1
|
El-Fattah WA, Guesmi A, Hamadi NB, Alzahrani A, Alluhaybi AA, El-Desouky MG. Effective of mercury (II) removal from contaminated water using an innovative nanofiber membrane: Kinetics, isotherms, and optimization studies. Int J Biol Macromol 2025; 311:143596. [PMID: 40318734 DOI: 10.1016/j.ijbiomac.2025.143596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 03/31/2025] [Accepted: 04/26/2025] [Indexed: 05/07/2025]
Abstract
The study aimed to evaluate enhancements in both stability and efficiency concerning the removal of Hg(II) ions. This research specifically concentrated on creating an innovative electrospun nanofibrous membrane (CPP) that is made up of chitosan (CS), polyethylenimine (PEI), and polycaprolactone (PCL). The membrane's primary purpose is to enhance the elimination of Hg(II) from aqueous solutions. By carefully adjusting the electrospinning process variables, we improved its efficiency. Characterization techniques like FTIR, XRD, XPS, SEM, and EDX confirm the successful creation of a highly crosslinked CPP nanofiber membrane. This detailed examination reveals the textural attributes of the material, concurrently underlining its relevance in various domains. The investigation additionally delves into the impact of several aspects on the adsorption mechanism, comprising dosage, pH levels, temperature, and initial Hg(II) concentration. The research incorporates an analysis of adsorption characteristics by integrating kinetic evaluations with equilibrium studies. The findings indicate that the adsorption mechanism aligns with the values of pseudo-second-order kinetics and is appropriately represented by the Langmuir isotherm model. Furthermore, the data suggest a hybrid nature of the adsorption procedure, exhibiting both spontaneous and endothermic characteristics, as showed by the increased metal adsorption at elevated temperatures. The analysis reveals that optimal conditions for the elimination of Hg(II) ions in water purification involve a pH of 6 and the use of 0.02 g of CPP per 25 mL of solution, corresponding to a projected adsorption capability of 393.043 mg/g precisely for the Hg(II) ions solution. To enhance the efficacy of the adsorbent in the elimination of Hg(II) ions from water, several key parameters require careful examination. Notable advancements in adsorption performance have been achieved through the application of response surface methodologies and structured experimentation utilizing the Box-Behnken design, facilitated by the Design-Expert software. A thorough evaluation of the reusability of the adsorbent, conducted during five consecutive cycles of adsorption and desorption, shows a remarkable stability in its ability to efficiently remove Hg(II) ions.
Collapse
Affiliation(s)
- Wesam Abd El-Fattah
- Chemistry Department, College of Science, IMSIU (Imam Mohammad Ibn Saud Islamic University), P.O. Box 5701, Riyadh 11432, Saudi Arabia
| | - Ahlem Guesmi
- Chemistry Department, College of Science, IMSIU (Imam Mohammad Ibn Saud Islamic University), P.O. Box 5701, Riyadh 11432, Saudi Arabia
| | - Naoufel Ben Hamadi
- Chemistry Department, College of Science, IMSIU (Imam Mohammad Ibn Saud Islamic University), P.O. Box 5701, Riyadh 11432, Saudi Arabia
| | - Amjad Alzahrani
- Department of Chemistry, University College in Al-Qunfudhah, Umm Al-Qura University, Saudi Arabia
| | - Ahmad A Alluhaybi
- Department of Chemistry, College of Science and Arts, King Abdulaziz University, Rabigh, Saudi Arabia
| | - M G El-Desouky
- Egyptian propylene and polypropylene company, Port Said 42511, Egypt.
