1
|
Jiang D, Tan VGW, Gong Y, Shao H, Mu X, Luo Z, He S. Semiconducting Covalent Organic Frameworks. Chem Rev 2025. [PMID: 40366230 DOI: 10.1021/acs.chemrev.4c00950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2025]
Abstract
Semiconductors form the foundational bedrock of modern electronics and numerous cutting-edge technologies. Particularly, semiconductors crafted from organic building blocks hold immense promise as next-generation pioneers, thanks to their vast array of chemical structures, customizable frontier orbital energy levels and bandgap structures, and easily adjustable π electronic properties. Over the past 50 years, advancements in chemistry and materials science have facilitated extensive investigations into small organic π compounds, oligomers, and polymers, resulting in a rich library of organic semiconductors. However, a longstanding challenge persists: how to organize π building units or chains into well-defined π structures, which are crucial for the performance of organic semiconductors. Consequently, the pursuit of methodologies capable of synthesizing and/or fabricating organic semiconductors with ordered structures has emerged as a frontier in organic and polymeric semiconductor research. In this context, covalent organic frameworks (COFs) stand out as unique platforms allowing for the covalent integration of organic π units into periodically ordered π structures, thus facilitating the development of semiconductors with extended yet precisely defined π architectures. Since their initial report in 2008, significant strides have been made in exploring various chemistries to develop semiconducting COFs, resulting in a rich library of structures, properties, functions, and applications. This review provides a comprehensive yet focused exploration of the general structural features of semiconducting COFs, outlining the basic principles of structural design, illustrating the linkage chemistry and synthetic strategies based on typical one-pot polymerization reactions to demonstrate the growth of bulk materials, nanosheets, films, and membranes. By elucidating the interactions between COFs and various entities such as photons, phonons, electrons, holes, ions, molecules, and spins, this review categorizes semiconducting COFs into nine distinct sections: semiconductors, photoconductors, light emitters, sensors, photocatalysts, photothermal conversion materials, electrocatalysts, energy storage electrodes, and radical spin materials, focusing on disclosing structure-originated properties and functions. Furthermore, this review scrutinizes structure-function correlations and highlights the unique features, breakthroughs, and challenges associated with semiconducting COFs. Furnished with foundational knowledges and state-of-the-art insights, this review predicts the fundamental issues to be addressed and outlines future directions for semiconducting COFs, offering a comprehensive overview of this rapidly evolving and remarkable field.
Collapse
Affiliation(s)
- Donglin Jiang
- Department of Chemistry, Faulty of Science, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Vincent Guan Wu Tan
- Department of Chemistry, Faulty of Science, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Yifan Gong
- Department of Chemistry, Faulty of Science, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Haipei Shao
- Department of Chemistry, Faulty of Science, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Xinyu Mu
- Department of Chemistry, Faulty of Science, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Zhangliang Luo
- Department of Chemistry, Faulty of Science, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Shuyue He
- Department of Chemistry, Faulty of Science, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| |
Collapse
|
2
|
Jin HG, Lin W, Sun H, Zhao PC, Deng J, Liu Y. Post-Modification of MOF with Electron Donor for Efficient Photocatalytic Oxidative Organic Transformations. Chemistry 2025; 31:e202500015. [PMID: 40084818 DOI: 10.1002/chem.202500015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 03/10/2025] [Accepted: 03/14/2025] [Indexed: 03/16/2025]
Abstract
Construction of donor-accepter systems via self-assembling electron donor and acceptor chromophores within one single metal-organic framework (MOF) for advanced artificial photosynthesis is of great intertest yet a major challenge. Herein, an electron donor porphyrin 5-(4-carboxyphenyl)-10,15,20-triphenylporphyrin (PCOOH) was successfully integrated into a highly stable and porous electron acceptor naphthalene diimide (NDI)-based MOF (Zr-NDI) through the postmodified approach of solvent-assisted ligand incorporation (SALI). Benefiting from the efficient photoinduced electron transfer (PET) from the donor PCOOH anchored on the Zr-nodes to the acceptor NDI ligand, which contributes to the abundant generation of reactive oxygen species (ROS) of superoxide radical (O2 •-), the resulting MOF Zr-NDI-PCOOH exhibited superior photocatalytic activities that among the highest levels of MOF-based photocatalysts to aerobic oxidation reactions, including hydroxylation of arylboronic acids and homocoupling of amines. This work exemplifies an avenue to develop high-efficiency MOF-based donor-acceptor systems for advanced artificial photosynthesis through facile post-modified approach.
