1
|
Yamazaki S, Aizawa T, Miyamae T. Correlation Between the Molecular-Level Behavior of Polyurethane on Oily Surfaces and Adhesive Strength. ACS OMEGA 2025; 10:17468-17475. [PMID: 40352516 PMCID: PMC12059937 DOI: 10.1021/acsomega.4c11036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 02/03/2025] [Accepted: 04/03/2025] [Indexed: 05/14/2025]
Abstract
Adhesive bonding is commonly used in various industrial fields. Among the various types of adhesives, polyurethane adhesives have unique properties, such as room-temperature curing, flexibility, and heat insulation, making them indispensable materials in the current automotive and aerospace industries. In these industries, adherends coated with mineral oil or press oil on their surfaces to prevent corrosion are often required, and bonding without degreasing is preferred. Hence, understanding the mechanism of surface adhesion in the presence of oil is crucial. This study aimed to understand the molecular behavior of oil at adherend interfaces and its impact on adhesion. The correlation between the behavior of silicone oil at polyurethane interfaces and adhesion strength was investigated using vibrational sum frequency generation (SFG) spectroscopy, an interface-specific vibrational spectroscopic technique. When polyurethane is cured at room temperature, the silicone oil present at the interface is absorbed into the bulk and disappears from the interface. After being absorbed into the polyurethane during room-temperature curing, the silicone oil remained near the interfacial region, and when the polyurethane was annealed to promote polymerization, it reappeared at the interface, resulting in a significant decrease in adhesion strength. These observations of the behavior of silicone oil at the polyurethane adhesive interface can be explained by the relationships between the solubility of silicone oil, the raw compounds of polyurethane, and polyurethane and provide significant insights into the reliability of adhesion on oily surfaces. They will also contribute to the design of curing behavior for the development of polyurethane adhesives with high adhesion strength to oil-covered adherend surfaces.
Collapse
Affiliation(s)
- Seito Yamazaki
- Graduate
School of Science and Engineering, Chiba
University, 1-33 Inage-ku, Chiba, Chiba 263-8522, Japan
| | - Takahiro Aizawa
- Polyurethane
Research Laboratory, Tosoh Co., 1-8 Kasumi, Yokkaichi, Mie 510-8540, Japan
| | - Takayuki Miyamae
- Graduate
School of Science and Engineering, Chiba
University, 1-33 Inage-ku, Chiba, Chiba 263-8522, Japan
- Molecular
Chirality Research Center, 1-33 Inage-ku, Chiba-shi 263-8522, Japan
- Soft
Molecular Activation Research Center, 1-33 Inage-ku, Chiba, Chiba 263-8522, Japan
| |
Collapse
|
2
|
Hu X, Li B, Xu Z, Ma YH, Han X, Hu L, Wang C, Wang N, Xu J, Sheng Z, Lu X. Molecular Structures of Poly(methyl methacrylate) at Different Buried Interfaces Revealed by Sum Frequency Generation Vibrational Spectroscopy. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:21291-21300. [PMID: 39316696 DOI: 10.1021/acs.langmuir.4c03038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
Silica or calcium fluoride (CaF2) substrate-supported poly(methyl methacrylate) (PMMA) thin films as insulating layers are commonly used in photoelectric/photovoltaic devices to improve the efficiency or stability of these devices. However, a comparative investigation of molecular structures at buried PMMA/silica and PMMA/CaF2 interfaces under thermal stimuli remains unexplored. In this study, we qualitatively and quantitatively revealed different molecular orderings and orientations of PMMA at two interfaces before and after annealing using sum frequency generation (SFG) vibrational spectroscopy. SFG vibrations were carefully assigned by using various deuterated PMMAs. SFG results indicated that, at the buried PMMA/silica interface, the side OCH3 groups were prone to lie down before annealing and tended to stand up after annealing. In contrast, the case was the opposite at the buried PMMA/CaF2 interface. The relative hydrophobicity/hydrophilicity of the two substrates and the developed hydrogen bonds upon annealing at the buried PMMA/silica interface, which is absent at the CaF2 surface, are believed to be the driving forces for different interfacial molecular structures. This study benefits the molecular-level understanding of the interfacial local structural relaxation of polymers at buried interfaces and the rational design of photoelectric/photovoltaic devices from the molecular level.
