1
|
Hussain S, AlTowireb SM, Zourob M. Photonic Marvels: Exploring the Self-Assembly of Cellulose Nanocrystals for Sustainable Materials and Beyond. ACS APPLIED MATERIALS & INTERFACES 2025; 17:29021-29046. [PMID: 40356082 DOI: 10.1021/acsami.5c02679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2025]
Abstract
Cellulose nanocrystals (CNCs) are biodegradable, plant-derived colloidal particles that can self-assemble through evaporation-induced self-assembly (EISA) to form photonic films. The ability of CNCs to organize structurally colored films has garnered significant attention as a promising source of sustainable materials. CNCs serve as versatile photonic building blocks for creating biobased colored materials. This review provides a comprehensive overview of the latest advancements in chiral photonic CNC (CPCNC) materials. We delve into the chiral structures of these materials and factors affecting the EISA route, exploring their fundamental principles and bottom-up synthesis techniques. Additionally, various responsive CPCNCs are systematically introduced with a focus on their mechanisms, properties, and potential applications. The review concludes with a discussion of emerging applications, challenges, and future opportunities for CPCNCs. By leveraging the unique properties of CPCNCs within complex responsive polymer networks, we see significant potential for developing innovative physicochemical sensors, structural coatings, and optical devices.
Collapse
Affiliation(s)
- Saddam Hussain
- Department of Chemistry, College of Science, Alfaisal University, Al-Maather 11533, Riyadh, Saudi Arabia
| | - Sara M AlTowireb
- Department of Chemistry, College of Science, Alfaisal University, Al-Maather 11533, Riyadh, Saudi Arabia
| | - Mohammed Zourob
- Department of Chemistry, College of Science, Alfaisal University, Al-Maather 11533, Riyadh, Saudi Arabia
| |
Collapse
|
2
|
Lin J, Cui L, Shi X, Wu S. Emerging Trends in Microfluidic Biomaterials: From Functional Design to Applications. J Funct Biomater 2025; 16:166. [PMID: 40422832 DOI: 10.3390/jfb16050166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2025] [Revised: 04/28/2025] [Accepted: 05/06/2025] [Indexed: 05/28/2025] Open
Abstract
The rapid development of microfluidics has driven innovations in material engineering, particularly through its ability to precisely manipulate fluids and cells at microscopic scales. Microfluidic biomaterials, a cutting-edge interdisciplinary field integrating microfluidic technology with biomaterials science, are revolutionizing biomedical research. This review focuses on the functional design and fabrication of organ-on-a-chip (OoAC) platforms via 3D bioprinting, explores the applications of biomaterials in drug delivery, cell culture, and tissue engineering, and evaluates the potential of microfluidic systems in advancing personalized healthcare. We systematically analyze the evolution of microfluidic materials-from silicon and glass to polymers and paper-and highlight the advantages of 3D bioprinting over traditional fabrication methods. Currently, despite significant advances in microfluidics in medicine, challenges in scalability, stability, and clinical translation remain. The future of microfluidic biomaterials will depend on combining 3D bioprinting with dynamic functional design, developing hybrid strategies that combine traditional molds with bio-printed structures, and using artificial intelligence to monitor drug delivery or tissue response in real time. We believe that interdisciplinary collaborations between materials science, micromachining, and clinical medicine will accelerate the translation of organ-on-a-chip platforms into personalized therapies and high-throughput drug screening tools.
Collapse
Affiliation(s)
- Jiaqi Lin
- Institute of Polymer Materials, School of Materials Science & Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Lijuan Cui
- Institute of Polymer Materials, School of Materials Science & Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xiaokun Shi
- Institute of Polymer Materials, School of Materials Science & Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Shuping Wu
- Institute of Polymer Materials, School of Materials Science & Engineering, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
3
|
Emeršič T, Bagchi K, Fitz S, Jensen A, Nealey PF, de Pablo JJ. Stable Non-equilibrium Structures in Chiral Nematics under Microfluidic Flow. J Phys Chem B 2024; 128:11441-11449. [PMID: 39527689 DOI: 10.1021/acs.jpcb.4c03965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Cholesteric liquid crystals (CLCs) are compelling responsive materials with applications in next-generation sensing, imaging, and display technologies. While electric fields and surface treatments have been used to manipulate the molecular organization and, subsequently, the optical properties of CLCs, their response to controlled fluid flow has remained largely unexplored. Here, we investigate the influence of microfluidic flow on the structure of thermotropic CLCs that can exhibit structural coloration. We demonstrate that the shear forces that arise from microfluidic flow align the helical axis of CLCs; alignment is a prerequisite for harnessing the promising photonic properties of CLCs. Moreover, we show that microfluidic flow can generate non-equilibrium structures exhibiting photonic band gaps that are inaccessible in the stationary cholesteric phase. Our findings have implications for the use of CLCs in applications involving flow processing such as additive manufacturing.
