1
|
Moradi M, Shklyaev OE, Shi W, Balazs AC. Fluid mediated communication among flexible micro-posts in chemically reactive solutions. MATERIALS HORIZONS 2024; 11:6326-6341. [PMID: 39415633 DOI: 10.1039/d4mh01111b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Communication in biological systems typically involves enzymatic reactions that occur within fluids confined between the soft, elastic walls of bio-channels and chambers. Through the inherent transformation of chemical to mechanical energy, the fluids can be driven to flow within the confined domains. Through fluid-structure interactions, the confining walls in turn are deformed by and affect this fluid flow. Imbuing synthetic materials with analogous feedback among chemo-mechanical, hydrodynamic and fluid-structure interactions could enable materials to perform self-driven communication and self-regulation. Herein, we develop computational models to determine how chemo-hydro-mechanical feedback affects interactions in biomimetic arrays of chemically active and passive micro-posts anchored in fluid-filled chambers. Once activated, the enzymatic reactions trigger the latter feedback, which generates a surprising variety of long-range, cooperative motion, including self-oscillations and non-reciprocal interactions, which are vital for propagating coherent, directional signals over net distances in fluids. In particular, the array propagates a distinct message; each post interprets the message; and the system responds with a specific mode of organized, collective behavior. This level of autonomous remote control is relatively rare in synthetic systems, particularly as this system operates without external electronics or power sources and only requires the addition of chemical reactants to function.
Collapse
Affiliation(s)
- Moslem Moradi
- Department of Chemical Engineering, University of Pittsburgh, Pittsburgh, PA, 15261, USA.
| | - Oleg E Shklyaev
- Department of Chemical Engineering, University of Pittsburgh, Pittsburgh, PA, 15261, USA.
| | - Wenzheng Shi
- Courant Institute, New York University, New York, NY, 10012, USA
| | - Anna C Balazs
- Department of Chemical Engineering, University of Pittsburgh, Pittsburgh, PA, 15261, USA.
| |
Collapse
|
2
|
Budroni MA, Rossi F. Transport-driven chemical oscillations: a review. Phys Chem Chem Phys 2024. [PMID: 39585726 DOI: 10.1039/d4cp03466j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2024]
Abstract
Chemical oscillators attract transversal interest not only as useful models for understanding and controlling (bio)chemical complexity far from the equilibrium, but also as a promising means to design smart materials and power synthetic functional behaviors. We review and classify oscillatory phenomena in systems where a periodic variation in the concentration of the constitutive chemical species is induced by transport instabilities either triggered by simple reactions or without any reactive process at play. These phenomena, where the origin of the dynamical complexity is shifted from chemical to physical nonlinearities, can facilitate a variety of processes commonly encountered in chemistry and chemical engineering. We present an excursus through the main examples, discussing phenomenology, properties and modeling of different mechanisms that can lead to these kinds of oscillations. In particular, we reproduce the relevant results reported in the pertinent literature and, in parallel, propose new kinds of proof-of-concept systems substantiated by preliminary studies which can inspire new research lines. In the landscape of physically driven chemical oscillations, we devote particular attention to transport phenomena, actively or passively combined to (reactive or nonreactive) chemical species, which provide multiple pathways towards spontaneous oscillatory instabilities. Though with different specificities, the great part of these systems can be reduced to a common theoretical description. We finally overview possible perspectives in the study of physically driven oscillatory instabilities, showing how the related control can impact fundamental and applied open problems, ranging from origin of life studies to the optimization of processes with environmental relevance.
