approaches utilized to study such processes. Following, the application of PNB-metal ions interactions toward metal removal from contaminated environments is presented. Finally, the possible coupling of PNB with abiotic electrodes to obtain biohybrid electrochemical systems is proposed as a sustainable pathway to tune and enhance metal removal and monitoring.
Collapse
|
7
|
Beaver K, Dantanarayana A, Minteer SD. Materials Approaches for Improving Electrochemical Sensor Performance. J Phys Chem B 2021; 125:11820-11834. [PMID: 34677956 DOI: 10.1021/acs.jpcb.1c07063] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Electrochemical sensors have emerged as important diagnostic tools in recent years, due to their simplicity and ease of use. Compared to instrumental analysis methods that use complicated experimental and data analysis techniques─such as mass spectrometry, nuclear magnetic resonance (NMR), spectrophotometric methods, and chromatography─electrochemical sensors show promise for use in a wide range of real-time and in situ applications such as pharmaceutical testing, environmental monitoring, and medical diagnostics. In order to identify analytes in complex and/or biological samples, materials used for both the electrode materials and the chemically selective layer have been evolving throughout the years for optimizing the analytical performance of electrochemical sensors to increase sensitivity, selectivity and linear range. In this Perspective, attention will be focused on different types of materials that have been used for electrochemical sensing, including new combinations of well-studied materials as well as novel strategies to enhance the performance of sensing devices. The Perspective will also discuss existing challenges in the field and future strategies for addressing those challenges.
Collapse
Affiliation(s)
- Kevin Beaver
- Department of Chemistry, University of Utah, 315 S 1400 E, Salt Lake City, Utah 84112, United States
| | - Ashwini Dantanarayana
- Department of Chemistry, University of Utah, 315 S 1400 E, Salt Lake City, Utah 84112, United States
| | - Shelley D Minteer
- Department of Chemistry, University of Utah, 315 S 1400 E, Salt Lake City, Utah 84112, United States
| |
Collapse
|
8
|
Weliwatte NS, Grattieri M, Minteer SD. Rational design of artificial redox-mediating systems toward upgrading photobioelectrocatalysis. Photochem Photobiol Sci 2021; 20:1333-1356. [PMID: 34550560 PMCID: PMC8455808 DOI: 10.1007/s43630-021-00099-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 09/03/2021] [Indexed: 12/23/2022]
Abstract
Photobioelectrocatalysis has recently attracted particular research interest owing to the possibility to achieve sunlight-driven biosynthesis, biosensing, power generation, and other niche applications. However, physiological incompatibilities between biohybrid components lead to poor electrical contact at the biotic-biotic and biotic-abiotic interfaces. Establishing an electrochemical communication between these different interfaces, particularly the biocatalyst-electrode interface, is critical for the performance of the photobioelectrocatalytic system. While different artificial redox mediating approaches spanning across interdisciplinary research fields have been developed in order to electrically wire biohybrid components during bioelectrocatalysis, a systematic understanding on physicochemical modulation of artificial redox mediators is further required. Herein, we review and discuss the use of diffusible redox mediators and redox polymer-based approaches in artificial redox-mediating systems, with a focus on photobioelectrocatalysis. The future possibilities of artificial redox mediator system designs are also discussed within the purview of present needs and existing research breadth.
Collapse
Affiliation(s)
- N Samali Weliwatte
- Department of Chemistry, University of Utah, Salt Lake City, UT, 84112, USA
| | - Matteo Grattieri
- Dipartimento Di Chimica, Università Degli Studi Di Bari "Aldo Moro", Via E. Orabona 4, 70125, Bari, Italy.
- IPCF-CNR Istituto Per I Processi Chimico Fisici, Consiglio Nazionale Delle Ricerche, Via E. Orabona 4, 70125, Bari, Italy.
| | - Shelley D Minteer
- Department of Chemistry, University of Utah, Salt Lake City, UT, 84112, USA.
| |
Collapse
|