Collapse
Affiliation(s)
- Tadej Emeršič
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, Illinois 60637, United States
| | - Kushal Bagchi
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, Illinois 60637, United States
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
| | - Sullivan Fitz
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, Illinois 60637, United States
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Aiden Jensen
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, Illinois 60637, United States
| | - Paul F Nealey
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, Illinois 60637, United States
- Materials Science Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Juan J de Pablo
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, Illinois 60637, United States
- Materials Science Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| |
Collapse
|
4
|
Jie H, Feng K, Lu M, Jin Z. Modulation of Tannic Acid on the Cholesteric Structure of Cellulose Nanocrystals. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:13834-13843. [PMID: 38920318 DOI: 10.1021/acs.langmuir.4c00767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
The chiral nematic phase structure, formed by the self-assembly of cellulose nanocrystals (CNCs) in an aqueous suspension and maintained in a solid film, shows great potential for optical applications. To achieve complex structures in optical devices, it is crucial to subject CNCs to specific shearing processes, such as spinning and printing. Understanding the structural and property changes of the CNC liquid crystal phase in these processes is of utmost importance. In this study, we investigated the effect of adding tannic acid (TA) on the rheological properties and cholesteric phase structures of CNCs/TA mixed suspensions. By calculating the surface site interaction points, we observed that TA can adsorb onto the surface of CNC rods in suspensions through hydrogen bonding. Through characterization techniques, such as polarized optical microscopy, rheology, and synchrotron SAXS, we examined the effects of TA addition on the microstructure and rheological properties of the CNC liquid crystal phase and clarified the change relating to the system composition. Under the same CNC concentration, the volume fraction of the anisotropic phase, the pitch, and the rod spacing of the cholesteric phase were not significantly affected by the addition of TA. However, the system viscosity was significantly reduced with the appropriate amount of TA (2 wt %), in a wide range of CNC concentrations (up to 15 wt % CNCs). The flow indexes (n) in Region I and Region III of steady-state shear curves of CNCs/TA systems (11-15 wt % CNCs) were compared. Moreover, we introduced the well-established theoretical models for liquid crystal polymers to tentatively interpret Region I of the CNCs/TA cholesteric phase and realized that increased numbers of smaller cholesteric-phase domains in the CNCs/TA system and interfacial modification by TA may contribute to the fluidity change. The feature of the domain texture of CNCs/TA systems is verified by polarized optical microscopy observations.
Collapse
Affiliation(s)
- Hui Jie
- Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Kai Feng
- Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Mengfan Lu
- Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Zhaoxia Jin
- Department of Chemistry, Renmin University of China, Beijing 100872, China
| |
Collapse
|
5
|
Grachev V, Deschaume O, Lang PR, Lettinga MP, Bartic C, Thielemans W. Dimensions of Cellulose Nanocrystals from Cotton and Bacterial Cellulose: Comparison of Microscopy and Scattering Techniques. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:455. [PMID: 38470785 DOI: 10.3390/nano14050455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/25/2024] [Accepted: 02/26/2024] [Indexed: 03/14/2024]
Abstract
Different microscopy and scattering methods used in the literature to determine the dimensions of cellulose nanocrystals derived from cotton and bacterial cellulose were compared to investigate potential bias and discrepancies. Atomic force microscopy (AFM), small-angle X-ray scattering (SAXS), depolarized dynamic light scattering (DDLS), and static light scattering (SLS) were compared. The lengths, widths, and heights of the particles and their respective distributions were determined by AFM. In agreement with previous work, the CNCs were found to have a ribbon-like shape, regardless of the source of cellulose or the surface functional groups. Tip broadening and agglomeration of the particles during deposition cause AFM-derived lateral dimensions to be systematically larger those obtained from SAXS measurements. The radius of gyration determined by SLS showed a good correlation with the dimensions obtained by AFM. The hydrodynamic lateral dimensions determined by DDLS were found to have the same magnitude as either the width or height obtained from the other techniques; however, the precision of DDLS was limited due to the mismatch between the cylindrical model and the actual shape of the CNCs, and to constraints in the fitting procedure. Therefore, the combination of AFM and SAXS, or microscopy and small-angle scattering, is recommended for the most accurate determination of CNC dimensions.