| |
Collapse
|
2
|
Alshammari NAH, Elsayed NH, Alatawi RAS, Bukhari AAH, Alnawmasi JS, Alshareef SA, Alnahdi KM, Alhawiti AS, El-Binadary AA. Synthesis of pomegranate peel-activated carbon encapsulated onto carboxymethylcellulose and polyethylenimine for cadmium (II) adsorption: Optimization, kinetics and isotherm modeling. Int J Biol Macromol 2025; 310:143348. [PMID: 40262686 DOI: 10.1016/j.ijbiomac.2025.143348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 04/08/2025] [Accepted: 04/17/2025] [Indexed: 04/24/2025]
Abstract
This research explores pomegranate peel as a precursor for activated carbon to eliminate cadmium (II) ions from aqueous solutions. The produced activated carbon was encapsulated with carboxymethylcellulose and polyethylenimine, then crosslinked with epichlorohydrin to form activated carbon carboxymethylcellulose and polyethyleneimine (ACCP) hydrogel beads. Numerous analytical methods were working to characterize the adsorbent, including X-ray diffraction (XRD), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), energy-dispersive X-ray spectroscopy (EDX), and nitrogen adsorption/desorption isotherms. The BET analysis revealed a surface area of 110.02 m2/g, indicating a highly porous material with numerous active adsorption sites. A pore volume of 0.13 cc/g shows significant capacity for retaining adsorbed ions. The average pore radius of 1.88 nm classifies as mesopores, typically found near the transition between micropores and mesopores. Examine the influence of various factors, including pH, concentration of Cd(II), amount of adsorbent, duration of contact, and temperature, on the adsorption process. The adsorption isotherm monitored the Langmuir equation, suggesting a specific adsorption procedure. Kinetics were defined by the pseudo-second-order model, linking the adsorption rate to the square of unoccupied sites. Thermodynamic parameters yielded ΔHo of 97.94 kJ/mol and ΔSo of 334.8 J/mol.K, indicating an endothermic and spontaneous adsorption process. Various mechanisms for Cd(II) interaction with ACCP may include ion exchange, electrostatic forces, or complexation. Data indicate that optimal parameters for efficient Cd(II) removal in water are a pH of 6, 0.02 g of ACCP per 25 mL solution, and an adsorption capacity of 301.6 mg/g. To enhance the adsorbent's efficacy, various influential parameters must be thoroughly examined. A Box-Behnken design (BBD) and response surface methodology (RSM) are used to help identify the ideal conditions for Cd(II) adsorption. An investigation of the adsorbent's reusability over five cycles shows a substantial reliability for removal applications.
Collapse
Affiliation(s)
- Nawaa Ali H Alshammari
- Department of Chemistry, Faculty of Science, Northern Border University, Arar 73222, Saudi Arabia
| | - Nadia H Elsayed
- Department of Chemistry, Faculty of Science, University of Tabuk, Tabuk 71421, Saudi Arabia.
| | - Raedah A S Alatawi
- Department of Chemistry, Faculty of Science, University of Tabuk, Tabuk 71421, Saudi Arabia
| | | | - Jawza Sh Alnawmasi
- Department of Chemistry, College of Science, Qassim University, Buraydah, 51452, Qassim, Saudi Arabia
| | | | - Kholoud M Alnahdi
- Physics Department, Faculty of Science, University of Tabuk, 71491, Tabuk, Saudi Arabia
| | - Aliyah S Alhawiti
- Department of Chemistry, Faculty of Science, University of Tabuk, Tabuk 71421, Saudi Arabia
| | - A A El-Binadary
- Chemical Department, Faculty of Science, Damietta University, Damietta 34517, Egypt
| |
Collapse
|
3
|
Ren Y, Hou Y, Song J, Zhi D, Li N, Yu Y, Zhu D. Rational Design of Regenerable Amino-Functionalized Fluorescent Covalent Organic Framework for the Exclusive Detection of Mercury(II). LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:22990-22996. [PMID: 39404143 DOI: 10.1021/acs.langmuir.4c03186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
Goal-oriented development of novel covalent organic frameworks (COFs) to construct a sensing platform for highly toxic mercury (II, Hg2+) is of tremendous significance. Recently, numerous COFs with sulfur-based ligands were developed for Hg2+ monitoring; however, strong binding of Hg2+ by sulfur makes their regeneration very tough. Herein, we designed and developed an amino-functionalized fluorescent COF (COF-NH2) through facile postmodification for Hg2+ detection in which the π-conjugation skeleton is the signal reader and the nitrogen-based side is the highly selective Hg2+ receptor. More importantly, this nitrogen-based receptor permits the reversible binding of Hg2+. As a sensing platform, the outstanding performance of COF-NH2 for Hg2+ detection was reached with respect to high sensitivity with an ultralow detection of 15.3 nM, real-time response with rapid signal change of 10 s, and facile visualization with significant fluorescence color change. Expectedly, COF-NH2 obtained facile recycling which still shows excellent response performance toward Hg2+ after six cycles based on the reversible interaction between amino groups and Hg2+. Our work not only shows an attractive foreground of fluorescent COF for Hg2+ detection but also emphasizes the easy construction of novel COF materials via the rational introduction of metal ligands for the recognition of other metal ions.
