1
|
Trinh TE, Ku K, Yeo H. Thermal Conductivity in Side-Chain Liquid-Crystal Epoxy Polymers: Influence of Mesogen Structure. Macromol Rapid Commun 2025; 46:e2400762. [PMID: 39648300 DOI: 10.1002/marc.202400762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 11/22/2024] [Indexed: 12/10/2024]
Abstract
Side-chain liquid-crystal epoxy polymers (SCLCEPs) are valued for their unique properties, which combine LC side chains with epoxide-based polyether main chains for ordered molecular arrangements. They have high thermal conductivity and optical properties due to their low polydispersity and high crystallinity. Achieving optimal thermal conductivity in SCLCEPs involves addressing factors such as mesogen nature, polymer design, and alignment within the polymer structure. Balancing these factors enhances their suitability for heat dissipation in advanced materials. In this study, SCLCEPs with a polyethylene glycol backbone and laterally arranged mesogens are synthesized via anionic ring opening of mesogenic epoxides with unique LC phases. These monomers, which feature biphenyl mesogens attached to glycidyloxy ether and different alkyl chain lengths on the other side, is designed to facilitate mesogen self-assembly and interaction. The resulting polymers exhibited higher crystallinity and LC phases than the monomers. Notably, because of their LC nature, their thermal conductivity exceeds 0.48 W·m-1 K-1 and increases with shortened alkyl chain lengths, reaching 0.57 W·m-1 K-1. This research expands the applications of SCLCEPs in advanced fields requiring enhanced thermal properties.
Collapse
Affiliation(s)
- Thi En Trinh
- Department of Science Education, Kyungpook National University, 80, Daehak-ro, Buk-gu, Daegu, 41566, Republic of Korea
| | - Kyosun Ku
- Advanced Institute of Water Industry, Kyungpook National University, 80, Daehak-ro, Buk-gu, Daegu, 41566, Republic of Korea
| | - Hyeonuk Yeo
- Department of Science Education, Kyungpook National University, 80, Daehak-ro, Buk-gu, Daegu, 41566, Republic of Korea
- Department of Chemistry Education, Kyungpook National University, 80, Daehak-ro, Buk-gu, Daegu, 41566, Republic of Korea
- School of Applied Chemical Engineering, Kyungpook National University, 80, Daehak-ro, Buk-gu, Daegu, 41566, Republic of Korea
| |
Collapse
|
2
|
Chen L, Yuan J, He X, Zheng F, Lu X, Xiang S, Lu Q. Controllable Circularly Polarized Luminescence with High Dissymmetry Factor via Co-Assembly of Achiral Dyes in Liquid Crystal Polymer Films. SMALL METHODS 2024; 8:e2301517. [PMID: 38221818 DOI: 10.1002/smtd.202301517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/29/2023] [Indexed: 01/16/2024]
Abstract
Circularly polarized luminescence (CPL) materials are highly demanded due to their great potential in optoelectronic and chiroptical elements. However, the preparation of CPL films with high luminescence dissymmetry factors (glum) remains a formidable task, which impedes their practical application in film-based devices. Herein, a facile strategy to prepare solid CPL film with a high glum through exogenous chiral induction and amplification of liquid crystal polymers is proposed. Amplification and reversion of the CPL appear when the films are annealed at the chiral nematic liquid crystalline temperature and the maximal glum up to 0.30 due to the enhancement of selective reflection. Thermal annealing treatment at different liquid crystalline states facilitates the formation of the chiral liquid phase and adjusts the circularly polarized emission. This work not only provides a straightforward and versatile platform to construct organic films capable of exhibiting strong circularly polarized emission but also is helpful in understanding the exact mechanism for the liquid crystal enhancement of CPL performance.
Collapse
Affiliation(s)
- Lianjie Chen
- School of Chemical Science and Technology, Tongji University, Shanghai, 200092, China
| | - Jianan Yuan
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai, 200240, China
| | - Xiaojie He
- School of Chemical Science and Technology, Tongji University, Shanghai, 200092, China
| | - Feng Zheng
- School of Chemical Science and Technology, Tongji University, Shanghai, 200092, China
| | - Xuemin Lu
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai, 200240, China
| | - Shuangfei Xiang
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Qinghua Lu
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai, 200240, China
| |
Collapse
|
3
|
Li S, Tang Y, Fan Q, Li Z, Zhang X, Wang J, Guo J, Li Q. When quantum dots meet blue phase liquid crystal elastomers: visualized full-color and mechanically-switchable circularly polarized luminescence. LIGHT, SCIENCE & APPLICATIONS 2024; 13:140. [PMID: 38876989 PMCID: PMC11178798 DOI: 10.1038/s41377-024-01479-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/11/2024] [Accepted: 05/12/2024] [Indexed: 06/16/2024]
Abstract
Polymer-based circularly polarized luminescence (CPL) materials with the advantage of diversified structure, easy fabrication, high thermal stability, and tunable properties have garnered considerable attention. However, adequate and precise tuning over CPL in polymer-based materials remains challenging due to the difficulty in regulating chiral structures. Herein, visualized full-color CPL is achieved by doping red, green, and blue quantum dots (QDs) into reconfigurable blue phase liquid crystal elastomers (BPLCEs). In contrast to the CPL signal observed in cholesteric liquid crystal elastomers (CLCEs), the chiral 3D cubic superstructure of BPLCEs induces an opposite CPL signal. Notably, this effect is entirely independent of photonic bandgaps (PBGs) and results in a high glum value, even without matching between PBGs and the emission bands of QDs. Meanwhile, the lattice structure of the BPLCEs can be reversibly switched via mechanical stretching force, inducing on-off switching of the CPL signals, and these variations can be further fixed using dynamic disulfide bonds in the BPLCEs. Moreover, the smart polymer-based CPL systems using the BPLCEs for anti-counterfeiting and information encryption have been demonstrated, suggesting the great potential of the BPLCEs-based CPL active materials.