Collapse
Affiliation(s)
- Vladimir Grachev
- Sustainable Materials Lab, Department of Chemical Engineering, KU Leuven, Campus Kulak Kortrijk, Etienne Sabbelaan 53, 8500 Kortrijk, Belgium
| | - Olivier Deschaume
- Laboratory for Soft Matter Physics and Biophysics, Department of Physics and Astronomy, KU Leuven, Celestijnenlaan 200D Box 2416, 3001 Leuven, Belgium
| | - Peter R Lang
- Institute for Biomacromolecular Systems and Processes Group (IBI-4), Forschungszentrum Jülich, Wilhelm-Johnen-Straße, 52428 Jülich, Germany
| | - Minne Paul Lettinga
- Laboratory for Soft Matter Physics and Biophysics, Department of Physics and Astronomy, KU Leuven, Celestijnenlaan 200D Box 2416, 3001 Leuven, Belgium
- Institute for Biomacromolecular Systems and Processes Group (IBI-4), Forschungszentrum Jülich, Wilhelm-Johnen-Straße, 52428 Jülich, Germany
| | - Carmen Bartic
- Laboratory for Soft Matter Physics and Biophysics, Department of Physics and Astronomy, KU Leuven, Celestijnenlaan 200D Box 2416, 3001 Leuven, Belgium
| | - Wim Thielemans
- Sustainable Materials Lab, Department of Chemical Engineering, KU Leuven, Campus Kulak Kortrijk, Etienne Sabbelaan 53, 8500 Kortrijk, Belgium
| |
Collapse
|
6
|
Esmaeili M, Akbari E, George K, Rezvan G, Taheri-Qazvini N, Sadati M. Engineering Nano/Microscale Chiral Self-Assembly in 3D Printed Constructs. NANO-MICRO LETTERS 2023; 16:54. [PMID: 38108930 PMCID: PMC10728402 DOI: 10.1007/s40820-023-01286-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 11/15/2023] [Indexed: 12/19/2023]
Abstract
Helical hierarchy found in biomolecules like cellulose, chitin, and collagen underpins the remarkable mechanical strength and vibrant colors observed in living organisms. This study advances the integration of helical/chiral assembly and 3D printing technology, providing precise spatial control over chiral nano/microstructures of rod-shaped colloidal nanoparticles in intricate geometries. We designed reactive chiral inks based on cellulose nanocrystal (CNC) suspensions and acrylamide monomers, enabling the chiral assembly at nano/microscale, beyond the resolution seen in printed materials. We employed a range of complementary techniques including Orthogonal Superposition rheometry and in situ rheo-optic measurements under steady shear rate conditions. These techniques help us to understand the nature of the nonlinear flow behavior of the chiral inks, and directly probe the flow-induced microstructural dynamics and phase transitions at constant shear rates, as well as their post-flow relaxation. Furthermore, we analyzed the photo-curing process to identify key parameters affecting gelation kinetics and structural integrity of the printed object within the supporting bath. These insights into the interplay between the chiral inks self-assembly dynamics, 3D printing flow kinematics and photo-polymerization kinetics provide a roadmap to direct the out-of-equilibrium arrangement of CNC particles in the 3D printed filaments, ranging from uniform nematic to 3D concentric chiral structures with controlled pitch length, as well as random orientation of chiral domains. Our biomimetic approach can pave the way for the creation of materials with superior mechanical properties or programable photonic responses that arise from 3D nano/microstructure and can be translated into larger scale 3D printed designs.
Collapse
Affiliation(s)
- Mohsen Esmaeili
- Department of Chemical Engineering, University of South Carolina, Columbia, SC, 29208, USA
| | - Ehsan Akbari
- TA Instruments, Waters LLC, New Castle, DE, 19720, USA
| | - Kyle George
- Department of Chemical Engineering, University of South Carolina, Columbia, SC, 29208, USA
| | - Gelareh Rezvan
- Department of Chemical Engineering, University of South Carolina, Columbia, SC, 29208, USA
| | - Nader Taheri-Qazvini
- Department of Chemical Engineering, University of South Carolina, Columbia, SC, 29208, USA
- Biomedical Engineering Program, University of South Carolina, Columbia, SC, 29208, USA
| | - Monirosadat Sadati
- Department of Chemical Engineering, University of South Carolina, Columbia, SC, 29208, USA.
| |
Collapse
|
7
|
Rezvan G, Esmaeili M, Sadati M, Taheri-Qazvini N. Size-dependent viscoelasticity in hybrid colloidal gels based on spherical soft nanoparticles and two-dimensional nanosilicates of varying size. J Colloid Interface Sci 2023; 656:577-586. [PMID: 38035482 DOI: 10.1016/j.jcis.2023.11.135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 11/17/2023] [Accepted: 11/21/2023] [Indexed: 12/02/2023]
Abstract
HYPOTHESIS Hetero-aggregation of oppositely charged colloidal particles with controlled architectural and interactional asymmetry allows modifying gel nanostructure and properties. We hypothesize the relative size ratio between cationic nanospheres and varied-size anionic two-dimensional nanoclays will influence the gel formation mechanisms and resulting rheological performance. EXPERIMENTS Hybrid colloidal gels formed via hetero-aggregation of cationic gelatin nanospheres (∼400 nm diameter) and five types of nanoclays with similar 1 nm thickness but different lateral sizes ranging from ∼ 30 nm to ∼ 3000 nm. Structure-property relationships were elucidated using a suite of techniques. Microscopy and scattering probed gel nanostructure and particle configuration. Rheology quantified linear and non-linear viscoelastic properties and yielding behavior. Birefringence and polarized imaging assessed size-dependent nanoclay alignment during shear flow. FINDINGS Nanoclay size ratio relative to nanospheres affected the gelation process, network structure, elasticity, yielding, and shear response. Gels with comparably sized components showed maximum elasticity, while yield stress depended on nanoclay rotational mobility. Shear-induced nanoclay alignment was quantified by birefringence, which is more pronounced for larger nanoclay. Varying nanoclay size and interactions with nanospheres controlled dispersion, aggregation, and nematic ordering. These findings indicate that architectural and interactional asymmetry enables more control over gel properties through controlled assembly of anisotropic building blocks.