Collapse
Affiliation(s)
- Yanbiao Ren
- College of Chemistry, Chemical Engineering and Materials Science, Zaozhuang University, Zaozhuang 277160, China
| | - Yuzhen Hou
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Engineering Plastics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Jusuo Song
- Shandong Luxin Design & Engineering Co., Ltd., Jinan 250000, China
| | - Desheng Zhi
- College of Chemistry, Chemical Engineering and Materials Science, Zaozhuang University, Zaozhuang 277160, China
| | - Ning Li
- Shandong Lithium Battery Industry Alliance, Zaozhuang 277160, China
| | - Yanxin Yu
- College of Chemistry, Chemical Engineering and Materials Science, Zaozhuang University, Zaozhuang 277160, China
| | - Dandan Zhu
- College of Chemistry, Chemical Engineering and Materials Science, Zaozhuang University, Zaozhuang 277160, China
| |
Collapse
|
4
|
Kandel DR, Poudel MB, Radoor S, Chang S, Lee J. Decoration of dandelion-like manganese-doped iron oxide microflowers on plasma-treated biochar for alleviation of heavy metal pollution in water. CHEMOSPHERE 2024; 357:141757. [PMID: 38583537 DOI: 10.1016/j.chemosphere.2024.141757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/05/2024] [Accepted: 03/17/2024] [Indexed: 04/09/2024]
Abstract
Carbon-based biowaste incorporated with inorganic oxides as a composite is an enticing option to mitigate heavy metal pollution in water resources due to its more economical and efficient performance. With this in mind, we constructed manganese-doped iron oxide microflowers resembling the dandelion-like structure on the surface of cold plasma-treated carbonized rice husk (MnFe2O3/PCRH). The prepared composite exhibited 45% and 19% higher removal rates for Cu2+ and Cd2+, respectively than the pristine CRH. The MnFe2O3/PCRH composite was characterized using XRD, FTIR, FESEM, EDX, HR-TEM, XPS, BET, TGA, and zeta potential, while the adsorption capacities were investigated as a function of pH, time, and initial concentration in batch trials. As for the kinetics, the pseudo-second-order was the rate-limiting over the pseudo-first-order and Elovich model, demonstrating that the chemisorption process governed the adsorption of Cu2+ and Cd2+. Additionally, the maximum adsorption capacities of the MnFe2O3/PCRH were found to be 122.8 and 102.5 mg/g for Cu2+ and Cd2+, respectively. Based on thorough examinations by FESEM-EDS, FTIR, and XPS, the possible mechanisms for the adsorption can be ascribed to surface complexation by oxygen-containing groups, a dissolution-precipitation of the ions with -OH groups, electrostatic attraction between metal ions and the adsorbent's partially charged surface, coordination of Cu2+ and Cd2+ with π electrons by aromatic/graphitic carbon in the MnFe2O3/PCRH, and pore filling and diffusion. Lastly, the adsorption efficiencies were maintained at about 70% of its initial adsorption even after five adsorption-desorption cycles, displaying its remarkable stability and reusability.
Collapse
Affiliation(s)
- Dharma Raj Kandel
- Department of Bionanotechnology and Bioconvergence Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju, 54896, Republic of Korea
| | - Milan Babu Poudel
- Department of Convergence Technology Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju, 54896, Republic of Korea
| | - Sabarish Radoor
- Department of Polymer-Nano Science and Technology, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju, 54896, Republic of Korea
| | - Seungwon Chang
- Department of Bionanotechnology and Bioconvergence Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju, 54896, Republic of Korea
| | - Jaewoo Lee
- Department of Bionanotechnology and Bioconvergence Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju, 54896, Republic of Korea; Department of Polymer-Nano Science and Technology, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju, 54896, Republic of Korea; Department of JBNU-KIST Industry-Academia Convergence Research, Polymer Materials Fusion Research Center, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju, 54896, Republic of Korea.
| |
Collapse
|
5
|
Cong M, Wu K, Wang J, Li Z, Mao R, Niu Y, Chen H. Synthesis of Aminomethylpyridine-Decorated Polyamidoamine Dendrimer/Apple Residue for the Efficient Capture of Cd(II). LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:2320-2332. [PMID: 38236574 DOI: 10.1021/acs.langmuir.3c03447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Water contamination irritated by Cd(II) brings about severe damage to the ecosystem and to human health. The decontamination of Cd(II) by the adsorption method is a promising technology. Here, we construct aminomethylpyridine-functionalized polyamidoamine (PAMAM) dendrimer/apple residue biosorbents (AP-G1.0-AMP and AP-G2.0-AMP) for adsorbing Cd(II) from aqueous solution. The adsorption behaviors of the biosorbents for Cd(II) were comprehensively evaluated. The maximum adsorption capacities of AP-G1.0-AMP and AP-G2.0-AMP for Cd(II) are 1.40 and 1.44 mmol·g-1 at pH 6. The adsorption process for Cd(II) is swift and can reach equilibrium after 120 min. The film diffusion process dominates the adsorption kinetics, and a pseudo-second-order model is appropriate to depict this process. The uptake of Cd(II) can be promoted by increasing concentration and temperature. The adsorption isotherm follows the Langmuir model with a chemisorption mechanism. The biosorbents also display satisfied adsorption for Cd(II) in real aqueous media. The adsorption mechanism indicates that C-N, N═C, C-O, CONH, N-H, and O-H groups participate in the adsorption for Cd(II). The biosorbents display a good regeneration property and can be reused with practical value. The as-prepared biosorbents show great potential for removing Cd(II) from water solutions with remarkable significance.