Collapse
Affiliation(s)
- M A Budroni
- Department of Chemical, Physical, Mathematical and Natural Sciences, University of Sassari, Via Vienna 2, Sassari 07100, Italy.
| | - F Rossi
- Department of Physical Sciences, Earth and Environment, University of Siena, Piazzetta Enzo Tiezzi 1, 53100 Siena, Italy
| |
Collapse
|
3
|
Song J, Zhang J, Lin J, Shklyaev OE, Shrestha S, Sapre A, Balazs AC, Sen A. Programming Fluid Motion Using Multi-Enzyme Micropump Systems. ACS APPLIED MATERIALS & INTERFACES 2024; 16:45660-45670. [PMID: 39136387 DOI: 10.1021/acsami.4c07865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
In the presence of appropriate substrates, surface-anchored enzymes can act as pumps and propel fluid through microchambers. Understanding the dynamic interplay between catalytic reactions and fluid flow is vital to enhancing the accuracy and utility of flow technology. Through a combination of experimental observations and numerical modeling, we show that coupled enzyme pumps can exhibit flow enhancement, flow suppression, and changes in the directionality (reversal) of the fluid motion. The pumps' ability to regulate the flow path is due to the reaction selectivity of the enzymes; the resultant fluid motion is only triggered by the presence of certain reactants. Hence, the reactants and the sequence in which they are present in the solution and the layout of the enzyme-attached patches form an "instruction set" that guides the flowing solution to specific sites in the system. Such systems can operate as sensors that indicate concentrations of reactants through measurement of the trajectory along which the flow demonstrates a maximal speed. The performed simulations suggest that the solutal buoyancy mechanism causes fluid motion and is responsible for all of the observed effects. More broadly, our studies provide a new route for forming self-organizing flow systems that can yield fundamental insight into nonequilibrium, dynamical systems.
Collapse
Affiliation(s)
- Jiaqi Song
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Jianhua Zhang
- College of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan 430200, China
| | - Jinwei Lin
- International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Oleg E Shklyaev
- Department of Chemical Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Shanid Shrestha
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Aditya Sapre
- Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Anna C Balazs
- Department of Chemical Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Ayusman Sen
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
4
|
Shukla AK, Bhandari S, Mitra S, Kim B, Dey KK. Buoyancy-Driven Micro/-Nanomotors: From Fundamentals to Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308580. [PMID: 38225699 DOI: 10.1002/smll.202308580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/30/2023] [Indexed: 01/17/2024]
Abstract
The progression of self-powered micro/-nanomotors (MNMs) has rapidly evolved over the past few decades, showing applications in various fields such as nanotechnology, biomedical engineering, microfluidics, environmental science, and energy harvesting. Miniaturized MNMs transduce chemical/biochemical energies into mechanical motion for navigating through complex fluidic environments with directional control via external forces fields such as magnetic, photonic, and electric stimuli. Among various propulsion mechanisms, buoyancy-driven MNMs have received noteworthy recognition due to their simplicity, efficiency, and versatility. Buoyancy force-driven motors harness the principles of density variation-mediated force to overcome fluidic resistance to navigate through complex environments. Restricting the propulsion in one direction helps to control directional movement, making it more efficient in isotropic solutions. The changes in pH, ionic strength, chemical concentration, solute gradients, or the presence of specific molecules can influence the motion of buoyancy-driven MNMs as evidenced by earlier reports. This review aims to provide a fundamental and detailed analysis of the current state-of-the-art in buoyancy-driven MNMs, aiming to inspire further research and innovation in this promising field.