Collapse
Affiliation(s)
- Xintong Hu
- Institute of Physical Science and Information Technology, Anhui University, Hefei 230601, China
- High Magnetic Field Laboratory, HFIPS, Chinese Academy of Sciences, Hefei 230031, Anhui, China
| | - Bolin Li
- High Magnetic Field Laboratory, HFIPS, Chinese Academy of Sciences, Hefei 230031, Anhui, China
| | - Zhaohui Xu
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Yong-Hao Ma
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Xiaofeng Han
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Linhua Hu
- Key Laboratory of Photovoltaic and Energy Conservation Materials, CAS, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, Anhui, China
| | - Chu Wang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Ningfang Wang
- Institute of Physical Science and Information Technology, Anhui University, Hefei 230601, China
- High Magnetic Field Laboratory, HFIPS, Chinese Academy of Sciences, Hefei 230031, Anhui, China
| | - Jinsheng Xu
- Institute of Physical Science and Information Technology, Anhui University, Hefei 230601, China
- High Magnetic Field Laboratory, HFIPS, Chinese Academy of Sciences, Hefei 230031, Anhui, China
| | - Zhigao Sheng
- High Magnetic Field Laboratory, HFIPS, Chinese Academy of Sciences, Hefei 230031, Anhui, China
| | - Xiaolin Lu
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| |
Collapse
|
3
|
Zhang S, Fu N, Cui W, Peng S, Srivatsan N, Chen Z. Probing the Saltwater Immersion Effect on Buried Interfacial Structures between a Sealant and Adhesion Promoter at the Molecular Level. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024. [PMID: 39150881 DOI: 10.1021/acs.langmuir.4c01449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/18/2024]
Abstract
In this research, we used sum frequency generation vibrational spectroscopy to investigate the buried interface of a thiol-epoxy model aerospace sealant in contact with a silane-based adhesion promoter (6111) following exposures to 3% saltwater at elevated temperatures and elevated temperatures alone. The results suggest that the saltwater caused a change at the interface between the adhesion promoter and sealant, while an elevated temperature of 60 °C itself did not affect the interfacial structure noticeably. Model hydrolyzed and nonhydrolyzed silanes were also used in the study to compare with the adhesion promoter 6111 to understand the interfacial behavior of main silane components in 6111 as well as their potential role in adhesion. The amino silane in 6111 likely segregates more at the sealant/adhesion promoter interface and interacts with the sealant compared to the vinyl silane. The results imply that the saltwater immersion process led to the disordering of the adhesion promoter/sealant interface (caused by interfacial structural randomization), which could potentially have implications for adhesion.
