1
|
Xie YJ, Li TM, Shang ZT, Lu WT, Yu F. An Adsorbent for Efficient and Rapid Gold Recovery from Solution: Adsorption Properties and Mechanisms. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:1722-1732. [PMID: 39809464 DOI: 10.1021/acs.langmuir.4c04094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Adsorption is an efficient and highly selective method for gold recovery. Introducing rich N/S organic groups to combine with metal-organic frameworks (MOFs) as adsorbents is regarded as a practical and efficient approach to enhance gold recovery. Herein, a MOF (zirconium isothiocyanatobenzenedicarboxylate MOF, UiO-66-NCS) was designed to combine with amidinothiourea (AT) to form UiO-66-AT (zirconium amidothiourea-benzenedicarboxylate MOF) for efficient and rapid adsorption. The prepared UiO-66-AT delivers an improved adsorption capacity (about 903.02 mg/g at 1000 mg·L-1 of the initial Au3+) and an impressive adsorption rate within minutes (about 10 min for 200 mg·L-1 Au3+). Meanwhile, it exhibits sustainable stability after 5 cycles with a retention rate of 99.52% and excellent adsorption selectivity of 98.76% in actual wastewater. According to advanced characterizations and Density Functional Theory (DFT) simulation, the mechanism might be elaborated as electrostatic adsorption, chelating coordination, and chemical reduction. The modified active groups of the MOF provide the adsorption sites for Au(III) and the rapid reduction of Au(0). UiO-66-AT maintains a large adsorption capacity and high surface reduction activity while realizing stable application in multiple cycles, which is of good practical application value.
Collapse
Affiliation(s)
- Yu-Juan Xie
- College of Optoelectronic Materials and Technology, Jianghan University, Wuhan, Hubei 430056, People's Republic of China
| | - Tang-Ming Li
- College of Optoelectronic Materials and Technology, Jianghan University, Wuhan, Hubei 430056, People's Republic of China
| | - Zhao-Ting Shang
- College of Optoelectronic Materials and Technology, Jianghan University, Wuhan, Hubei 430056, People's Republic of China
| | - Wang-Ting Lu
- College of Optoelectronic Materials and Technology, Jianghan University, Wuhan, Hubei 430056, People's Republic of China
| | - Fan Yu
- College of Optoelectronic Materials and Technology, Jianghan University, Wuhan, Hubei 430056, People's Republic of China
| |
Collapse
|
2
|
Kneuer L, Wurst R, Gescher J. Shewanella oneidensis: Biotechnological Application of Metal-Reducing Bacteria. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2024. [PMID: 39579226 DOI: 10.1007/10_2024_272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2024]
Abstract
What is an unconventional organism in biotechnology? The γ-proteobacterium Shewanella oneidensis might fall into this category as it was initially established as a laboratory model organism for a process that was not seen as potentially interesting for biotechnology. The reduction of solid-state extracellular electron acceptors such as iron and manganese oxides is highly relevant for many biogeochemical cycles, although it turned out in recent years to be quite relevant for many potential biotechnological applications as well. Applications started with the production of nanoparticles and dramatically increased after understanding that electrodes in bioelectrochemical systems can also be used by these organisms. From the potential production of current and hydrogen in these systems and the development of biosensors, the field expanded to anode-assisted fermentations enabling fermentation reactions that were - so far - dependent on oxygen as an electron acceptor. Now the field expands further to cathode-dependent production routines. As a side product to all these application endeavors, S. oneidensis was understood more and more, and our understanding and genetic repertoire is at eye level to E. coli. Corresponding to this line of thought, this chapter will first summarize the available arsenal of tools in molecular biology that was established for working with the organism and thereafter describe so far established directions of application. Last but not least, we will highlight potential future directions of work with the unconventional model organism S. oneidensis.
Collapse
Affiliation(s)
- Lukas Kneuer
- Institute of Technical Microbiology, University of Technology Hamburg, Hamburg, Germany
| | - René Wurst
- Institute of Technical Microbiology, University of Technology Hamburg, Hamburg, Germany
| | - Johannes Gescher
- Institute of Technical Microbiology, University of Technology Hamburg, Hamburg, Germany.
| |
Collapse
|
3
|
Liu C, Yang B, Jia F, Song S. Construction of MoS 2@Activated Alumina Beads as Catalysts for Rapid Gold Recovery from Au(S 2O 3) 23- Solution. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:8054-8064. [PMID: 35734859 DOI: 10.1021/acs.langmuir.2c00847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Gold recovery from thiosulfate leaching solution Au(S2O3)23- is regarded as a tough task because of the low efficiency and complex procedure in current technology, which hindered the industrial application of this eco-friendly technique. In this work, a MoS2@activated alumina bead composite (MoS2@AA) was constructed through a simple hydrothermal anchoring method and served as a catalyst to recover gold from Au(S2O3)23- solution for the first time. The microstructure and chemical component of MoS2@AA were systematically analyzed. In addition, batch experiments were carried out to explore the recovery behavior of Au(S2O3)23- (concentration: 10 to 200 ppm). Ascribing to the extraordinary optical property of MoS2@AA, Au(S2O3)23- could be directly reduced to Au0 by photogenerated electrons and then form a two-phase interface of gold/MoS2@AA. As a result, the recovery of Au(S2O3)23- can reach up to 98% on MoS2@AA, which was much higher than traditional methods. More importantly, the reduced Au0 could be desorbed from MoS2@AA through a supersonic method, achieving one-step Au0 recovery from Au(S2O3)23-. This novel strategy used in this research has great significance to the development of Au(S2O3)23- recovery in the future.
Collapse
Affiliation(s)
- Chang Liu
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Luoshi Road 122, Wuhan, Hubei 430070, China
- School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan, Hubei 430070, China
| | - Bingqiao Yang
- School of Resources and Safety Engineering, Wuhan Institute of Technology, Xiongchu Avenue 693, Wuhan, Hubei 430073, China
| | - Feifei Jia
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Luoshi Road 122, Wuhan, Hubei 430070, China
- School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan, Hubei 430070, China
| | - Shaoxian Song
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Luoshi Road 122, Wuhan, Hubei 430070, China
- School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan, Hubei 430070, China
| |
Collapse
|
4
|
Magnetite nanoparticles into Fe-BTC MOF as adsorbent material for the remediation of metal (Cu(II), Pb(II, As(III) and Hg(II)) ions-contaminated water. Catal Today 2022. [DOI: 10.1016/j.cattod.2021.11.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|