Collapse
Affiliation(s)
- Ashish Kumar Shukla
- Laboratory of Soft and Living Materials, Department of Physics, Indian Institute of Technology, Palaj, Gandhinagar, Gujarat, 382055, India
- School of Mechatronics Engineering, Korea University of Technology and Education, Cheonan, Chungnam, 31253, Republic of Korea
| | - Satyapriya Bhandari
- Department of Chemistry, Kandi Raj College, University of Kalyani, Murshidabad, Kandi, West Bengal, 742137, India
| | - Shirsendu Mitra
- Department of Chemical Engineering, Pandit Deendayal Energy University, Gandhinagar, Gujarat, 382007, India
| | - Byungki Kim
- School of Mechatronics Engineering, Korea University of Technology and Education, Cheonan, Chungnam, 31253, Republic of Korea
- Future Convergence Engineering, Korea University of Technology and Education, Cheonan, Chungnam, 31253, Republic of Korea
| | - Krishna Kanti Dey
- Laboratory of Soft and Living Materials, Department of Physics, Indian Institute of Technology, Palaj, Gandhinagar, Gujarat, 382055, India
| |
Collapse
|
5
|
Moradi M, Shklyaev OE, Balazs AC. Integrating chemistry, fluid flow, and mechanics to drive spontaneous formation of three-dimensional (3D) patterns in anchored microstructures. Proc Natl Acad Sci U S A 2024; 121:e2319777121. [PMID: 38437554 PMCID: PMC10945754 DOI: 10.1073/pnas.2319777121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 01/17/2024] [Indexed: 03/06/2024] Open
Abstract
Enzymatic reactions in solution drive the convection of confined fluids throughout the enclosing chambers and thereby couple the processes of reaction and convection. In these systems, the energy released from the chemical reactions generates a force, which propels the fluids' spontaneous motion. Here, we use theoretical and computational modeling to determine how reaction-convection can be harnessed to tailor and control the dynamic behavior of soft matter immersed in solution. Our model system encompasses an array of surface-anchored, flexible posts in a millimeter-sized, fluid-filled chamber. Selected posts are coated with enzymes, which react with dissolved chemicals to produce buoyancy-driven fluid flows. We show that these chemically generated flows exert a force on both the coated (active) and passive posts and thus produce regular, self-organized patterns. Due to the specificity of enzymatic reactions, the posts display controllable kaleidoscopic behavior where one regular pattern is smoothly morphed into another with the addition of certain reactants. These spatiotemporal patterns also form "fingerprints" that distinctly characterize the system, reflecting the type of enzymes used, placement of the enzyme-coated posts, height of the chamber, and bending modulus of the elastic posts. The results reveal how reaction-convection provides concepts for designing soft matter that readily switches among multiple morphologies. This behavior enables microfluidic devices to be spontaneously reconfigured for specific applications without construction of new chambers and the fabrication of standalone sensors that operate without extraneous power sources.
Collapse
Affiliation(s)
- Moslem Moradi
- Department of Chemical Engineering, University of Pittsburgh, Pittsburgh, PA15261
| | - Oleg E. Shklyaev
- Department of Chemical Engineering, University of Pittsburgh, Pittsburgh, PA15261
| | - Anna C. Balazs
- Department of Chemical Engineering, University of Pittsburgh, Pittsburgh, PA15261
| |
Collapse
|
6
|
Huffman A, Shum H. Boundary-bound reactions: Pattern formation with and without hydrodynamics. Phys Rev E 2023; 108:055103. [PMID: 38115506 DOI: 10.1103/physreve.108.055103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 10/13/2023] [Indexed: 12/21/2023]
Abstract
We study chemical pattern formation in a fluid between two flat plates and the effect of such patterns on the formation of convective cells. This patterning is made possible by assuming the plates are chemically reactive or release reagents into the fluid, both of which we model as chemical fluxes. We consider this as a specific example of boundary-bound reactions. In the absence of coupling with fluid flow, we show that the two-reagent system with nonlinear reactions admits chemical instabilities equivalent to diffusion-driven Turing instabilities. In the other extreme, when chemical fluxes at the two bounding plates are constant, diffusion-driven instabilities do not occur but hydrodynamic phenomena analogous to Rayleigh-Bénard convection are possible. Assuming we can influence the chemical fluxes along the domain and select suitable reaction systems, this presents a mechanism for the control of chemical and hydrodynamic instabilities and pattern formation. We study a generic class of models and find necessary conditions for a bifurcation to pattern formation. Afterwards, we present two examples derived from the Schnakenberg-Selkov reaction. Unlike the classical Rayleigh-Bénard instability, which requires a sufficiently large unstable density gradient, a chemohydrodynamic instability based on Turing-style pattern formation can emerge from a state that is uniform in density. We also find parameter combinations that result in the formation of convective cells whether gravity acts upwards or downwards relative to the reactive plate. The wave number of the cells and the direction of the flow at regions of high/low concentration depend on the orientation, hence, different patterns can be elicited by simply inverting the device. More generally, our results suggest methods for controlling pattern formation and convection by tuning reaction parameters. As a consequence, we can drive and alter fluid flow in a chamber without mechanical pumps by influencing the chemical instabilities.