Collapse
Affiliation(s)
- Shan Li
- Key Laboratory of Carbon Fibers and Functional Polymers, Ministry of Education, and College of Materials Science and Engineering, Beijing University of Chemical Technology, 100029, Beijing, China
| | - Yuqi Tang
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Qingyan Fan
- Key Laboratory of Carbon Fibers and Functional Polymers, Ministry of Education, and College of Materials Science and Engineering, Beijing University of Chemical Technology, 100029, Beijing, China
| | - Ziyuan Li
- Key Laboratory of Carbon Fibers and Functional Polymers, Ministry of Education, and College of Materials Science and Engineering, Beijing University of Chemical Technology, 100029, Beijing, China
| | - Xinfang Zhang
- Materials Science Graduate Program, Kent State University, Kent, OH, 44242, USA
| | - Jingxia Wang
- CAS Key Laboratory of Bio-Inspired Materials and Interfacial Sciences, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 100190, Beijing, China
| | - Jinbao Guo
- Key Laboratory of Carbon Fibers and Functional Polymers, Ministry of Education, and College of Materials Science and Engineering, Beijing University of Chemical Technology, 100029, Beijing, China.
| | - Quan Li
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China.
- Materials Science Graduate Program, Kent State University, Kent, OH, 44242, USA.
| |
Collapse
|
4
|
Choi YJ, Lee JJ, Park JS, Kang H, Kim M, Kim J, Okada D, Kim DH, Araoka F, Choi SW. Circularly Polarized Light Emission from Nonchiral Perovskites Incorporated into Nanoporous Cholesteric Polymer Templates. ACS NANO 2024; 18:909-918. [PMID: 37991339 DOI: 10.1021/acsnano.3c09596] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
Chiral perovskites have garnered significant attention, owing to their chiroptical properties and emerging applications. Current fabrication methods often involve complex chemical synthesis routes. Herein, an alternative approach for introducing chirality into nonchiral hybrid organic-inorganic perovskites (HOIPs) using nanotemplates composed of cholesteric polymeric networks is proposed. This method eliminates the need for additional molecular design. In this process, HOIP precursors are incorporated into a porous cholesteric polymer film, and two-dimensional (2D) HOIPs grow inside the nanopores. Circularly polarized light emission (CPLE) was observed even though the selective reflection band of the cholesteric polymer films containing a representative HOIP deviated from the emission wavelength of the 2D HOIP. This effect was confirmed by the induced circular dichroism (CD) observed in the absorbance band of the HOIP. The observed CPLE and CD are attributed to the chirality induced by the template in the originally nonchiral 2D HOIP. Additionally, the developed 2D HOIP exhibited a long exciton lifetime and good stability under harsh conditions. These findings provide valuable insights into the development and design of innovative optoelectronic materials.