Collapse
Affiliation(s)
- Mengchen Cong
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, P. R. China
| | - Kaiyan Wu
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, P. R. China
- Shandong Laboratory of Advanced Materials and Green Manufacturing at Yantai, Yantai 264006, P. R. China
| | - Jiaxuan Wang
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, P. R. China
| | - Ziwei Li
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, P. R. China
| | - Ruiyu Mao
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, P. R. China
| | - Yuzhong Niu
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, P. R. China
| | - Hou Chen
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, P. R. China
| |
Collapse
|
6
|
Wu K, Wang B, Liu T, Wang J, Xu W, Zhang B, Niu Y. Synthesis of salicylaldehyde tailored PAMAM dendrimers/chitosan for adsorption of aqueous Hg(II): Performance and mechanism. Int J Biol Macromol 2023; 253:126590. [PMID: 37652340 DOI: 10.1016/j.ijbiomac.2023.126590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/11/2023] [Accepted: 08/27/2023] [Indexed: 09/02/2023]
Abstract
Water pollution caused by Hg(II) exerts hazardous effect to environmental safety and human health. Herein, a family of salicylaldehyde tailored poly(amidoamine) (PAMAM) dendrimers/chitosan composites (G0-S/CTS, G1-S/CTS, and G2-S/CTS) were prepared and used for the removal of Hg(II) from water solution. The adsorption performance of the as-prepared composites for Hg(II) was thoroughly demonstrated by determining various influencing factors. G0-S/CTS, G1-S/CTS and G2-S/CTS exhibited competitive adsorption capacity and good adsorption selective property for Hg(II). The maximum adsorption capacity of G0-S/CTS, G1-S/CTS and G2-S/CTS for Hg(II) were 1.86, 2.18 and 4.47 mmol‧g-1, respectively. The adsorption for Hg(II) could be enhanced by raising initial Hg(II) concentration and temperature. The adsorption process was dominated by film diffusion processes with monolayer adsorption behavior. The functional groups of NH2, CONH, CN, OH, CO and CN were mainly responsible for the adsorption of Hg(II). G0-S/CTS, G1-S/CTS and G2-S/CTS displayed good regeneration property and the regenerate rate maintained 95.00 % after five adsorption-desorption cycles. The as-prepared adsorbents could be potentially used for the efficient removal of Hg(II) from aqueous solution.
Collapse
Affiliation(s)
- Kaiyan Wu
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, PR China
| | - Bingxiang Wang
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, PR China
| | - Tonghe Liu
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, PR China
| | - Jiaxuan Wang
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, PR China
| | - Wenlong Xu
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, PR China
| | - Beibei Zhang
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, PR China
| | - Yuzhong Niu
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, PR China.
| |
Collapse
|
7
|
Ma J, Li Y, Wang CC, Wang P. Superior Removal of Vanadium(V) from Simulated Groundwater with a Fe-Based Metal-Organic Framework Immobilized on Cotton Fibers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:16863-16872. [PMID: 37963178 DOI: 10.1021/acs.langmuir.3c02411] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
A suitable adsorbent is essential in the process of removing hazardous vanadium(V) from actual groundwater. In this work, MIL-88A(Fe)/cotton (MC) was employed to eliminate V(V) from simulated vanadium-contaminated groundwater. The findings demonstrated that MC exhibited an exceptional performance in removing V(V), displaying a maximum adsorption capacity of 218.71 mg g-1. MC exhibits great promise as an adsorbent for V(V) elimination in an extensive pH range spanning 3 to 11. Even in the presence of high levels of competing ions such as Cl-, NO3-, and SO42-, MC demonstrated remarkable specificity in adsorbing V(V). The results of column experiments and co-occurring ions influence tests indicate that MC is a potential candidate for effectively treating actual vanadium-contaminated groundwater. The effluent could meet the vanadium content restriction of 50 μg L-1 required in China's drinking water sources. Regeneration of MC can be performed easily without experiencing significant capacity loss. The results obtained from this research indicate the promising potential of MC in mitigating vanadium pollution.