Collapse
Affiliation(s)
- Hong-Guang Jin
- School of Materials Science and Engineering, Changsha University of Science & Technology, Changsha, 410114, China
| | - Wei Lin
- School of Materials Science and Engineering, Changsha University of Science & Technology, Changsha, 410114, China
| | - Huapeng Sun
- School of New Energy, Chenzhou Vocational Technical College, Chenjiang Laboratory, Chenzhou, Hunan, 423000, China
| | - Peng-Cheng Zhao
- School of Materials Science and Engineering, Changsha University of Science & Technology, Changsha, 410114, China
| | - Jie Deng
- School of Materials Science and Engineering, Changsha University of Science & Technology, Changsha, 410114, China
| | - Yi Liu
- School of Materials Science and Engineering, Changsha University of Science & Technology, Changsha, 410114, China
| |
Collapse
|
3
|
Lu W, Tait CE, Avci G, Li X, Crumpton AE, Shao P, Aitchison CM, Ceugniet F, Yao Y, Frogley MD, Decarolis D, Yao N, Jelfs KE, McCulloch I. Cobalt-Embedded Metal-Covalent Organic Frameworks for CO 2 Photoreduction. J Am Chem Soc 2025; 147:9056-9061. [PMID: 40053392 PMCID: PMC11926853 DOI: 10.1021/jacs.4c18450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
With the pressing urgency to reduce carbon footprint, photocatalytic carbon dioxide reduction has attracted growing attention as a sustainable mitigating option. Considering the important role of catalytic active sites (CASs) in the catalytic processes, control and design of the density and environment of CASs could enhance the catalyst performance. Herein, we report a novel metal-covalent organic framework (MCOF), MCOF-Co-315, featuring earth-abundant Co cocatalysts and conjugation through a covalently bonded backbone. MCOF-Co-315 showed a CO production rate of 1616 μmol g-1 h-1 utilizing Ru(bpy)3Cl2 as photosensitizer and triethanolamine (TEOA) as sacrificial electron donor with a 1.5 AM filter, vis mirror module (390-740 nm), and irradiation intensity adjusted to 1 sun and an especially outstanding apparent quantum yield (AQY) of 9.13% at 450 nm. The photocatalytic reaction was studied with electron paramagnetic resonance (EPR) spectroscopy, X-ray absorption near-edge structure (XANES), and in situ synchrotron Fourier Transform Infrared (FT-IR) spectroscopy, and an underlying mechanism is proposed.