Collapse
Affiliation(s)
- Shuqing Zhang
- Department of Macromolecular Science and Engineering, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Na Fu
- PPG Aerospace, 2890 W. Empire Ave, Burbank, California 91504, United States
| | - Weibin Cui
- PPG Aerospace, 2890 W. Empire Ave, Burbank, California 91504, United States
| | - Shane Peng
- PPG Aerospace, 2890 W. Empire Ave, Burbank, California 91504, United States
| | | | - Zhan Chen
- Department of Macromolecular Science and Engineering, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
4
|
Wu Y, Wang T, Fay JDB, Zhang L, Hirth S, Hankett J, Chen Z. Silane Effects on Adhesion Enhancement of 2K Polyurethane Adhesives. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:19016-19026. [PMID: 38085956 DOI: 10.1021/acs.langmuir.3c03166] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
With excellent properties such as great flexibility, outstanding chemical resistance, and superb mechanical strength, two-part polyurethane (2K PU) adhesives have been widely applied in many applications, including those in transportation and construction. Despite the extensive use, their adhesion to nonpolar polymer substrates still needs to be improved and has been widely studied. The incorporation of silane molecules and the use of plasma treatment on substrate surfaces are two popular methods to increase the adhesion of 2K PU adhesives, but their detailed adhesion enhancement mechanisms are still largely unknown. In this research, sum frequency generation (SFG) vibrational spectroscopy was used to probe the influence of added or coated silanes on the interfacial structure at the buried polypropylene (PP)/2K PU adhesive interface in situ. How plasma treatment on PP could improve adhesion was also investigated. To achieve maximum adhesion, two methods to involve silanes were studied. In the first method, silanes were directly mixed with the 2K PU adhesive before use. In the second method, silane molecules were spin-coated onto the PP substrate before the PU adhesive applied. It was found that the first method could not improve the 2K PU adhesion to PP, while the second method could substantially enhance such adhesion. SFG studies demonstrated that with the second method silane molecules chemically reacted at the interface to connect PP and 2K PU adhesive to improve the adhesion. With the first method, silane molecules could not effectively diffuse to the interface to enhance adhesion. In this research, plasma treatment was also found to be a useful method to improve the adhesion of the 2K PU adhesive to nonpolar polymer materials.
Collapse
Affiliation(s)
- Yuchen Wu
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
- Department of Macromolecular Science and Engineering, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Tianle Wang
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Jonathan D B Fay
- BASF Corporation, 1609 Biddle Avenue, Wyandotte, Michigan 48192, United States
| | - Lu Zhang
- BASF Corporation, 1609 Biddle Avenue, Wyandotte, Michigan 48192, United States
| | - Sabine Hirth
- Material Physics and Analytics - B007, BASF SE, Carl-Bosch-Strasse 38, 67056 Ludwigshafen am Rhein, Germany
| | - Jeanne Hankett
- BASF Corporation, 1609 Biddle Avenue, Wyandotte, Michigan 48192, United States
| | - Zhan Chen
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
- Department of Macromolecular Science and Engineering, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
5
|
Gao J, Stengel P, Lu T, Wu Y, Hawker DD, Gutowski KE, Hankett JM, Kellermeier M, Chen Z. Antiadhesive Copolymers at Solid/Liquid Interfaces: Complementary Characterization of Polymer Adsorption and Protein Fouling by Sum Frequency Generation Vibrational Spectroscopy and Quartz-Crystal Microbalance Measurements with Dissipation Monitoring. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:12270-12282. [PMID: 37586045 DOI: 10.1021/acs.langmuir.3c01759] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
Amphiphilic copolymers comprising hydrophilic segments of poly(ethylene glycol) and hydrophobic domains that are able to adhere to solid/liquid interfaces have proven to be versatile ingredients in formulated products for various types of applications. Recently, we have reported the successful synthesis of a copolymer designed for modifying the surface properties of polyesters as mimics for synthetic textiles. Using sum frequency generation (SFG) spectroscopy, it was shown that the newly developed copolymer adsorbs effectively on the targeted substrates even in the presence of surfactants as supplied by common detergents. In the present work, these studies were extended to evaluate the ability of the formed copolymer adlayers to passivate polyester surfaces against undesired deposition of bio(macro)molecules, as represented by fibrinogen as model protein foulants. In addition, SFG spectroscopy was used to elucidate the structure of fibrinogen at the interface between polyester and water. To complement the obtained data with an independent technique, analogous experiments were performed using quartz-crystal microbalance with dissipation monitoring for the detection of the relevant interfacial processes. Both methods give consistent results and deliver a holistic picture of brush copolymer adsorption on polyester surfaces and subsequent antiadhesive effects against proteins under different conditions representing the targeted application in home care products.