Collapse
Affiliation(s)
- Gelareh Rezvan
- Department of Chemical Engineering, University of South Carolina, Columbia, SC 29208, United States.
| | - Mohsen Esmaeili
- Department of Chemical Engineering, University of South Carolina, Columbia, SC 29208, United States.
| | - Monirosadat Sadati
- Department of Chemical Engineering, University of South Carolina, Columbia, SC 29208, United States.
| | - Nader Taheri-Qazvini
- Department of Chemical Engineering, University of South Carolina, Columbia, SC 29208, United States; Department of Biomedical Engineering, University of South Carolina, Columbia, SC 29208, United States.
| |
Collapse
|
8
|
Khalid MY, Arif ZU, Noroozi R, Hossain M, Ramakrishna S, Umer R. 3D/4D printing of cellulose nanocrystals-based biomaterials: Additives for sustainable applications. Int J Biol Macromol 2023; 251:126287. [PMID: 37573913 DOI: 10.1016/j.ijbiomac.2023.126287] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/26/2023] [Accepted: 08/09/2023] [Indexed: 08/15/2023]
Abstract
Cellulose nanocrystals (CNCs) have gained significant attraction from both industrial and academic sectors, thanks to their biodegradability, non-toxicity, and renewability with remarkable mechanical characteristics. Desirable mechanical characteristics of CNCs include high stiffness, high strength, excellent flexibility, and large surface-to-volume ratio. Additionally, the mechanical properties of CNCs can be tailored through chemical modifications for high-end applications including tissue engineering, actuating, and biomedical. Modern manufacturing methods including 3D/4D printing are highly advantageous for developing sophisticated and intricate geometries. This review highlights the major developments of additive manufactured CNCs, which promote sustainable solutions across a wide range of applications. Additionally, this contribution also presents current challenges and future research directions of CNC-based composites developed through 3D/4D printing techniques for myriad engineering sectors including tissue engineering, wound healing, wearable electronics, robotics, and anti-counterfeiting applications. Overall, this review will greatly help research scientists from chemistry, materials, biomedicine, and other disciplines to comprehend the underlying principles, mechanical properties, and applications of additively manufactured CNC-based structures.
Collapse
Affiliation(s)
- Muhammad Yasir Khalid
- Department of Aerospace Engineering, Khalifa University of Science and Technology, PO Box: 127788, Abu Dhabi, United Arab Emirates.
| | - Zia Ullah Arif
- Department of Mechanical Engineering, University of Management & Technology Lahore, Sialkot Campus, 51041, Pakistan.
| | - Reza Noroozi
- School of Mechanical Engineering, Faculty of Engineering, University of Tehran, Tehran, Iran
| | - Mokarram Hossain
- Zienkiewicz Institute for Modelling, Data and AI, Faculty of Science and Engineering, Swansea University, SA1 8EN Swansea, UK.
| | - Seeram Ramakrishna
- Department of Mechanical Engineering, Center for Nanofibers and Nanotechnology, National University of Singapore, 119260, Singapore
| | - Rehan Umer
- Department of Aerospace Engineering, Khalifa University of Science and Technology, PO Box: 127788, Abu Dhabi, United Arab Emirates
| |
Collapse
|
9
|
Las-Casas B, Dias IKR, Yupanqui-Mendoza SL, Pereira B, Costa GR, Rojas OJ, Arantes V. The emergence of hybrid cellulose nanomaterials as promising biomaterials. Int J Biol Macromol 2023; 250:126007. [PMID: 37524277 DOI: 10.1016/j.ijbiomac.2023.126007] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 07/16/2023] [Accepted: 07/25/2023] [Indexed: 08/02/2023]
Abstract
Cellulose nanomaterials (CNs) are promising green materials due to their unique properties as well as their environmental benefits. Among these materials, cellulose nanofibrils (CNFs) and nanocrystals (CNCs) are the most extensively researched types of CNs. While they share some fundamental properties like low density, biodegradability, biocompatibility, and low toxicity, they also possess unique differentiating characteristics such as morphology, rheology, aspect ratio, crystallinity, mechanical and optical properties. Therefore, numerous comparative studies have been conducted, and recently, various studies have reported the synergetic advantages resulting from combining CNF and CNC. In this review, we initiate by addressing the terminology used to describe combinations of these and other types of CNs, proposing "hybrid cellulose nanomaterials" (HCNs) as the standardized classifictation for these materials. Subsequently, we briefly cover aspects of properties-driven applications and the performance of CNs, from both an individual and comparative perspective. Next, we comprehensively examine the potential of HCN-based materials, highlighting their performance for various applications. In conclusion, HCNs have demonstraded remarkable success in diverse areas, such as food packaging, electronic devices, 3D printing, biomedical and other fields, resulting in materials with superior performance when compared to neat CNF or CNC. Therefore, HCNs exhibit great potential for the development of environmentally friendly materials with enhanced properties.