Collapse
Affiliation(s)
- Wanpeng Lu
- Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, U.K
| | - Claudia E Tait
- Department of Chemistry, University of Oxford, Oxford OX1 3QZ, U.K
| | - Gokay Avci
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, 82 Wood Lane, London W12 0BZ, U.K
| | - Xian'e Li
- Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, U.K
- Laboratory of Organic Electronics, Department of Science and Technology (ITN), Linköping University Norrköping, Norrköping SE-60174, Sweden
| | - Agamemnon E Crumpton
- Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, U.K
| | - Paul Shao
- Princeton Materials Institute, Princeton University, Princeton, New Jersey 08540, United States
| | - Catherine M Aitchison
- Laboratory of Organic Electronics, Department of Science and Technology (ITN), Linköping University Norrköping, Norrköping SE-60174, Sweden
| | - Fabien Ceugniet
- Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, U.K
| | - Yuyun Yao
- Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, U.K
| | - Mark D Frogley
- Diamond Light Source, Harwell Science Campus, Oxfordshire OX11 0DE, U.K
| | - Donato Decarolis
- Diamond Light Source, Harwell Science Campus, Oxfordshire OX11 0DE, U.K
| | - Nan Yao
- Princeton Materials Institute, Princeton University, Princeton, New Jersey 08540, United States
| | - Kim E Jelfs
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, 82 Wood Lane, London W12 0BZ, U.K
| | - Iain McCulloch
- Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, U.K
- Andlinger Center for Energy and the Environment and Department of Electrical and Computer Engineering, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
4
|
Li S, Mao Y, Yang J, Li Y, Dong J, Wang Z, Jiang L, He S. Efficient integration of covalent triazine frameworks (CTFs) for augmented photocatalytic efficacy: A review of synthesis, strategies, and applications. Heliyon 2024; 10:e32202. [PMID: 38947430 PMCID: PMC11214378 DOI: 10.1016/j.heliyon.2024.e32202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 05/28/2024] [Accepted: 05/29/2024] [Indexed: 07/02/2024] Open
Abstract
Heterogeneous photocatalysis emerges as an exceptionally appealing technological avenue for the direct capture, conversion, and storage of renewable solar energy, facilitating the generation of sustainable and ecologically benign solar fuels and a spectrum of other pertinent applications. Heterogeneous nanocomposites, incorporating Covalent Triazine Frameworks (CTFs), exhibit a wide-ranging spectrum of light absorption, well-suited electronic band structures, rapid charge carrier mobility, ample resource availability, commendable chemical robustness, and straightforward synthetic routes. These attributes collectively position them as highly promising photocatalysts with applicability in diverse fields, including but not limited to the production of photocatalytic solar fuels and the decomposition of environmental contaminants. As the field of photocatalysis through the hybridization of CTFs undergoes rapid expansion, there is a pressing and substantive need for a systematic retrospective analysis and forward-looking evaluation to elucidate pathways for enhancing performance. This comprehensive review commences by directing attention to diverse synthetic methodologies for the creation of composite materials. And then it delves into a thorough exploration of strategies geared towards augmenting performance, encompassing the introduction of electron donor-acceptor (D-A) units, heteroatom doping, defect Engineering, architecture of Heterojunction and optimization of morphology. Following this, it systematically elucidates applications primarily centered around the efficient generation of photocatalytic hydrogen, reduction of carbon dioxide through photocatalysis, and the degradation of organic pollutants. Ultimately, the discourse turns towards unresolved challenges and the prospects for further advancement, offering valuable guidance for the potent harnessing of CTFs in high-efficiency photocatalytic processes.
Collapse
Affiliation(s)
- Shuqi Li
- Ecology and Health Institute, Hangzhou Vocational & Technical College, Hangzhou, China
- School of Environment and Spatial Informatics, China University of Mining and Technology, Xuzhou 221116, China
| | - Yintian Mao
- Hangzhou Environmental Group Company, Hangzhou, China
| | - Jian Yang
- Ecology and Health Institute, Hangzhou Vocational & Technical College, Hangzhou, China
| | - Yin Li
- Ecology and Health Institute, Hangzhou Vocational & Technical College, Hangzhou, China
| | - Jun Dong
- Ecology and Health Institute, Hangzhou Vocational & Technical College, Hangzhou, China
| | - Zhen Wang
- Ecology and Health Institute, Hangzhou Vocational & Technical College, Hangzhou, China
| | - Lixian Jiang
- Ecology and Health Institute, Hangzhou Vocational & Technical College, Hangzhou, China
| | - Shilong He
- School of Environment and Spatial Informatics, China University of Mining and Technology, Xuzhou 221116, China
| |
Collapse
|
5
|
Huang NY, Zheng YT, Chen D, Chen ZY, Huang CZ, Xu Q. Reticular framework materials for photocatalytic organic reactions. Chem Soc Rev 2023; 52:7949-8004. [PMID: 37878263 DOI: 10.1039/d2cs00289b] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
Photocatalytic organic reactions, harvesting solar energy to produce high value-added organic chemicals, have attracted increasing attention as a sustainable approach to address the global energy crisis and environmental issues. Reticular framework materials, including metal-organic frameworks (MOFs) and covalent organic frameworks (COFs), are widely considered as promising candidates for photocatalysis owing to their high crystallinity, tailorable pore environment and extensive structural diversity. Although the design and synthesis of MOFs and COFs have been intensively developed in the last 20 years, their applications in photocatalytic organic transformations are still in the preliminary stage, making their systematic summary necessary. Thus, this review aims to provide a comprehensive understanding and useful guidelines for the exploration of suitable MOF and COF photocatalysts towards appropriate photocatalytic organic reactions. The commonly used reactions are categorized to facilitate the identification of suitable reaction types. From a practical viewpoint, the fundamentals of experimental design, including active species, performance evaluation and external reaction conditions, are discussed in detail for easy experimentation. Furthermore, the latest advances in photocatalytic organic reactions of MOFs and COFs, including their composites, are comprehensively summarized according to the actual active sites, together with the discussion of their structure-property relationship. We believe that this study will be helpful for researchers to design novel reticular framework photocatalysts for various organic synthetic applications.
