1
|
Ding Y, Sun Z, Wu Z, Zhang Y, Ma J, Luo H, Cao X. Ceria Centre to Enhance Multi-Active and Photothermal Response Janus Patch for Chronic Wound Senescence Inhibition and Repair. Adv Healthc Mater 2025; 14:e2501042. [PMID: 40231592 DOI: 10.1002/adhm.202501042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 04/01/2025] [Indexed: 04/16/2025]
Abstract
Bacterial infections and complex microenvironments induce cellular oxidative stress and cellular senescence severely affect chronic wound healing. However, the antibacterial effect of most dressings is single, which is only against the wound-breeding bacteria but cannot resist further invasion of bacteria in the environment into the wound. Few dressings can simultaneously fulfill antibacterial, antifouling, oxidative stress regulation, and cellular protection. Therefore, a Janus patch (SBMA/OHA/GelMA/TA-CeO2@HA (HGT-C@HA)) is prepared, in which the top superhydrophilic SBMA zwitterionic layer resists bacterial adhesion, and CeO2 coated with hyaluronic acid (HA) is loaded into the bottom gel as the functional center. After immersion in tannic acid (TA), Ce-TA chelate formation in situ confers photothermal antimicrobial properties to the hydrogel. It is further validated that HA-coated CeO2 enable the dressing to obtain higher antioxidant properties by regulating the proportion of Ce3+ on the nanoparticle surface, which protects cells from the high glucose and high H2O2 environment and effectively inhibits intracellular DNA damage to mitigate cellular senescence. In vivo experiments illustrate that the material significantly accelerated wound healing and improved the quality of wound healing, demonstrating the significant potential of this dressing in diabetic wound healing.
Collapse
Affiliation(s)
- Yilin Ding
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510006, China
- National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), South China University of Technology, Guangzhou, 510006, China
| | - Zhipeng Sun
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510006, China
- National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), South China University of Technology, Guangzhou, 510006, China
| | - Zilin Wu
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510006, China
- National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), South China University of Technology, Guangzhou, 510006, China
| | - Yulin Zhang
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510006, China
- National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), South China University of Technology, Guangzhou, 510006, China
| | - Jiuzhi Ma
- National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), South China University of Technology, Guangzhou, 510006, China
| | - Huitong Luo
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510006, China
- National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), South China University of Technology, Guangzhou, 510006, China
| | - Xiaodong Cao
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510006, China
- National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), South China University of Technology, Guangzhou, 510006, China
- Guangdong Provincial Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou, 510641, China
| |
Collapse
|
2
|
Tang Y, Feng J, Li S, Yang G, Tao Z, Xiao T, Lu F, Xie B, Fan Q, Wang Q. Near-infrared-II triggered inorganic photodynamic nanomedicines for deep-tissue therapy. JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY 2025; 213:196-212. [DOI: 10.1016/j.jmst.2024.07.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
3
|
Titova SA, Kruglova MP, Stupin VA, Manturova NE, Achar RR, Deshpande G, Parfenov VA, Silina EV. Excipients for Cerium Dioxide Nanoparticle Stabilization in the Perspective of Biomedical Applications. Molecules 2025; 30:1210. [PMID: 40141988 PMCID: PMC11944302 DOI: 10.3390/molecules30061210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 02/25/2025] [Accepted: 03/06/2025] [Indexed: 03/28/2025] Open
Abstract
Rare earth metal nanoparticles, some of which are already widely used in medicine, are of growing interest in the modern scientific community. One of the promising rare earth metals for biomedical applications is cerium, specifically its oxide form, which is characterized by a higher level of stability and safety. According to a number of studies, cerium dioxide has a wide range of biological effects (regenerative, antimicrobial, antioxidant, antitumor), which justifies the interest of its potential application in medicine. However, these effects and their intensity vary significantly across a number of studies. Since cerium dioxide was used in these studies, it can be assumed that not only is the chemical formula important, but also the physicochemical parameters of the nanoparticles obtained, and consequently the methods of their synthesis and modification with the use of excipients. In this review, we considered the possibilities of using a number of excipients (polyacrylate, polyvinylpyrrolidone, dextran, hyaluronic acid, chitosan, polycarboxylic acids, lecithin, phosphatidylcholine) in the context of preserving the biological effects of cerium dioxide and its physicochemical properties, as well as the degree of study of these combinations from the point of view of the prospect of creating drugs based on it for biomedical applications.