Collapse
Affiliation(s)
- Jinpeng Gao
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Peter Stengel
- Material Science, BASF SE, RGA/BM - B007, Carl-Bosch-Strasse 38, D-67056 Ludwigshafen, Germany
| | - Tieyi Lu
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Yuchen Wu
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
- Department of Macromolecular Science and Engineering, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Dustin D Hawker
- BASF Corporation, 1609 Biddle Avenue, Wyandotte, Michigan 48192, United States
| | - Keith E Gutowski
- BASF Corporation, 1609 Biddle Avenue, Wyandotte, Michigan 48192, United States
| | - Jeanne M Hankett
- BASF Corporation, 1609 Biddle Avenue, Wyandotte, Michigan 48192, United States
| | - Matthias Kellermeier
- Material Science, BASF SE, RGA/BM - B007, Carl-Bosch-Strasse 38, D-67056 Ludwigshafen, Germany
| | - Zhan Chen
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
- Department of Macromolecular Science and Engineering, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
6
|
Yang P, Guo W, Ramamoorthy A, Chen Z. Conformation and Orientation of Antimicrobial Peptides MSI-594 and MSI-594A in a Lipid Membrane. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:5352-5363. [PMID: 37017985 DOI: 10.1021/acs.langmuir.2c03430] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
There is significant interest in the development of antimicrobial compounds to overcome the increasing bacterial resistance to conventional antibiotics. Studies have shown that naturally occurring and de novo-designed antimicrobial peptides could be promising candidates. MSI-594 is a synthetic linear, cationic peptide that has been reported to exhibit a broad spectrum of antimicrobial activities. Investigation into how MSI-594 disrupts the cell membrane is important for better understanding the details of this antimicrobial peptide (AMP)'s action against bacterial cells. In this study, we used two different synthetic lipid bilayers: zwitterionic 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) and anionic 7:3 POPC/1-palmitoyl-2-oleoyl-sn-glycero-3-phospho(1'-rac-glycerol) (POPG). Sum frequency generation (SFG) vibrational spectroscopy and attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR) were used to determine the orientations of MSI-594 and its analogue MSI-594A associated with zwitterionic POPC and anionic 7:3 POPC/POPG lipid bilayers. The simulated ATR-FTIR and SFG spectra using nuclear magnetic resonance (NMR)-determined structures were compared with experimental spectra to optimize the bent angle between the N- (1-11) and C- (12-24) termini helices and the membrane orientations of the helices; since the NMR structure of the peptide was determined from lipopolysaccharide (LPS) micelles, the optimization was needed to find the most suitable conformation and orientation in lipid bilayers. The reported experimental results indicate that the optimized MSI-594 helical hairpin structure adopts a complete lipid bilayer surface-bound orientation (denoted "face-on") in both POPC and 7:3 POPC/POPG lipid bilayers. The analogue peptide, MSI-584A, on the other hand, exhibited a larger bent angle between the N- (1-11) and C- (12-24) termini helices with the hydrophobic C-terminal helix inserted into the hydrophobic region of the bilayer (denoted "membrane-inserted") when interacting with both POPC and 7:3 POPC/POPG lipid bilayers. These experimental findings on the membrane orientations suggest that both peptides are likely to disrupt the cell membrane through the carpet mechanism.