Collapse
Affiliation(s)
- Jing Ma
- Beijing Key Laboratory of Functional Materials for Building Structure and Environment Remediation, School of Environment and Energy Engineering, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
- Beijing Energy Conservation & Sustainable Urban and Rural Development Provincial and Ministry Co-construction Collaboration Innovation Center, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Ya Li
- Beijing Key Laboratory of Functional Materials for Building Structure and Environment Remediation, School of Environment and Energy Engineering, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
- Beijing Energy Conservation & Sustainable Urban and Rural Development Provincial and Ministry Co-construction Collaboration Innovation Center, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Chong-Chen Wang
- Beijing Key Laboratory of Functional Materials for Building Structure and Environment Remediation, School of Environment and Energy Engineering, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
- Beijing Energy Conservation & Sustainable Urban and Rural Development Provincial and Ministry Co-construction Collaboration Innovation Center, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Peng Wang
- Beijing Key Laboratory of Functional Materials for Building Structure and Environment Remediation, School of Environment and Energy Engineering, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
- Beijing Energy Conservation & Sustainable Urban and Rural Development Provincial and Ministry Co-construction Collaboration Innovation Center, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| |
Collapse
|
8
|
Sun XD, Song J, Duan Z, Feng D, Tian Z, Gao D. Poly(2-vinylpyridine)/MCM-41 Composites with Micropores and Switchable Mesopores for the Removal of Cr(VI). LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023. [PMID: 38016011 DOI: 10.1021/acs.langmuir.3c02744] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
Porous structure design and reversible regulation of pore size during adsorption-desorption are crucial to the removal of pollutants in water such as Cr(VI). In this paper, micropores and switchable mesopores were constructed on MCM-41 to further improve adsorption-desorption performance of Cr(VI) via the confinement effect of micropores and opening and closing of mesopores. 2-Vinylpyridine was introduced and polymerized into the pores and on the pore mouth of MCM41 modified by C═C group (AM41) under the irradiation of ultraviolet light. The obtained samples (PM41) possessed mesopores (2.73 nm) and micropores (1.36 nm), where mesopores could open or close under different pH and micropores showed the confinement effect because their pore size is close to Cr(VI) diameter (0.87 nm). Compared with MCM-41, the introduction of poly(2-vinylpyridine) enhanced obviously its adsorptive ability and it trapped most of the Cr(VI) (99%) in solution, 12 times higher than that of the parent sample. The change of pore size is favorable to the cycle performance, and after 3 times recycling, the removal rate of Cr(VI) by PM41-20 remained above 88%. Langmuir isotherm showed a better data correlation than the Freundlich model. Cr(VI) in solution was removed by electrostatic interaction between the pyridine group and Cr(VI) and the confinement effect from micropores.
Collapse
Affiliation(s)
- Xiao Dan Sun
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
- National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science & Technology, Xi'an 710021, China
- Xi'an Key Laboratory of Green Chemicals and Functional Materials, Xi'an 710021, China
| | - Jingjing Song
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
- National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Zhangxin Duan
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
- National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Dawei Feng
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
- National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Zhenhua Tian
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
- National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science & Technology, Xi'an 710021, China
- Xi'an Key Laboratory of Green Chemicals and Functional Materials, Xi'an 710021, China
| | - Dangge Gao
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
- National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science & Technology, Xi'an 710021, China
- Xi'an Key Laboratory of Green Chemicals and Functional Materials, Xi'an 710021, China
| |
Collapse
|
9
|
Jiang C, Yang C, Fu Y, Chen F, Hu J. Highly efficient and selective Hg(II) adsorbent: ZnS grown on the surface of 4A zeolite and supported on starch aerogels. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:67059-67070. [PMID: 37103700 DOI: 10.1007/s11356-023-27107-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 04/15/2023] [Indexed: 05/25/2023]
Abstract
In this study, ZnS nanoparticles were loaded on the surface of zeolite NaA and embedded in a carbon aerogel to prepare C@zeolite-ZnS, where zeolite NaA was used in order to adsorb Zn2+ ions released during ion exchange, and the carbon aerogel had good dispersion as a carrier for ZnS to solve the ZnS agglomeration problem. The morphology and structure of C@zeolite-ZnS were characterized by FT-IR, XRD, SEM, BET, and XPS. C@zeolite-ZnS showed excellent selectivity and high removal rate for Hg(II) ions with a maximum adsorption capacity of 795.83 mg/g. When the pH, adsorption time, and Hg(II) ion concentration were 6, 30 min, and 25 mg/L at 298 K, the corresponding adsorption and removal rates reached 99.90% and 124.88 mg/g, respectively. Thermodynamic studies have shown that the adsorption process is a spontaneous heat absorption process. Furthermore, after up to 10 cycles of adsorption, the adsorbent still exhibited outstanding stability and high adsorption capacity with removal rates exceeding 99%. In conclusion, C@zeolite-ZnS, which is stable and reusable and has the ability to meet industrial emission standards after adsorption of Hg(II) ions, is very promising for industrial applications.
Collapse
Affiliation(s)
- Chuanzhi Jiang
- Center for Molecular Science and Engineering, College of Science, Northeastern University, Shenyang, 110819, People's Republic of China
| | - Chengyue Yang
- Center for Molecular Science and Engineering, College of Science, Northeastern University, Shenyang, 110819, People's Republic of China
| | - Yong Fu
- Center for Molecular Science and Engineering, College of Science, Northeastern University, Shenyang, 110819, People's Republic of China
| | - Feng Chen
- Fujian Province University Key Laboratory of Green Energy and Environment Catalysis, Ningde Normal University, Ningde, Fujian, 352100, People's Republic of China
| | - Jianshe Hu
- Center for Molecular Science and Engineering, College of Science, Northeastern University, Shenyang, 110819, People's Republic of China.