Collapse
Affiliation(s)
- Ning-Yu Huang
- Shenzhen Key Laboratory of Micro/Nano-Porous Functional Materials (SKLPM), SUSTech-Kyoto University Advanced Energy Materials Joint Innovation Laboratory (SKAEM-JIL), Key University Laboratory of Highly Efficient Utilization of Solar Energy and Sustainable Development of Guangdong, Department of Chemistry and Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China.
| | - Yu-Tao Zheng
- Shenzhen Key Laboratory of Micro/Nano-Porous Functional Materials (SKLPM), SUSTech-Kyoto University Advanced Energy Materials Joint Innovation Laboratory (SKAEM-JIL), Key University Laboratory of Highly Efficient Utilization of Solar Energy and Sustainable Development of Guangdong, Department of Chemistry and Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China.
| | - Di Chen
- Shenzhen Key Laboratory of Micro/Nano-Porous Functional Materials (SKLPM), SUSTech-Kyoto University Advanced Energy Materials Joint Innovation Laboratory (SKAEM-JIL), Key University Laboratory of Highly Efficient Utilization of Solar Energy and Sustainable Development of Guangdong, Department of Chemistry and Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China.
| | - Zhen-Yu Chen
- Shenzhen Key Laboratory of Micro/Nano-Porous Functional Materials (SKLPM), SUSTech-Kyoto University Advanced Energy Materials Joint Innovation Laboratory (SKAEM-JIL), Key University Laboratory of Highly Efficient Utilization of Solar Energy and Sustainable Development of Guangdong, Department of Chemistry and Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China.
| | - Chao-Zhu Huang
- Shenzhen Key Laboratory of Micro/Nano-Porous Functional Materials (SKLPM), SUSTech-Kyoto University Advanced Energy Materials Joint Innovation Laboratory (SKAEM-JIL), Key University Laboratory of Highly Efficient Utilization of Solar Energy and Sustainable Development of Guangdong, Department of Chemistry and Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China.
| | - Qiang Xu
- Shenzhen Key Laboratory of Micro/Nano-Porous Functional Materials (SKLPM), SUSTech-Kyoto University Advanced Energy Materials Joint Innovation Laboratory (SKAEM-JIL), Key University Laboratory of Highly Efficient Utilization of Solar Energy and Sustainable Development of Guangdong, Department of Chemistry and Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China.
| |
Collapse
|
6
|
Xia Y, Zhang W, Yang S, Wang L, Yu G. Research Progress in Donor-Acceptor Type Covalent Organic Frameworks. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2301190. [PMID: 37094607 DOI: 10.1002/adma.202301190] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/16/2023] [Indexed: 05/03/2023]
Abstract
Covalent organic frameworks (COFs) are new organic porous materials constructed by covalent bonds, with the advantages of pre-designable topology, adjustable pore size, and abundant active sites. Many research studies have shown that COFs exhibit great potential in gas adsorption, molecular separation, catalysis, drug delivery, energy storage, etc. However, the electrons and holes of intrinsic COF are prone to compounding in transport, and the carrier lifetime is short. The donor-acceptor (D-A) type COFs, which are synthesized by introducing D and A units into the COFs backbone, combine separated electron and hole migration pathway, tunable band gap and optoelectronic properties of D-A type polymers with the unique advantages of COFs and have made great progress in related research in recent years. Here, the synthetic strategies of D-A type COFs are first outlined, including the rational design of linkages and D-A units as well as functionalization approaches. Then the applications of D-A type COFs in catalytic reactions, photothermal therapy, and electronic materials are systematically summarized. In the final section, the current challenges, and new directions for the development of D-A type COFs are presented.