Collapse
Affiliation(s)
- Svetlana A. Titova
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow 119991, Russia; (S.A.T.); (M.P.K.); (V.A.P.)
| | - Maria P. Kruglova
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow 119991, Russia; (S.A.T.); (M.P.K.); (V.A.P.)
| | - Victor A. Stupin
- Pirogov Russian National Research Medical University, Moscow 117997, Russia; (V.A.S.); (N.E.M.)
| | - Natalia E. Manturova
- Pirogov Russian National Research Medical University, Moscow 117997, Russia; (V.A.S.); (N.E.M.)
| | - Raghu Ram Achar
- JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India;
| | - Gouri Deshpande
- Regional Institute of Education (RIE NCERT), Mysuru 570006, Karnataka, India;
| | - Vladimir A. Parfenov
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow 119991, Russia; (S.A.T.); (M.P.K.); (V.A.P.)
| | - Ekaterina V. Silina
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow 119991, Russia; (S.A.T.); (M.P.K.); (V.A.P.)
| |
Collapse
|
4
|
Hajipour Keyvani A, Mohammadnejad P, Pazoki-Toroudi H, Perez Gilabert I, Chu T, Manshian BB, Soenen SJ, Sohrabi B. Advancements in Cancer Treatment: Harnessing the Synergistic Potential of Graphene-Based Nanomaterials in Combination Therapy. ACS APPLIED MATERIALS & INTERFACES 2025; 17:2756-2790. [PMID: 39745785 DOI: 10.1021/acsami.4c15536] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
Combination therapy, which involves using multiple therapeutic modalities simultaneously or sequentially, has become a cornerstone of modern cancer treatment. Graphene-based nanomaterials (GBNs) have emerged as versatile platforms for drug delivery, gene therapy, and photothermal therapy. These materials enable a synergistic approach, improving the efficacy of treatments while reducing side effects. This review explores the roles of graphene, graphene oxide (GO), and graphene quantum dots (GQDs) in combination therapies and highlights their potential to enhance immunotherapy and targeted cancer therapies. The large surface area and high drug-loading capacity of graphene facilitate the codelivery of multiple therapeutic agents, promoting targeted and sustained release. GQDs, with their unique optical properties, offer real-time imaging capabilities, adding another layer of precision to treatment. However, challenges such as biocompatibility, long-term toxicity, and scalability need to be addressed to ensure clinical safety. Preclinical studies show promising results for GBNs, suggesting their potential to revolutionize cancer treatment through innovative combination therapies.
Collapse
Affiliation(s)
- Armin Hajipour Keyvani
- Surface Chemistry Research Laboratory, Faculty of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| | - Parizad Mohammadnejad
- Surface Chemistry Research Laboratory, Faculty of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| | - Hamidreza Pazoki-Toroudi
- Physiology Research Center, Faculty of Medicine, Iran University of Medical Sciences, Tehran 14496-14535, Iran
| | - Irati Perez Gilabert
- NanoHealth and Optical Imaging Group, Department of Imaging and Pathology, KU Leuven, Rellis Research Group, Gaston Geenslaan 3 - Box 901, 3001 Leuven, Belgium
| | - Tianjiao Chu
- NanoHealth and Optical Imaging Group, Department of Imaging and Pathology, KU Leuven, Rellis Research Group, Gaston Geenslaan 3 - Box 901, 3001 Leuven, Belgium
| | - Bella B Manshian
- Translational Cell and Tissue Research Unit, Department of Imaging and Pathology, KU Leuven, RK-Herestraat 49 - Box 505,3000 Leuven, Belgium
| | - Stefaan J Soenen
- NanoHealth and Optical Imaging Group, Department of Imaging and Pathology, KU Leuven, Rellis Research Group, Gaston Geenslaan 3 - Box 901, 3001 Leuven, Belgium
- Leuven Cancer Institute, Faculty of Medicine, KU Leuven, Rellis Research Group, Gaston Geenslaan 3 - Box 901, 3001 Leuven, Belgium
| | - Beheshteh Sohrabi
- Surface Chemistry Research Laboratory, Faculty of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| |
Collapse
|
5
|
Zhao H, Du F, Xiang X, Tang Y, Feng Z, Wang Z, Rong X, Qiu L. Progress in application of nanomedicines for enhancing cancer sono-immunotherapy. ULTRASONICS SONOCHEMISTRY 2024; 111:107105. [PMID: 39427436 PMCID: PMC11533716 DOI: 10.1016/j.ultsonch.2024.107105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 09/22/2024] [Accepted: 10/12/2024] [Indexed: 10/22/2024]
Abstract
Cancer immunotherapy has significant potential as a cancer treatment since it boosts the immune system and prevents immune escape to get rid of or fight cancers. However, its clinical applicability is still limited because of the low response rate and immune-related side effects. Recently ultrasound has been shown to alter the tumor immune microenvironment, enhance the effectiveness of other antitumor therapies, and cause tumors to become more sensitive to immunotherapy, thus providing new insights into cancer treatment. Nanomedicines are also anticipated to have a positive impact on improving the immunological effects and enhancing ultrasound effect for cancer therapy. Therefore, designing effective nanomedicines enhanced ultrasound effect for augmenting sono-immunotherapy has been a pivot on anticancer therapy. In this review, the immunological impacts of various ultrasound therapeutic modalities, ultrasound parameters, and their underlying mechanisms are discussed. Moreover, we highlight the recent progress of nanomedicines synergistically enhancing sono-immunotherapy. Finally, we put forward opportunities and challenges on sono-immunotherapy.