Collapse
Affiliation(s)
- Bruno Las-Casas
- Laboratory of Applied Bionanotechnology, Department of Biotechnology, Lorena School of Engineering, Universidade de Sao Paulo, Lorena, SP, Brazil
| | - Isabella K R Dias
- Laboratory of Applied Bionanotechnology, Department of Biotechnology, Lorena School of Engineering, Universidade de Sao Paulo, Lorena, SP, Brazil
| | - Sergio Luis Yupanqui-Mendoza
- Laboratory of Applied Bionanotechnology, Department of Biotechnology, Lorena School of Engineering, Universidade de Sao Paulo, Lorena, SP, Brazil
| | - Bárbara Pereira
- Laboratory of Applied Bionanotechnology, Department of Biotechnology, Lorena School of Engineering, Universidade de Sao Paulo, Lorena, SP, Brazil
| | - Guilherme R Costa
- Laboratory of Applied Bionanotechnology, Department of Biotechnology, Lorena School of Engineering, Universidade de Sao Paulo, Lorena, SP, Brazil
| | - Orlando J Rojas
- Bioproducts Institute, Department of Chemical and Biological Engineering, Department of Chemistry, Department of Wood Science, University of British Columbia, 2360 East Mall, Vancouver, BC, Canada
| | - Valdeir Arantes
- Laboratory of Applied Bionanotechnology, Department of Biotechnology, Lorena School of Engineering, Universidade de Sao Paulo, Lorena, SP, Brazil.
| |
Collapse
|
10
|
Nugroho RWN, Tardy BL, Eldin SM, Ilyas RA, Mahardika M, Masruchin N. Controlling the critical parameters of ultrasonication to affect the dispersion state, isolation, and chiral nematic assembly of cellulose nanocrystals. ULTRASONICS SONOCHEMISTRY 2023; 99:106581. [PMID: 37690260 PMCID: PMC10498310 DOI: 10.1016/j.ultsonch.2023.106581] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/09/2023] [Accepted: 08/30/2023] [Indexed: 09/12/2023]
Abstract
Cellulose nanocrystals (CNCs) are typically extracted from plants and present a range of opto-mechanical properties that warrant their use for the fabrication of sustainable materials. While their commercialization is ongoing, their sustainable extraction at large scale is still being optimized. Ultrasonication is a well-established and routinely used technology for (re-) dispersing and/or isolating plant-based CNCs without the need for additional reagents or chemical processes. Several critical ultrasonication parameters, such as time, amplitude, and energy input, play dominant roles in reducing the particle size and altering the morphology of CNCs. Interestingly, this technology can be coupled with other methods to generate moderate and high yields of CNCs. Besides, the ultrasonics treatment also has a significant impact on the dispersion state and the surface chemistry of CNCs. Accordingly, their ability to self-assemble into liquid crystals and subsequent superstructures can, for example, imbue materials with finely tuned structural colors. This article gives an overview of the primary functions arising from the ultrasonication parameters for stabilizing CNCs, producing CNCs in combination with other promising methods, and highlighting examples where the design of photonic materials using nanocrystal-based celluloses is substantially impacted.
Collapse
Affiliation(s)
- Robertus Wahyu N Nugroho
- Research Center for Biomass and Bioproducts, National Research and Innovation Agency (BRIN), Cibinong 16911, Indonesia; Collaborative Research Center for Nanocellulose between BRIN and Andalas University, Padang 25163, Indonesia.
| | - Blaise L Tardy
- Khalifa University, Department of Chemical Engineering, Abu Dhabi, United Arab Emirates; Research and Innovation Center on CO(2) and Hydrogen, Khalifa University, Abu Dhabi, United Arab Emirates.
| | - Sayed M Eldin
- Center of Research, Faculty of Engineering, Future University in Egypt, New Cairo 11835, Egypt.
| | - R A Ilyas
- Department of Chemical Engineering, Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia (UTM), Johor 81310, Malaysia; Center for Advanced Composite Materials, Universiti Teknologi Malaysia (UTM), Johor 81310, Malaysia; Institute of Tropical Forestry and Forest Products, Universiti Putra Malaysia (UPM), Serdang 43400, Malaysia; Center of Excellence for Biomass Utilization, Universiti Malaysia Perlis, Arau 02600, Malaysia.
| | - Melbi Mahardika
- Research Center for Biomass and Bioproducts, National Research and Innovation Agency (BRIN), Cibinong 16911, Indonesia; Collaborative Research Center for Nanocellulose between BRIN and Andalas University, Padang 25163, Indonesia
| | - Nanang Masruchin
- Research Center for Biomass and Bioproducts, National Research and Innovation Agency (BRIN), Cibinong 16911, Indonesia; Collaborative Research Center for Nanocellulose between BRIN and Andalas University, Padang 25163, Indonesia
| |
Collapse
|
11
|
Ackroyd AJ, De Paolis A, Xu YT, Momeni A, Hamad WY, MacLachlan MJ. Self-assembly of cellulose nanocrystals confined to square capillaries. NANOSCALE 2023; 15:14388-14398. [PMID: 37609826 DOI: 10.1039/d3nr02650g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Biological systems exploit restricted degrees of freedom to drive self-assembly of nano- and microarchitectures. Simplified systems, such as colloidal nanoparticles that behave as lyotropic liquid crystalline mesophases in confined geometric spaces, may be used to mimic biological structures. Cellulose nanocrystals (CNCs) are colloidally stable nanoparticles that self-assemble into chiral nematic (ChN) liquid crystalline mesophases. To date, the self-assembly of ChN mesophases of CNCs has been studied under confinement conditions within curved surfaces or under drying conditions that impose curvatures that can be exploited to control ChN ordering; however, their self-assembly has not been investigated in geometries with square cross-sections under static conditions. Here, we show that because of surface anchoring on perpendicular surfaces, the ChN CNC phase is unable to bend with the 90° angle of the square capillary under increasing confinement. Instead, the ChN phase forms radial layers in the shape of concentric squircle shells. With increasing layer distance from the capillary wall, the squircles transition into concentric cylinder shells. In larger capillaries, the radial shell layers appear as a continuous spiral pattern that engulfs fragmented ChN pseudolayers, a defect to accommodate the cylindrical confinement of the mesophase. These results are useful for understanding the fundamentals of self-assembling systems and development of new technologies.