Collapse
Affiliation(s)
- Yeqing Xia
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Weifeng Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Shuai Yang
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Liping Wang
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Gui Yu
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
7
|
Jia X, Zhu X, Chen S, Wang Y, Liu J, Liu T, Dong Y. Systematic Exploration of the Potential Material Basis and Molecular Mechanism of the Mongolian Medicine Shudage-4 in Attenuating Stress-Induced Gastric Ulcer in Rat. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2023; 2023:8998368. [PMID: 37362100 PMCID: PMC10289874 DOI: 10.1155/2023/8998368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 05/31/2023] [Accepted: 06/02/2023] [Indexed: 06/28/2023]
Abstract
Shudage-4, an ancient and well-known formula in traditional Mongolian medicine comprising four different types of traditional Chinese medicine, is widely used in the treatment of gastric ulcers. However, the potential material basis and molecular mechanism of Shudage-4 in attenuating stress-induced gastric ulcers remain unclear. This study aimed to first explore the potential material basis and molecular mechanism of Shudage-4 in attenuating gastric ulcers in rats. The chemical constituents and transitional components in the blood of Shudage-4 were identified by ultra-performance liquid chromatography time-of-flight mass spectrometry (UPLC-TOF-MS). The rat gastric ulcer model was induced by water immersion restraint stress (WIRS). The ulcer damage to gastric tissue was measured at the gross anatomical level and pathological level by hematoxylin-eosin (HE) staining of gastric tissue. RNA sequencing of gastric tissue and plasma metabolomics were performed to analyze the mechanism of Shudage-4 against gastric ulcers. A Pearson correlation analysis was performed to explore the association between serum metabolites and gene expression of gastric tissue. A total of 30 chemical constituents were identified in Shudage-4 by UPLC-TOF-MS. Among 30 constituents, 13 transitional components in the blood were considered as the potential material basis. Shudage-4 treatment had a significant effect on WIRS-induced gastric ulcers in rats. HE staining of gastric tissue illustrated that WIRS-induced ulcer damage was suppressed by Shudage-4 treatment. RNA sequencing of gastric tissue showed that 282 reversed expression genes in gastric tissue were related to Shudage-4 treatment, and gene set enrichment analysis revealed that Shudage-4 treatment significantly inhibited gene set expression related to reactive oxygen species (ROS), which was also validated by detecting rat gastric tissue MDA, GSH, SOD, GSH-Px, and CAT activities. The plasma metabolomic data demonstrated that 23 significantly differential metabolites were closely associated with the Shudage-4 treatment. The further multiomics joint analysis found that significantly upregulated 5 plasma metabolites in Shudage-4-treated rats compared to model rats were negatively correlated with gene set expression related to ROS in gastric tissue. Shudage-4 alleviated WIRS-induced gastric ulcers by inhibiting ROS generation, which was achieved by regulating plasma metabolites level.