Collapse
Affiliation(s)
- Aiden Huffman
- Department of Applied Mathematics, University of Waterloo, 200 University Ave W, Waterloo, ON N2L 3G1, Canada
| | - Henry Shum
- Department of Applied Mathematics, University of Waterloo, 200 University Ave W, Waterloo, ON N2L 3G1, Canada
| |
Collapse
|
7
|
Manna RK, Shklyaev OE, Balazs AC. Chemically Driven Multimodal Locomotion of Active, Flexible Sheets. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:780-789. [PMID: 36602946 DOI: 10.1021/acs.langmuir.2c02666] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The inhibitor-promoter feedback loop is a vital component in regulatory pathways that controls functionality in living systems. In this loop, the production of chemical A at one site promotes the production of chemical B at another site, but B inhibits the production of A. In solution, differences in the volumes of the reactants and products of this reaction can generate buoyancy-driven fluid flows, which will deform neighboring soft material. To probe the intrinsic interrelationship among chemistry, hydrodynamics, and fluid-structure interactions, we model a bio-inspired system where a flexible sheet immersed in solution encompasses two spatially separated catalytic patches, which drive the A-B inhibitor-promotor reaction. The convective rolls of fluid generated above the patches can circulate inward or outward depending on the chemical environment. Within the regime displaying chemical oscillations, the dynamic fluid-structure interactions morph the shape of the sheet to periodically "fly", "crawl", or "swim" along the bottom of the confining chamber, revealing an intimate coupling between form and function in this system. The oscillations in the sheet's motion in turn affect the chemical oscillations in the solution. In the regime with non-oscillatory chemistry, the induced flow still morphs the shape of the sheet, but now, the fluid simply translates the sheet along the length of the chamber. The findings reveal the potential for enzymatic reactions in the body to generate hydrodynamic behavior that modifies the shape of neighboring soft tissue, which in turn modifies both the fluid dynamics and the enzymatic reaction. The findings indicate that this non-linear dynamic behavior can be playing a critical role in the functioning of regulatory pathways in living systems.
Collapse
Affiliation(s)
- Raj Kumar Manna
- Department of Chemical Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania15260, United States
| | - Oleg E Shklyaev
- Department of Chemical Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania15260, United States
| | - Anna C Balazs
- Department of Chemical Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania15260, United States
| |
Collapse
|
8
|
Nguindjel ADC, de Visser PJ, Winkens M, Korevaar PA. Spatial programming of self-organizing chemical systems using sustained physicochemical gradients from reaction, diffusion and hydrodynamics. Phys Chem Chem Phys 2022; 24:23980-24001. [PMID: 36172850 PMCID: PMC9554936 DOI: 10.1039/d2cp02542f] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 09/15/2022] [Indexed: 11/21/2022]
Abstract
Living organisms employ chemical self-organization to build structures, and inspire new strategies to design synthetic systems that spontaneously take a particular form, via a combination of integrated chemical reactions, assembly pathways and physicochemical processes. However, spatial programmability that is required to direct such self-organization is a challenge to control. Thermodynamic equilibrium typically brings about a homogeneous solution, or equilibrium structures such as supramolecular complexes and crystals. This perspective addresses out-of-equilibrium gradients that can be driven by coupling chemical reaction, diffusion and hydrodynamics, and provide spatial differentiation in the self-organization of molecular, ionic or colloidal building blocks in solution. These physicochemical gradients are required to (1) direct the organization from the starting conditions (e.g. a homogeneous solution), and (2) sustain the organization, to prevent it from decaying towards thermodynamic equilibrium. We highlight four different concepts that can be used as a design principle to establish such self-organization, using chemical reactions as a driving force to sustain the gradient and, ultimately, program the characteristics of the gradient: (1) reaction-diffusion coupling; (2) reaction-convection; (3) the Marangoni effect and (4) diffusiophoresis. Furthermore, we outline their potential as attractive pathways to translate chemical reactions and molecular/colloidal assembly into organization of patterns in solution, (dynamic) self-assembled architectures and collectively moving swarms at the micro-, meso- and macroscale, exemplified by recent demonstrations in the literature.