Collapse
Affiliation(s)
- Pei Yang
- Department of Chemistry, The University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109-1055, United States
| | - Wen Guo
- Department of Chemistry, The University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109-1055, United States
| | - Ayyalusamy Ramamoorthy
- Department of Chemistry, The University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109-1055, United States
- Department of Biophysics, The University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109-1055, United States
| | - Zhan Chen
- Department of Chemistry, The University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109-1055, United States
- Department of Biophysics, The University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109-1055, United States
| |
Collapse
|
7
|
Gao J, Khan MR, Wu Y, Hawker DD, Gutowski KE, Konradi R, Mayr L, Hankett JM, Kellermeier M, Chen Z. Probing Interfacial Behavior and Antifouling Activity of Adsorbed Copolymers at Solid/Liquid Interfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:4557-4570. [PMID: 36947877 DOI: 10.1021/acs.langmuir.2c03056] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Polymers containing poly(ethylene glycol) (PEG) units can exhibit excellent antifouling properties, which have been proposed/used for coating of biomedical implants, separation membranes, and structures in marine environments, as well as active ingredients in detergent formulations to avoid soil redepositioning in textile laundry. This study aimed to elucidate the molecular behavior of a copolymer poly(MMA-co-MPEGMA) containing antiadhesive PEG side chains and a backbone of poly(methyl methacrylate), at a buried polymer/solution interface. Polyethylene terephthalate (PET) was used as a substrate to model polyester textile surfaces. Sum frequency generation (SFG) vibrational spectroscopy was applied to examine the interfacial behavior of the copolymer at PET/solution interfaces in situ and in real time. Complementarily, copolymer adsorption on PET and subsequent antiadhesion against protein foulants were probed by quartz-crystal microbalance experiments with dissipation monitoring (QCM-D). Both applied techniques show that poly(MMA-co-MPEGMA) adsorbs significantly to the PET/solution interface at bulk polymer solution concentrations as low as 2 ppm, while saturation of the surface was reached at 20 ppm. The hydrophobic MMA segments provide an anchor for the copolymer to bind onto PET in an ordered way, while the pendant PEG segments are more disordered but contain ordered interfacial water. In the presence of considerable amounts of dissolved surfactants, poly(MMA-co-MPEGMA) could still effectively adsorb on the PET surface and remained stable at the surface upon washing with hot and cold water or surfactant solution. In addition, it was found that adsorbed poly(MMA-co-MPEGMA) provided the PET surface with antiadhesive properties and could prevent protein deposition, highlighting the superior surface affinity and antifouling performance of the copolymer. The results obtained in this work demonstrate that amphiphilic copolymers containing PMMA anchors and PEG side chains can be used in detergent formulations to modify polyester surfaces during laundry and reduce deposition of proteins (and likely also other soils) on the textile.
Collapse
Affiliation(s)
- Jinpeng Gao
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Md Rubel Khan
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Yuchen Wu
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Macromolecular Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Dustin D Hawker
- BASF Corporation, 1609 Biddle Avenue, Wyandotte, Michigan 48192, United States
| | - Keith E Gutowski
- BASF Corporation, 1609 Biddle Avenue, Wyandotte, Michigan 48192, United States
| | - Rupert Konradi
- Biointerfaces & Delivery Systems, BASF SE, Carl-Bosch-Strasse 38, Ludwigshafen D-67056, Germany
| | - Lukas Mayr
- Material Physics, BASF SE, RAA/OS - B007, Carl-Bosch-Strasse 38, Ludwigshafen D-67056, Germany
| | - Jeanne M Hankett
- BASF Corporation, 1609 Biddle Avenue, Wyandotte, Michigan 48192, United States
| | - Matthias Kellermeier
- Material Physics, BASF SE, RAA/OS - B007, Carl-Bosch-Strasse 38, Ludwigshafen D-67056, Germany
| | - Zhan Chen
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Macromolecular Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
8
|
Wu Y, Wang T, Gao J, Zhang L, Fay JDB, Hirth S, Hankett J, Chen Z. Molecular Behavior of 1K Polyurethane Adhesive at Buried Interfaces: Plasma Treatment, Annealing, and Adhesion. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:3273-3285. [PMID: 36808974 DOI: 10.1021/acs.langmuir.2c03084] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
One-part (1K) polyurethane (PU) adhesive has excellent bulk strength and environmental resistance. It is therefore widely used in many fields, such as construction, transportation, and flexible lamination. However, when contacting non-polar polymer materials, the poor adhesion of 1K PU adhesive may not be able to support its outdoor applications. To solve this problem, plasma treatment of the non-polar polymer surface has been utilized to improve adhesion between the polymer and 1K PU adhesive. The detailed mechanisms of adhesion enhancement of the 1K PU adhesive caused by plasma treatment on polymer substrates have not been studied extensively because adhesion is a property of buried interfaces which are difficult to probe. In this study, sum frequency generation (SFG) vibrational spectroscopy was used to investigate the buried PU/polypropylene (PP) interfaces in situ nondestructively. Fourier-transform infrared spectroscopy, the X-ray diffraction technique, and adhesion tests were used as supplemental methods to SFG in the study. The 1K PU adhesive is a moisture-curing adhesive and usually needs several days to be fully cured. Here, time-dependent SFG experiments were conducted to monitor the molecular behaviors at the buried 1K PU adhesive/PP interfaces during the curing process. It was found that the PU adhesives underwent rearrangement during the curing process with functional groups gradually becoming ordered at the interface. Stronger adhesion between the plasma-treated PP substrate and the 1K PU adhesive was observed, which was achieved by the interfacial chemical reactions and a more rigid interface. Annealing the samples increased the reaction speed and enhanced the bulk PU strength with higher crystallinity. In this research, molecular mechanisms of adhesion enhancement of the 1K PU adhesive caused by the plasma treatment on PP and by annealing the PU/PP samples were elucidated.