Collapse
Affiliation(s)
- Xin Jia
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Department of Pharmacy, Affiliated Hospital of Inner Mongolia Medical University, Hohhot 010059, China
- Engineering Technology Research Center of Pharmacodynamic Substance and Quality Control of Mongolian Medicine in Inner Mongolia, Hohhot 010110, China
| | - Xiaoling Zhu
- Engineering Technology Research Center of Pharmacodynamic Substance and Quality Control of Mongolian Medicine in Inner Mongolia, Hohhot 010110, China
- Inner Mongolian International Mongolian Hospital, Wulanchabudong Street, Hohhot 010090, China
| | - Siyuan Chen
- Department of Natural Medicinal Chemistry, College of Pharmacy, Inner Mongolia Medical University, Hohhot 010110, China
| | - Yuexuan Wang
- Department of Natural Medicinal Chemistry, College of Pharmacy, Inner Mongolia Medical University, Hohhot 010110, China
| | - Jing Liu
- Department of Pharmacy, Affiliated Hospital of Inner Mongolia Medical University, Hohhot 010059, China
| | - Tianlong Liu
- Department of Pharmacy, Affiliated Hospital of Inner Mongolia Medical University, Hohhot 010059, China
- Key Laboratory of Clinical and Basic Research on Cardiovascular Diseases, Basic Research Team of Cardiovascular Diseases, Inner Mongolia Medical University, Hohhot 010110, China
| | - Yu Dong
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Engineering Technology Research Center of Pharmacodynamic Substance and Quality Control of Mongolian Medicine in Inner Mongolia, Hohhot 010110, China
- Department of Natural Medicinal Chemistry, College of Pharmacy, Inner Mongolia Medical University, Hohhot 010110, China
| |
Collapse
|
8
|
López-Magano A, Daliran S, Oveisi AR, Mas-Ballesté R, Dhakshinamoorthy A, Alemán J, Garcia H, Luque R. Recent Advances in the Use of Covalent Organic Frameworks as Heterogenous Photocatalysts in Organic Synthesis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2209475. [PMID: 36563668 DOI: 10.1002/adma.202209475] [Citation(s) in RCA: 60] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/30/2022] [Indexed: 06/16/2023]
Abstract
Organic photochemistry is intensely developed in the 1980s, in which the nature of excited electronic states and the energy and electron transfer processes are thoroughly studied and finally well-understood. This knowledge from molecular organic photochemistry can be transferred to the design of covalent organic frameworks (COFs) as active visible-light photocatalysts. COFs constitute a new class of crystalline porous materials with substantial application potentials. Featured with outstanding structural tunability, large porosity, high surface area, excellent stability, and unique photoelectronic properties, COFs are studied as potential candidates in various research areas (e.g., photocatalysis). This review aims to provide the state-of-the-art insights into the design of COF photocatalysts (pristine, functionalized, and hybrid COFs) for organic transformations. The catalytic reaction mechanism of COF-based photocatalysts and the influence of dimensionality and crystallinity on heterogenous photocatalysis performance are also discussed, followed by perspectives and prospects on the main challenges and opportunities in future research of COFs and COF-based photocatalysts.
Collapse
Affiliation(s)
- Alberto López-Magano
- Inorganic Chemistry Department, Módulo 7, Universidad Autónoma de Madrid, Madrid, 28049, Spain
| | - Saba Daliran
- Department of Chemistry, Faculty of Sciences, University of Zabol, Zabol, 98615-538, Iran
| | - Ali Reza Oveisi
- Department of Chemistry, Faculty of Sciences, University of Zabol, Zabol, 98615-538, Iran
| | - Rubén Mas-Ballesté
- Inorganic Chemistry Department, Módulo 7, Universidad Autónoma de Madrid, Madrid, 28049, Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, Madrid, 28049, Spain
| | - Amarajothi Dhakshinamoorthy
- School of Chemistry, Madurai Kamaraj University, Madurai, Tamil Nadu, 625021, India
- Organic Chemistry Department, Módulo 1, Universidad Autónoma de Madrid, Madrid, 28049, Spain
| | - José Alemán
- Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, Madrid, 28049, Spain
- Instituto de Tecnología Química CSIC-UPV, Universitat Politècnica de València, Consejo Superior de Investigaciones Científicas, Av. de los Naranjos s/n, Valencia, 46022, Spain
| | - Hermenegildo Garcia
- Organic Chemistry Department, Módulo 1, Universidad Autónoma de Madrid, Madrid, 28049, Spain
| | - Rafael Luque
- Department of Organic Chemistry, University of Cordoba, Campus de Rabanales, Edificio Marie Curie (C-3), Ctra Nnal IV-A, Km 396, Cordoba, E14014, Spain
- Department of Chemistry, Peoples' Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya str., Moscow, 117198, Russian Federation
| |
Collapse
|
9
|