- Fujian Province University Key Laboratory of Green Energy and Environment Catalysis, Ningde Normal University, Ningde, Fujian, 352100, People's Republic of China.
| |
Collapse
|
10
|
Wu K, Wang B, Dou R, Zhang Y, Xue Z, Liu Y, Niu Y. Synthesis of functional poly(amidoamine) dendrimer decorated apple residue cellulose for efficient removal of aqueous Hg(II). Int J Biol Macromol 2023; 231:123327. [PMID: 36681224 DOI: 10.1016/j.ijbiomac.2023.123327] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 01/07/2023] [Accepted: 01/15/2023] [Indexed: 01/20/2023]
Abstract
Water pollution caused by Hg(II) exerts hazardous effect to the environment and public health. The design and fabrication of eco-friendly bioadsorbents for efficient removal of Hg(II) from aqueous solution is a promising strategy. Herein, a series of bioadsorbents were synthesized by the decoration of apple residue cellulose with different generation (G) Schiff base functionalized poly(amidoamine) (PAMAM) dendrimers (SA-G0/CE, SA-G1.0/CE and SA-G2.0/CE). The structures of SA-G0/CE, SA-G1.0/CE and SA-G2.0/CE were characterized and their adsorption performances were determined comprehensively by considering various factors. The maximum adsorption capacity of SA-G0/CE, SA-G1.0/CE and SA-G2.0/CE for Hg(II) are 1.18, 1.73 and 1.88 mmol·g-1, respectively. The as-prepared bioadsorbents exhibit competitive adsorption capacity as compared with other reported adsorbents. Moreover, they exhibit remarkable adsorption selectivity toward Hg(II) with the coexistence of Ni(II), Cd(II), Mn(II), or Pb(II). The bioadsorbents display satisfactory adsorption performance in real water sample and can be reused with good regeneration property. Adsorption mechanism reveals that the functional groups of OH, -CONH-, CN and NC take part in the adsorption for Hg(II). The work not only opens a pathway to realize the reuse of apple residue, but also provides a promising strategy to construct efficient bioadsorbents for the decontamination of Hg(II) from aqueous solution.
Collapse
Affiliation(s)
- Kaiyan Wu
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, PR China
| | - Bingxiang Wang
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, PR China
| | - Ruyue Dou
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, PR China
| | - Yiqun Zhang
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, PR China
| | - Zhongxin Xue
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, PR China
| | - Yongfeng Liu
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, PR China
| | - Yuzhong Niu
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, PR China.
| |
Collapse
|
11
|
Synthesis of hyperbranched polyamine dendrimer/chitosan/silica composite for efficient adsorption of Hg(II). Int J Biol Macromol 2023; 230:123135. [PMID: 36610565 DOI: 10.1016/j.ijbiomac.2023.123135] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 12/16/2022] [Accepted: 01/01/2023] [Indexed: 01/06/2023]
Abstract
The pollution of water system with Hg(II) exerts hazardous effect to ecosystem and public health. Adsorption is considered to be a promising strategy to remove Hg(II) from aqueous solution. Herein, hyperbranched polyamine dendrimer/chitosan/silica composite (SiO2-FP) was synthesized for the adsorption of aqueous Hg(II). The adsorption performance of SiO2-FP was comprehensively determined by considering various influencing factors. SiO2-FP displays good adsorption performance for Hg(II) with the adsorption capacity of 0.79 mmol·g-1, which is higher than the corresponding chitosan functionalized silica (SiO2-CTS) by 46.30 %. The optimal solution pH for the adsorption of Hg(II) is 6. Adsorption kinetic indicates the adsorption for Hg(II) can reach equilibrium at 250 min. Adsorption kinetic process can be well fitted by pseudo-second-order (PSO). Adsorption isotherm reveals the adsorption for Hg(II) can be promoted by increasing initial Hg(II) concentration and adsorption temperature. The adsorption isotherm indicates the adsorption process can be described by Langmuir model and the adsorption is a spontaneous, endothermic and entropy-increased process. SiO2-FP displays excellent adsorption selectivity and can 100 % adsorb Hg(II) with the coexisting of Ni(II), Zn(II), Pb(II), Mn(II), and Co(II). Adsorption mechanism demonstrates -NH-, -NH2, CN, CONH, -OH, and CO participated in the adsorption. SiO2-FP exhibits good regeneration property and the regeneration rate can maintain approximately 90 % after five adsorption-desorption cycles.