Collapse
Affiliation(s)
- Yong-Jun Choi
- Department of Advanced Materials Engineering for Information & Electronics, Kyung Hee University, Gyeonggi-do 17104, Republic of Korea
- Integrated Education Institute for Frontier Science & Technology (BK21 Four), Kyung Hee University, Gyeonggi-do 17104, Republic of Korea
| | - Jae-Jin Lee
- Department of Advanced Materials Engineering for Information & Electronics, Kyung Hee University, Gyeonggi-do 17104, Republic of Korea
- Integrated Education Institute for Frontier Science & Technology (BK21 Four), Kyung Hee University, Gyeonggi-do 17104, Republic of Korea
| | - Jun-Sung Park
- Department of Advanced Materials Engineering for Information & Electronics, Kyung Hee University, Gyeonggi-do 17104, Republic of Korea
- Integrated Education Institute for Frontier Science & Technology (BK21 Four), Kyung Hee University, Gyeonggi-do 17104, Republic of Korea
| | - Haeun Kang
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Minju Kim
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Jeongwon Kim
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Daichi Okada
- Physicochemical Soft Matter Research Unit, RIKEN Center for Emergent Matter Science (CEMS), Wako, Saitama 351-0198, Japan
| | - Dong Ha Kim
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Republic of Korea
- Basic Sciences Research Institute (Priority Research Institute), Ewha Womans University, Seoul 03760, Republic of Korea
| | - Fumito Araoka
- Physicochemical Soft Matter Research Unit, RIKEN Center for Emergent Matter Science (CEMS), Wako, Saitama 351-0198, Japan
| | - Suk-Won Choi
- Department of Advanced Materials Engineering for Information & Electronics, Kyung Hee University, Gyeonggi-do 17104, Republic of Korea
- Integrated Education Institute for Frontier Science & Technology (BK21 Four), Kyung Hee University, Gyeonggi-do 17104, Republic of Korea
| |
Collapse
|
5
|
Zhou Y, Wang Y, Song Y, Zhao S, Zhang M, Li G, Guo Q, Tong Z, Li Z, Jin S, Yao HB, Zhu M, Zhuang T. Helical-caging enables single-emitted large asymmetric full-color circularly polarized luminescence. Nat Commun 2024; 15:251. [PMID: 38177173 PMCID: PMC10767107 DOI: 10.1038/s41467-023-44643-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 12/27/2023] [Indexed: 01/06/2024] Open
Abstract
Colorful circularly polarized luminescence materials are desired for 3D displays, information security and asymmetric synthesis, in which single-emitted materials are ideal owing to self-absorption avoidance, evenly entire-visible-spectrum-covered photon emission and facile device fabrication. However, restricted by the synthesis of chiral broad-luminescent emitters, the realization and application of high-performing single-emitted full-color circularly polarized luminescence is in its infancy. Here, we disclose a single-emitted full-color circularly polarized luminescence system (spiral full-color emission generator), composed of whole-vis-spectrum emissive quantum dots and chiral liquid crystals. The system achieves a maximum luminescence dissymmetry factor of 0.8 and remains an order of 10-1 in visible region by tuning its photonic bandgap. We then expand it to a series of desired customized-color circularly polarized luminescence, build chiral devices and further demonstrate the working scenario in the photoinduced enantioselective polymerization. This work contributes to the design and synthesis of efficient chiroptical materials, device fabrication and photoinduced asymmetric synthesis.
Collapse
Affiliation(s)
- Yajie Zhou
- Department of Chemistry, University of Science and Technology of China, Hefei, 230026, PR China
| | - Yaxin Wang
- Department of Chemistry, University of Science and Technology of China, Hefei, 230026, PR China
| | - Yonghui Song
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, PR China
- Department of Applied Chemistry, University of Science and Technology of China, Hefei, 230026, PR China
| | - Shanshan Zhao
- Department of Chemistry, University of Science and Technology of China, Hefei, 230026, PR China
| | - Mingjiang Zhang
- Department of Chemistry, University of Science and Technology of China, Hefei, 230026, PR China
| | - Guangen Li
- Department of Chemistry, University of Science and Technology of China, Hefei, 230026, PR China
| | - Qi Guo
- Department of Chemistry, University of Science and Technology of China, Hefei, 230026, PR China
| | - Zhi Tong
- Department of Chemistry, University of Science and Technology of China, Hefei, 230026, PR China
| | - Zeyi Li
- Department of Chemistry, University of Science and Technology of China, Hefei, 230026, PR China
| | - Shan Jin
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui University, Hefei, 230601, PR China
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, 230601, PR China
- Key Laboratory of Functional Inorganic Material Chemistry of Anhui Province, Anhui University, Hefei, 230601, PR China
| | - Hong-Bin Yao
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, PR China
- Department of Applied Chemistry, University of Science and Technology of China, Hefei, 230026, PR China
| | - Manzhou Zhu
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui University, Hefei, 230601, PR China
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, 230601, PR China
- Key Laboratory of Functional Inorganic Material Chemistry of Anhui Province, Anhui University, Hefei, 230601, PR China
| | - Taotao Zhuang
- Department of Chemistry, University of Science and Technology of China, Hefei, 230026, PR China.
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, PR China.
| |
Collapse
|
6
|
Yang S, Zhang S, Hu F, Han J, Li F. Circularly polarized luminescence polymers: From design to applications. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2023.215116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
7
|
Wei W, Xiong H. Liquid-Crystalline Polymers: Molecular Engineering, Hierarchical Structures, and Applications. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:11514-11520. [PMID: 36103648 DOI: 10.1021/acs.langmuir.2c01768] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Liquid-crystalline polymers (LCPs) are a unique class of soft materials that combine liquid crystal and polymer characteristics. This perspective highlights recent advances of LCPs on the aspects of molecular engineering, hierarchical structures, and emerging applications. The strategy of sequence control in polymer synthesis has been introduced to tailor the primary structures of LCPs as well as their phases and orders. By incorporating mesogenic motifs rich in shape, order, and interaction into LCPs, novel bulk and interfacial structures on hierarchical scales are anticipated. The intrinsic features and fascinating properties of LCPs enable them to find potential applications in emerging areas including integrated circuits, lasing, environment, and energy, implying compelling opportunities for LCPs in fundamental science and transformative technologies.
Collapse
|