Collapse
Affiliation(s)
- Yuchen Wu
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Macromolecular Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Tianle Wang
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Jinpeng Gao
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Lu Zhang
- BASF Corporation, 1609 Biddle Avenue, Wyandotte, Michigan 48192, United States
| | - Jonathan D B Fay
- BASF Corporation, 1609 Biddle Avenue, Wyandotte, Michigan 48192, United States
| | - Sabine Hirth
- BASF SE, RAA/OS-B007, Carl-Bosch-Strasse 38, 67056 Ludwigshafen am Rhein, Germany
| | - Jeanne Hankett
- BASF Corporation, 1609 Biddle Avenue, Wyandotte, Michigan 48192, United States
| | - Zhan Chen
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Macromolecular Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
9
|
Li B, Ma Y, Han X, Hu P, Lu X. Enhanced Sum Frequency Generation for Monolayers on Au Relative to Silica: Local Field Factors and SPR Effect. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:659-667. [PMID: 36580605 DOI: 10.1021/acs.langmuir.2c03016] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Using metals as signal magnified substrates, surface plasmon-enhanced sum frequency generation (SFG) vibrational spectroscopy is a promising technique to probe weak molecular-level signals at surfaces and interfaces. In this study, the vibrational signals of the n-alkane monolayer on the gold (Au) and silica substrates are investigated using the broadband femtosecond SFG. The enhancement factors are discovered to be up to ∼1076 and ∼31 for the methyl symmetric and asymmetric stretching (ss and as) modes of the monolayer, respectively. By systematically analyzing the second-order nonlinear susceptibility tensor components (χijks), the Fresnel coefficients (Fijks), and the surface plasmon resonance (SPR) effect, we find that the interplay between Fijk and χijk terms and the SPR effect dominate the SFG signal enhancement. Our study reveals that the relative contributions of different influencing factors (i.e., Fresnel coefficients and SPR) to the SFG signal enhancement provide an approach to interpreting enhanced SFG vibrational signals detected from probe molecules on distinct substrates and may finally guide the design of the experimental methodology to improve the detection sensitivity and signal-to-noise ratio.
Collapse
Affiliation(s)
- Bolin Li
- Anhui Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory (HMFL), Hefei Institutes of Physical Science (HFIPS), Chinese Academy of Sciences, Hefei, Anhui230031, P. R. China
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing210096, China
| | - Yonghao Ma
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing210096, China
| | - Xiaofeng Han
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing210096, China
| | - Pengcheng Hu
- School of Medical Imaging, Xuzhou Medical College, Xuzhou, Jiangsu221004, China
| | - Xiaolin Lu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing210096, China
| |
Collapse
|
10
|
Sum frequency generation imaging for semi-crystalline polymers. Polym J 2022. [DOI: 10.1038/s41428-021-00613-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|