Ruidas S, Chowdhury A, Ghosh A, Ghosh A, Mondal S, Wonanke ADD, Addicoat M, Das AK, Modak A, Bhaumik A. Covalent Organic Framework as a Metal-Free Photocatalyst for Dye Degradation and Radioactive Iodine Adsorption. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:4071-4081. [PMID: 36905363 DOI: 10.1021/acs.langmuir.2c03379] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Exploring a covalent organic framework (COF) material as an efficient metal-free photocatalyst and as an adsorbent for the removal of pollutants from contaminated water is very challenging in the context of sustainable chemistry. Herein, we report a new porous crystalline COF, C6-TRZ-TPA COF, via segregation of donor-acceptor moieties through the extended Schiff base condensation between tris(4-formylphenyl)amine and 4,4',4″-(1,3,5-triazine-2,4,6-triyl)trianiline. This COF displayed a Brunauer-Emmett-Teller (BET) surface area of 1058 m2 g-1 with a pore volume of 0.73 cc g-1. Again, extended π-conjugation, the presence of heteroatoms throughout the framework, and a narrow band gap of 2.2 eV, all these features collectively work for the environmental remediation in two different perspectives: it could harness solar energy for environmental clean-up, where the COF has been explored as a robust metal-free photocatalyst for wastewater treatment and as an adsorbent for iodine capture. In our endeavor of wastewater treatment, we have conducted the photodegradation of rose bengal (RB) and methylene blue (MB) as model pollutants since these are extremely toxic, are health hazard, and bioaccumulative in nature. The catalyst C6-TRZ-TPA COF showed a very high catalytic efficiency of 99% towards the degradation of 250 parts per million (ppm) of RB solution in 80 min under visible light irradiation with the rate constant of 0.05 min-1. Further, C6-TRZ-TPA COF is found to be an excellent adsorbent as it efficiently adsorbed radioactive iodine from its solution as well as from the vapor phase. The material exhibits a very rapid iodine capturing tendency with an outstanding iodine vapor uptake capacity of 4832 mg g-1.
Collapse
Affiliation(s)
- Santu Ruidas
- School of Materials Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Avik Chowdhury
- School of Materials Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Anirban Ghosh
- School of Materials Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Avik Ghosh
- School of Mathematical & Computational Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Sujan Mondal
- School of Materials Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - A D Dinga Wonanke
- School of Science and Technology, Nottingham Trent University, Clifton Lane, NG11 8NS Nottingham, U.K
| | - Matthew Addicoat
- School of Science and Technology, Nottingham Trent University, Clifton Lane, NG11 8NS Nottingham, U.K
| | - Abhijit Kumar Das
- School of Mathematical & Computational Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Arindam Modak
- Amity Institute of Applied Sciences, Amity University, Noida, Amity Rd, Sector 125, Noida, Uttar Pradesh 201301, India
| | - Asim Bhaumik
- School of Materials Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| |
Collapse
|
10
|
Liu S, Wang M, He Y, Cheng Q, Qian T, Yan C. Covalent organic frameworks towards photocatalytic applications: Design principles, achievements, and opportunities. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
11
|
Wang GB, Xie KH, Xu HP, Wang YJ, Zhao F, Geng Y, Dong YB. Covalent organic frameworks and their composites as multifunctional photocatalysts for efficient visible-light induced organic transformations. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214774] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
12
|
Wang J, Yin D, Guo X, Luo Z, Tao L, Ren J, Zhang Y. Fabrication of a Covalent Organic Framework-Based Heterojunction via Coupling with ZnAgInS Nanosphere with High Photocatalytic Activity. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:4680-4691. [PMID: 35394281 DOI: 10.1021/acs.langmuir.2c00203] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Covalent organic frameworks (COFs) exhibit visible-light activity for the degradation of organic pollutants. However, the recombination rates of their photoinduced electron-hole pairs are relatively high, limiting their practical application. In this work, we fabricated a 1,3,5-triformylphloroglucinol (Tp) and p-phenylenediamine (Pa-1) (TpPa-1) COF-based heterojunction through coupling the TpPa-1 COF with a ZnAgInS nanosphere via a facile oil bath heating method. The results show that the prepared heterojunction exhibits outstanding catalytic activity for the degradation of high concentrations the antibiotic tetracycline (TC) and the dye rhodamine B (RhB), which is driven by simulated sunlight. Its degradation rates for RhB and TC were 30× and 18× higher than that of the pure TpPa-1 COF, respectively. The greatly enhanced photocatalytic performances can be ascribed to the formed heterojunction with good band-gap match, which promotes the migration and separation of light-induced electrons and holes and increases both light absorbance and the specific surface area. This study introduces an effective and feasible strategy for improving the photocatalytic performances of COFs via subtly integrating TpPa-1 COFs with a ZnAgInS nanosphere into an organic-inorganic hybrid. The results of the photocatalytic experiments indicate that the fabricated hybrid has a potential application in the highly efficient removal of organic pollutants.