Collapse
Affiliation(s)
- Amanda J Ackroyd
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada.
| | - Adam De Paolis
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada.
| | - Yi-Tao Xu
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada.
| | - Arash Momeni
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada.
| | - Wadood Y Hamad
- Transformation and Interfaces Group, Bioproducts Innovation Centre of Excellence, FPInnovations, 2665 East Mall, Vancouver, British Columbia V6T 1Z4, Canada
| | - Mark J MacLachlan
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada.
- Stewart Blusson Quantum Matter Institute, 2355 East Mall, Vancouver, British Columbia V6T 1Z4, Canada
- WPI Nano Life Science Institute, Kanazawa University, Kanazawa, 920-1192, Japan
- UBC BioProducts Institute, 2385 East Mall, Vancouver, British Columbia V6T 1Z4, Canada
| |
Collapse
|
12
|
Wang Q, Niu W, Feng S, Liu J, Liu H, Zhu Q. Accelerating Cellulose Nanocrystal Assembly into Chiral Nanostructures. ACS NANO 2023. [PMID: 37464327 DOI: 10.1021/acsnano.3c03797] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Cellulose nanocrystal (CNC) suspensions self-assembled into chiral nematic liquid crystals. This property has enabled the development of versatile optical materials with fascinating properties. Nevertheless, the scale-up production and commercial success of chiral nematic CNC superstructures face significant challenges. Fabrication of chiral nematic CNC nanostructures suffers from a ubiquitous pernicious trade-off between uniform chiral nematic structure and rapid self-assembly. Specifically, the chiral nematic assembly of CNCs is a time-consuming, spontaneous process that involves the organization of particles into ordered nanostructures as the solvent evaporates. This review is driven by the interest in accelerating chiral nematic CNC assembly and promoting a long-range oriented chiral nematic CNC superstructure. To start this review, the chirality origins of CNC and CNC aggregates are analyzed. This is followed by a summary of the recent advances in stimuli-accelerated chiral nematic CNC self-assembly procedures, including evaporation-induced self-assembly, continuous coating, vacuum-assisted self-assembly, and shear-induced CNC assembly under confinement. In particular, stimuli-induced unwinding, alignment, and relaxation of chiral nematic structures were highlighted, offering a significant link between the accelerated assembly approaches and uniform chiral nematic nanostructures. Ultimately, future opportunities and challenges for rapid chiral nematic CNC assembly are discussed for more innovative and exciting applications.
Collapse
Affiliation(s)
- Qianqian Wang
- Biofuels Institute, School of the Environment and Safety Engineering, School of Emergency Management, Jiangsu University, Zhenjiang 212013, China
| | - Wen Niu
- Biofuels Institute, School of the Environment and Safety Engineering, School of Emergency Management, Jiangsu University, Zhenjiang 212013, China
| | - Shixuan Feng
- Biofuels Institute, School of the Environment and Safety Engineering, School of Emergency Management, Jiangsu University, Zhenjiang 212013, China
| | - Jun Liu
- Biofuels Institute, School of the Environment and Safety Engineering, School of Emergency Management, Jiangsu University, Zhenjiang 212013, China
| | - Huan Liu
- Biofuels Institute, School of the Environment and Safety Engineering, School of Emergency Management, Jiangsu University, Zhenjiang 212013, China
| | - Qianqian Zhu
- Biofuels Institute, School of the Environment and Safety Engineering, School of Emergency Management, Jiangsu University, Zhenjiang 212013, China
- Institute of Quantum and Sustainable Technology (IQST), School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200438, China
| |
Collapse
|
13
|
Veloso SRS, Azevedo AG, Teixeira PF, Fernandes CBP. Cellulose Nanocrystal (CNC) Gels: A Review. Gels 2023; 9:574. [PMID: 37504453 PMCID: PMC10379674 DOI: 10.3390/gels9070574] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/10/2023] [Accepted: 07/11/2023] [Indexed: 07/29/2023] Open
Abstract
The aim of this article is to review the research conducted in the field of aqueous and polymer composites cellulose nanocrystal (CNC) gels. The experimental techniques employed to characterize the rheological behavior of these materials will be summarized, and the main advantages of using CNC gels will also be addressed in this review. In addition, research devoted to the use of numerical simulation methodologies to describe the production of CNC-based materials, e.g., in 3D printing, is also discussed. Finally, this paper also discusses the application of CNC gels along with additives such as cross-linking agents, which can represent an enormous opportunity to develop improved materials for manufacturing processes.