Collapse
|
12
|
Wang B, Wu K, Liu T, Cheng Z, Liu Y, Liu Y, Niu Y. Feasible synthesis of bifunctional polysilsesquioxane microspheres for robust adsorption of Hg(II) and Ag(I): Behavior and mechanism. JOURNAL OF HAZARDOUS MATERIALS 2023; 442:130121. [PMID: 36303352 DOI: 10.1016/j.jhazmat.2022.130121] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/22/2022] [Accepted: 10/02/2022] [Indexed: 06/16/2023]
Abstract
The pollution of Hg(II) and Ag(I) to water system exerts hazardous effect to aquatic ecosystem and public security. Simple strategy for constructing adsorbents to efficient remove them is greatly desired. Thus, a series of thiol and amino groups containing bifunctional polysilsesquioxanes (ASPSS) microspheres with adjustable porous structure and functional group content were synthesized by one-step feasible sol-gel process. The adsorption behavior and mechanism of ASPSS microspheres toward Hg(II) and Ag(I) was thoroughly determined. The maximum adsorption capacity of ASPSS for Hg(II) and Ag(I) are 4.32 and 3.86 mmol·g-1 under 25 ℃. The as-prepared ASPSS microspheres can 100% selectively capture Hg(II) with the coexisting of Mn(II), Co(II), Pb(II), Cd(II), Cu(II), Fe(III). And they can 100% adsorb Ag(I) with the presence of Cd(II), Pb(II), Co(II), Ni(II), and Zn(II). Moreover, the ASPSS microspheres exhibit good removal efficiency for Hg(II) and Ag(I) from simulated industrial wastewater with the coexistence of multiple pollutants. Adsorption mechanism suggests the adsorption for Hg(II) and Ag(I) is the synergistic coordination effect of amino and thiol groups. The excellent adsorption selectivity for Hg(II) and Ag(I) is attributed to the super binding ability of these functional group. ASPSS microspheres also exhibit good regeneration ability and could be reused for removing Hg (II) and Ag(I) from aqueous solution with practical value.
Collapse
Affiliation(s)
- Bingxiang Wang
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, PR China
| | - Kaiyan Wu
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, PR China
| | - Tonghe Liu
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, PR China
| | - Zekang Cheng
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, PR China
| | - Yi Liu
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, PR China
| | - Yongfeng Liu
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, PR China
| | - Yuzhong Niu
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, PR China.
| |
Collapse
|
13
|
Patel V, Patel P, Patel PM, Patel JV. Highly efficient novel nanostructured dendritic macromolecules for remediation of aquatic heavy metal ions. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.110381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
14
|
Wu K, Wu Y, Wang B, Liu Y, Xu W, Wang A, Niu Y. Adsorption behavior and mechanism for Pb(II) and Cd(II) by silica anchored salicylaldehyde modified polyamidoamine dendrimers. J Taiwan Inst Chem Eng 2022. [DOI: 10.1016/j.jtice.2022.104525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
15
|
Xu H, Xie T, Ye J, Wu Q, Wang D, Cai D. Highly Efficient and Simultaneous Removal of Cr(VI) and Imidacloprid through a Ferrocene-Modified MIL-100(Fe) Composite from an Aqueous Solution. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:6579-6591. [PMID: 35576243 DOI: 10.1021/acs.langmuir.2c00417] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
A novel nanocomposite [Fc-MIL-100(Fe)] was constructed by combining ferrocene (Fc) with the porous structural metal-organic framework [MIL-100(Fe)]. The proposed composite material could simultaneously and efficiently remove hexavalent chromium [Cr(VI)] and imidacloprid and reduced strongly noxious Cr(VI) to weakly noxious trivalent chromium [Cr(III)]. The removal efficiencies of the composite material for Cr(VI) and imidacloprid could reach 95% after 15 h. The adsorption process was determined by kinetics, isotherms, and thermodynamics. The results demonstrated that the adsorption kinetics of Cr(VI) followed the pseudo-second-order model mainly by chemisorption; meanwhile, the adsorption of imidacloprid by the material conformed to the pseudo-first-order kinetics, which indicated that physical adsorption was the main process. Additionally, the intraparticle diffusion model revealed that the uptake of imidacloprid and Cr(VI) occurred via intraparticle diffusion at the composite material. The adsorption procedure for Cr(VI) was fitted to the Langmuir model (R2 = 0.995) via monolayer adsorption, and that for imidacloprid was fitted to the Freundlich model (R2 = 0.995) due to multilayer or heterogeneous adsorption. The thermodynamic research confirmed that the adsorption procedure was exothermic and spontaneous. Infrared spectroscopy, X-ray photoelectron spectra, and the pH effect implied that intermolecular hydrogen bonding and electrostatic interaction played a crucial role during the removal process. Fc-MIL-100(Fe) also exhibited long-term stability and satisfactory regeneration and reusability. Therefore, this method may enhance an environmentally friendly and prospective approach for concurrently removing imidacloprid and Cr(VI) from wastewater.