Collapse
Affiliation(s)
| | - Pieter J de Visser
- Institute for Molecules and Materials, Radboud University, Nijmegen, The Netherlands.
| | - Mitch Winkens
- Institute for Molecules and Materials, Radboud University, Nijmegen, The Netherlands.
| | - Peter A Korevaar
- Institute for Molecules and Materials, Radboud University, Nijmegen, The Netherlands.
| |
Collapse
|
9
|
Song S, Llopis-Lorente A, Mason AF, Abdelmohsen LKEA, van Hest JCM. Confined Motion: Motility of Active Microparticles in Cell-Sized Lipid Vesicles. J Am Chem Soc 2022; 144:13831-13838. [PMID: 35867803 PMCID: PMC9354240 DOI: 10.1021/jacs.2c05232] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
![]()
Active materials can transduce external energy into kinetic
energy
at the nano and micron length scales. This unique feature has sparked
much research, which ranges from achieving fundamental understanding
of their motility to the assessment of potential applications. Traditionally,
motility is studied as a function of internal features such as particle
topology, while external parameters such as energy source are assessed
mainly in bulk. However, in real-life applications, confinement plays
a crucial role in determining the type of motion active particles
can adapt. This feature has been however surprisingly underexplored
experimentally. Here, we showcase a tunable experimental platform
to gain an insight into the dynamics of active particles in environments
with restricted 3D topology. Particularly, we examined the autonomous
motion of coacervate micromotors confined in giant unilamellar vesicles
(GUVs) spanning 10–50 μm in diameter and varied parameters
including fuel and micromotor concentration. We observed anomalous
diffusion upon confinement, leading to decreased motility, which was
more pronounced in smaller compartments. The results indicate that
the theoretically predicted hydrodynamic effect dominates the motion
mechanism within this platform. Our study provides a versatile approach
to understand the behavior of active matter under controlled, compartmentalized
conditions.
Collapse
Affiliation(s)
- Shidong Song
- Department of Chemical Engineering and Chemistry, Department of Biomedical Engineering, Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Het Kranenveld 14, 5600 MB Eindhoven, The Netherland
| | - Antoni Llopis-Lorente
- Department of Chemical Engineering and Chemistry, Department of Biomedical Engineering, Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Het Kranenveld 14, 5600 MB Eindhoven, The Netherland.,Institute of Molecular Recognition and Technological Development (IDM); CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN); Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
| | - Alexander F Mason
- Department of Chemical Engineering and Chemistry, Department of Biomedical Engineering, Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Het Kranenveld 14, 5600 MB Eindhoven, The Netherland
| | - Loai K E A Abdelmohsen
- Department of Chemical Engineering and Chemistry, Department of Biomedical Engineering, Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Het Kranenveld 14, 5600 MB Eindhoven, The Netherland
| | - Jan C M van Hest
- Department of Chemical Engineering and Chemistry, Department of Biomedical Engineering, Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Het Kranenveld 14, 5600 MB Eindhoven, The Netherland
| |
Collapse
|