Collapse
Affiliation(s)
- Sérgio R S Veloso
- Physics Centre of Minho and Porto Universities (CF-UM-UP), Laboratory of Physics for Materials and Emergent Technologies (LaPMET), University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
| | - Ana G Azevedo
- International Iberian Nanotechnology Laboratory (INL), Av. Mte. José Veiga s/n, 4715-330 Braga, Portugal
| | - Paulo F Teixeira
- Centre for Nanotechnology and Smart Materials (CeNTI), Rua Fernando Mesquita 2785, 4760-034 Vila Nova de Famalicão, Portugal
| | - Célio B P Fernandes
- Transport Phenomena Research Centre (CEFT), Faculty of Engineering at University of Porto (FEUP), Rua Dr. Roberto Frias s/n, 4200-465 Porto, Portugal
- Centre of Mathematics (CMAT), School of Sciences, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
| |
Collapse
|
14
|
Esmaeili M, Norouzi S, George K, Rezvan G, Taheri-Qazvini N, Sadati M. 3D Printing-Assisted Self-Assembly to Bio-Inspired Bouligand Nanostructures. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206847. [PMID: 36732856 DOI: 10.1002/smll.202206847] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 01/17/2023] [Indexed: 05/11/2023]
Abstract
Architected materials with nano/microscale orders can provide superior mechanical properties; however, reproducing such levels of ordering in complex structures has remained challenging. Inspired by Bouligand structures in nature, here, 3D printing of complex geometries with guided long-order radially twisted chiral hierarchy, using cellulose nanocrystals (CNC)-based inks is presented. Detailed rheological measurements, in situ flow analysis, polarized optical microscopy (POM), and director field analysis are employed to evaluate the chiral assembly over the printing process. It is demonstrated that shear flow forces inside the 3D printer's nozzle orient individual CNC particles forming a pseudo-nematic phase that relaxes to uniformly aligned concentric chiral nematic structures after the flow cessation. Acrylamide, a photo-curable monomer, is incorporated to arrest the concentric chiral arrangements within the printed filaments. The time series POM snapshots show that adding the photo-curable monomer at the optimized concentrations does not interfere with chiral self-assemblies and instead increases the chiral relaxation rate. Due to the liquid-like nature of the as-printed inks, optimized Carbopol microgels are used to support printed filaments before photo-polymerization. By paving the path towards developing bio-inspired materials with nanoscale hierarchies in larger-scale printed constructs, this biomimetic approach expands 3D printing materials beyond what has been realized so far.
Collapse
Affiliation(s)
- Mohsen Esmaeili
- Department of Chemical Engineering, University of South Carolina, Columbia, SC, 29208, USA
| | - Sepideh Norouzi
- Department of Chemical Engineering, University of South Carolina, Columbia, SC, 29208, USA
| | - Kyle George
- Department of Chemical Engineering, University of South Carolina, Columbia, SC, 29208, USA
| | - Gelareh Rezvan
- Department of Chemical Engineering, University of South Carolina, Columbia, SC, 29208, USA
| | - Nader Taheri-Qazvini
- Department of Chemical Engineering, University of South Carolina, Columbia, SC, 29208, USA
- Biomedical Engineering Program, University of South Carolina, Columbia, SC, 29208, USA
| | - Monirosadat Sadati
- Department of Chemical Engineering, University of South Carolina, Columbia, SC, 29208, USA
| |
Collapse
|
15
|
Abbasi Moud A, Abbasi Moud A. Flow and assembly of cellulose nanocrystals (CNC): A bottom-up perspective - A review. Int J Biol Macromol 2023; 232:123391. [PMID: 36716841 DOI: 10.1016/j.ijbiomac.2023.123391] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/17/2023] [Accepted: 01/19/2023] [Indexed: 01/28/2023]
Abstract
Cellulosic sources, such as lignocellulose-rich biomass, can be mechanically or acid degraded to produce inclusions called cellulose nanocrystals (CNCs). They have several uses in the sectors of biomedicine, photonics, and material engineering because of their biodegradability, renewability, sustainability, and mechanical qualities. The processing and design of CNC-based products are inextricably linked to the rheological behaviour of CNC suspension or in combination with other chemicals, such as surfactants or polymers; in this context, rheology offers a significant link between microstructure and macro scale flow behaviour that is intricately linked to material response in applications. The flow behaviour of CNC items must be properly specified in order to produce goods with value-added characteristics. In this review article, we provide new research on the shear rheology of CNC dispersion and CNC-based hydrogels in the linear and nonlinear regime, with storage modulus values reported to range from ~10-3 to 103 Pa. Applications in technology and material science are also covered simultaneously. We carefully examined the effects of charge density, aspect ratio, concentration, persistence length, alignment, liquid crystal formation, the cause of chirality in CNCs, interfacial behaviour and interfacial rheology, linear and nonlinear viscoelasticity of CNC suspension in bulk and at the interface using the currently available literature.