Collapse
Affiliation(s)
- He Xu
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Tao Xie
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Jinghong Ye
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Qingchuan Wu
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Dongfang Wang
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Dongqing Cai
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| |
Collapse
|
16
|
Guo D, Huang S, Zhu Y. The Adsorption of Heavy Metal Ions by Poly (Amidoamine) Dendrimer-Functionalized Nanomaterials: A Review. NANOMATERIALS 2022; 12:nano12111831. [PMID: 35683687 PMCID: PMC9182522 DOI: 10.3390/nano12111831] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/21/2022] [Accepted: 05/24/2022] [Indexed: 02/01/2023]
Abstract
Rapid industrialization has resulted in serious heavy metal pollution. The removal of heavy metal ions from solutions is very important for environmental safety and human health. Poly (amidoamine) (PAMAM) dendrimers are artificial macromolecular materials with unique physical and chemical properties. Abundant amide bonds and amino functional groups provide them with a high affinity for heavy metal ions. Herein, PAMAM-functionalized adsorbents are reviewed in terms of different nanomaterial substrates. Approaches in which PAMAM is grafted onto the surfaces of substrates are described in detail. The adsorption isotherms and kinetics of these adsorbents are also discussed. The effects of PAMAM generation, pH, adsorbent dosage, adsorption time, thermodynamics, and ionic strength on adsorption performance are summarized. Adsorption mechanisms and the further functionalization of PAMAM-grafted adsorbents are reviewed. In addition to the positive results, existing problems are also put forward in order to provide a reference for the optimization of PAMAM-grafted adsorbents of heavy metal ions.
Collapse
Affiliation(s)
- Dandan Guo
- Institute of Drug Discovery and Technology, Ningbo University, Ningbo 315211, China;
- Department of Chemistry, Zhejiang University, Hangzhou 310028, China
- Qian Xuesen Collaborative Research Center for Astrochemistry and Space Life Sciences, Ningbo University, Ningbo 315211, China
| | - Shaohua Huang
- Institute of Drug Discovery and Technology, Ningbo University, Ningbo 315211, China;
- Qian Xuesen Collaborative Research Center for Astrochemistry and Space Life Sciences, Ningbo University, Ningbo 315211, China
- Correspondence: (S.H.); (Y.Z.)
| | - Yan Zhu
- Department of Chemistry, Zhejiang University, Hangzhou 310028, China
- Correspondence: (S.H.); (Y.Z.)
| |
Collapse
|
17
|
Wu Q, Wang D, Zhang J, Chen C, Ge H, Xu H, Cai D, Wu Z. Synthesis of Iron-Based Carbon Microspheres with Tobacco Waste Liquid and Waste Iron Residue for Cd(II) Removal from Water and Soil. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:5557-5567. [PMID: 35451849 DOI: 10.1021/acs.langmuir.2c00125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Herein, a novel magnetic iron-based carbon microsphere was prepared by cohydrothermal treatment of tobacco waste liquid (TWL) and waste iron residue (WIR) to form WIR@TWL. After that, WIR@TWL was coated with sodium polyacrylate (S.P.) to fabricate WIR@TWL@SP, whose removal efficiency for bivalent cadmium (Cd(II)) was studied in water and soil. As a result, WIR@TWL@SP possessed a high Cd(II) removal efficiency, which could reach 98.5% within 2 h. The adsorption process was consistent with the pseudo-second-order kinetic model because of the higher value of adjusted R2 (0.99). The thermodynamic data showed that the adsorption process was spontaneous (ΔG° < 0) and exothermic (ΔH° = 32.42 KJ·mol-1 > 0). Cd(II) removal mechanisms also include cation exchange, electrostatic attraction, hydrogen-bond interaction, and cation-π interaction. Notably, pot experiments demonstrated that WIR@TWL@SP could effectively reduce Cd absorption by plants in water and soil. Thus, this study offers an effective method for remediating Cd(II)-contaminated water and soil and may have a practical application value.
Collapse
Affiliation(s)
- Qingchuan Wu
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, People's Republic of China
- University of Science and Technology of China, Hefei 230026, People's Republic of China
| | - Dongfang Wang
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, People's Republic of China
| | - Jia Zhang
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, People's Republic of China
- Key Laboratory of Environmental Toxicology and Pollution Control Technology of Anhui Province, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, People's Republic of China
| | - Chaowen Chen
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, People's Republic of China
| | - Hongjian Ge
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, People's Republic of China
| | - He Xu
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, People's Republic of China
| | - Dongqing Cai
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, People's Republic of China
| | - Zhengyan Wu
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, People's Republic of China
- Key Laboratory of Environmental Toxicology and Pollution Control Technology of Anhui Province, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, People's Republic of China
| |
Collapse
|