Collapse
Affiliation(s)
- Jun Wang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Dongguang Yin
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Xiandi Guo
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Zhaoyue Luo
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Liyue Tao
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Junjie Ren
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Yong Zhang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| |
Collapse
|
13
|
Liu G, Pan G, Dang Q, Li R, Li L, Yang C, Yu Y. Hollow Covalent Organic Framework Cages with Zn Ion‐Implantation Promoting Photocatalytic H2 Evolution. ChemCatChem 2022. [DOI: 10.1002/cctc.202101800] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Guoyu Liu
- Fuzhou University College of Materials Science and Engineering CHINA
| | - Guodong Pan
- Fuzhou University College of Materials Science and Engineering CHINA
| | - Qiang Dang
- Fuzhou University College of Materials Science and Engineering CHINA
| | - Rui Li
- Fuzhou University College of Materials Science and Engineering CHINA
| | - Liuyi Li
- Fuzhou University College of Materials Science and Engineering 2 Xue Yuan Road, University Town, Fuzhou Fuzhou CHINA
| | - Chengkai Yang
- Fuzhou University College of Materials Science and Engineering CHINA
| | - Yan Yu
- Fuzhou University College of Materials Science and Engineering CHINA
| |
Collapse
|
14
|
He Y, Pan G, Li L, Zhong S, Li L, Liu Z, Yu Y. Local charge transfer within a covalent organic framework and Pt nanoparticles promoting interfacial catalysis. Catal Sci Technol 2022. [DOI: 10.1039/d1cy02024b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A pyridine-functionalized covalent organic framework encapsulating Pt nanoparticles with local charge transfer was developed, which efficiently catalyzed H2 production from ammonia borane hydrolysis in water.
Collapse
Affiliation(s)
- Yajun He
- Key Laboratory of Eco-Materials Advanced Technology, College of Materials Science and Engineering, Fuzhou University, Fuzhou 350108, China
| | - Guodong Pan
- Key Laboratory of Eco-Materials Advanced Technology, College of Materials Science and Engineering, Fuzhou University, Fuzhou 350108, China
| | - Liuyi Li
- Key Laboratory of Eco-Materials Advanced Technology, College of Materials Science and Engineering, Fuzhou University, Fuzhou 350108, China
| | - Shenghong Zhong
- Key Laboratory of Eco-Materials Advanced Technology, College of Materials Science and Engineering, Fuzhou University, Fuzhou 350108, China
| | - Lingyun Li
- Key Laboratory of Eco-Materials Advanced Technology, College of Materials Science and Engineering, Fuzhou University, Fuzhou 350108, China
| | - Zheyuan Liu
- Key Laboratory of Eco-Materials Advanced Technology, College of Materials Science and Engineering, Fuzhou University, Fuzhou 350108, China
| | - Yan Yu
- Key Laboratory of Eco-Materials Advanced Technology, College of Materials Science and Engineering, Fuzhou University, Fuzhou 350108, China
| |
Collapse
|