Collapse
Affiliation(s)
- Aref Abbasi Moud
- Department of Chemical and Biological Engineering, The University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada; Biomedical Engineering Department, AmirKabir University of Technology, P.O. Box 15875/4413, PC36+P45 District 6, Tehran, Tehran Province 1591634311, Iran.
| | - Aliyeh Abbasi Moud
- Biomedical Engineering Department, AmirKabir University of Technology, P.O. Box 15875/4413, PC36+P45 District 6, Tehran, Tehran Province 1591634311, Iran
| |
Collapse
|
16
|
Dumont PJJ, Gupta S, Martoïa F, Orgéas L. Elongational behaviour of electrostatically stabilised and concentrated CNF and CNC hydrogels: Experiments and modelling. Carbohydr Polym 2023; 299:120168. [PMID: 36876783 DOI: 10.1016/j.carbpol.2022.120168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/12/2022] [Accepted: 09/24/2022] [Indexed: 10/06/2022]
Abstract
TEMPO-oxidized cellulose nanofibril (CNF) hydrogels or cellulose nanocrystal (CNC) hydrogels can now be obtained at high concentrations (>10 wt%) and used to fabricate biobased materials and structures. Thus, it is required to control and model their rheology in process-induced multiaxial flow conditions using 3D tensorial models. For that purpose, it is necessary to investigate their elongational rheology. Thus, concentrated TEMPO-oxidized CNF and CNC hydrogels were subjected to monotonic and cyclic lubricated compression tests. These tests revealed for the first time that the complex compression rheology of these two electrostatically stabilised hydrogels combines viscoelasticity and viscoplasticity. The effect of their nanofibre content and aspect ratio on their compression response was clearly emphasised and discussed. The ability of a non-linear elasto-viscoplastic model to reproduce the experiments was assessed. Even if some discrepancies were observed at low or high strain rates, the model was consistent with the experiments.
Collapse
Affiliation(s)
- P J J Dumont
- Univ. Lyon, INSA-Lyon, CNRS, LaMCoS, UMR5259, 69621 Villeurbanne, France.
| | - S Gupta
- Univ. Lyon, INSA-Lyon, CNRS, LaMCoS, UMR5259, 69621 Villeurbanne, France; Univ. Grenoble Alpes, CNRS, Grenoble INP, 3SR Lab, F-38000 Grenoble, France
| | - F Martoïa
- Univ. Lyon, INSA-Lyon, CNRS, LaMCoS, UMR5259, 69621 Villeurbanne, France
| | - L Orgéas
- Univ. Grenoble Alpes, CNRS, Grenoble INP, 3SR Lab, F-38000 Grenoble, France
| |
Collapse
|
17
|
Abstract
Biomaterials with the ability to self-heal and recover their structural integrity offer many advantages for applications in biomedicine. The past decade has witnessed the rapid emergence of a new class of self-healing biomaterials commonly termed injectable, or printable in the context of 3D printing. These self-healing injectable biomaterials, mostly hydrogels and other soft condensed matter based on reversible chemistry, are able to temporarily fluidize under shear stress and subsequently recover their original mechanical properties. Self-healing injectable hydrogels offer distinct advantages compared to traditional biomaterials. Most notably, they can be administered in a locally targeted and minimally invasive manner through a narrow syringe without the need for invasive surgery. Their moldability allows for a patient-specific intervention and shows great prospects for personalized medicine. Injected hydrogels can facilitate tissue regeneration in multiple ways owing to their viscoelastic and diffusive nature, ranging from simple mechanical support, spatiotemporally controlled delivery of cells or therapeutics, to local recruitment and modulation of host cells to promote tissue regeneration. Consequently, self-healing injectable hydrogels have been at the forefront of many cutting-edge tissue regeneration strategies. This study provides a critical review of the current state of self-healing injectable hydrogels for tissue regeneration. As key challenges toward further maturation of this exciting research field, we identify (i) the trade-off between the self-healing and injectability of hydrogels vs their physical stability, (ii) the lack of consensus on rheological characterization and quantitative benchmarks for self-healing injectable hydrogels, particularly regarding the capillary flow in syringes, and (iii) practical limitations regarding translation toward therapeutically effective formulations for regeneration of specific tissues. Hence, here we (i) review chemical and physical design strategies for self-healing injectable hydrogels, (ii) provide a practical guide for their rheological analysis, and (iii) showcase their applicability for regeneration of various tissues and 3D printing of complex tissues and organoids.
Collapse
Affiliation(s)
- Pascal Bertsch
- Department
of Dentistry-Regenerative Biomaterials, Radboud Institute for Molecular
Life Sciences, Radboud University Medical
Center, 6525 EX Nijmegen, The Netherlands
| | - Mani Diba
- Department
of Dentistry-Regenerative Biomaterials, Radboud Institute for Molecular
Life Sciences, Radboud University Medical
Center, 6525 EX Nijmegen, The Netherlands,John
A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States,Wyss
Institute for Biologically Inspired Engineering at Harvard University, Boston, Massachusetts 02115, United States
| | - David J. Mooney
- John
A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States,Wyss
Institute for Biologically Inspired Engineering at Harvard University, Boston, Massachusetts 02115, United States
| | - Sander C. G. Leeuwenburgh
- Department
of Dentistry-Regenerative Biomaterials, Radboud Institute for Molecular
Life Sciences, Radboud University Medical
Center, 6525 EX Nijmegen, The Netherlands,
| |
Collapse
|