Collapse
Affiliation(s)
- Hongxin Zhao
- Department of Ultrasound, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Fangxue Du
- Department of Ultrasound, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xi Xiang
- Department of Ultrasound, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yuanjiao Tang
- Department of Ultrasound, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ziyan Feng
- Department of Ultrasound, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ziyao Wang
- Department of Ultrasound, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xiao Rong
- Department of Ultrasound, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Li Qiu
- Department of Ultrasound, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
6
|
Yang Y, Jiang S, Stanciu SG, Peng H, Wu A, Yang F. Photodynamic therapy with NIR-II probes: review on state-of-the-art tools and strategies. MATERIALS HORIZONS 2024; 11:5815-5842. [PMID: 39207201 DOI: 10.1039/d4mh00819g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
In 2022 10% of the world's population was aged 65+, and by 2100 this segment is expected to hit 25%. These demographic changes place considerable pressure over healthcare systems worldwide, which results in an urgent need for accurate, inexpensive and non-invasive ways to treat cancers, a family of diseases correlated with age. Among the therapeutic tools that gained important attention in this context, photodynamic therapies (PDT), which use photosensitizers to produce cytotoxic substances for selectively destroying tumor cells and tissues under light irradiation, profile as important players for next-generation nanomedicine. However, the development of clinical applications is progressing at slow pace, due to still pending bottlenecks, such as the limited tissue penetration of the excitation light, and insufficient targeting performance of the therapeutic probes to fully avoid damage to normal cells and tissues. The penetration depth of long-wavelength near infrared (NIR) light is significantly higher than that of short-wavelength UV and visible light, and thus NIR light in the second window (NIR-II) is acknowledged as the preferred phototherapeutic means for eliminating deep-seated tumors, given the higher maximum permissible exposure, reduced phototoxicity and low autofluorescence, among others. Upon collective multidisciplinary efforts of experts in materials science, medicine and biology, multifunctional NIR-II inorganic or organic photosensitizers have been widely developed. This review overviews the current state-of-the art on NIR-II-activated photosensitizers and their applications for the treatment of deep tumors. We also place focus on recent efforts that combine NIR-II activated PDT with other complementary therapeutic routes such as photothermal therapy, chemotherapy, immunotherapy, starvation, and gas therapies. Finally, we discuss still pending challenges and problems of PDT and provide a series of perspectives that we find useful for further extending the state-of-the art on NIR-II-triggered PDT.
Collapse
Affiliation(s)
- Yiqian Yang
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Ningbo Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China.
| | - Shaohua Jiang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Stefan G Stanciu
- Center for Microscopy-Microanalysis and Information Processing, National University of Science and Technology Politehnica Bucharest, Bucharest 060042, Romania
| | - Hao Peng
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Ningbo Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China.
| | - Aiguo Wu
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Ningbo Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China.
| | - Fang Yang
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Ningbo Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China.
| |
Collapse
|
7
|
Li J, Zhao Z, Tian Y, Liu W, Zhang P, Chen L. Tumor Microenvironment-Responsive Zn(II)-Porphyrin Nanotheranostics for Targeted Sonodynamic Therapy. ACS Biomater Sci Eng 2024; 10:6984-6994. [PMID: 39388140 DOI: 10.1021/acsbiomaterials.4c00344] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
As a novel noninvasive tumor therapy, sonodynamic therapy (SDT) attracts booming concerns. However, the limited water solubility, inadequate biocompatibility, and low targeting ability of conventional sonosensitizers significantly hinder their potential for clinical application. Herein, novel zinc(II)-porphyrin nanotheranostics (HA@Zn-TCPP) were fabricated in which the zinc(II)-porphyrin (TCPP) metal-organic framework was first constructed by a simple thermal reaction, followed by the addition of hyaluronic acid (HA) for modification. The specific targeting ability of HA facilitated the internalization of HA@Zn-TCPP within tumor cells, resulting in its preferential accumulation in tumor tissues that exhibit CD44 receptor overexpression. The acidic tumor microenvironment induced the rapid decomposition of HA@Zn-TCPP, releasing free TCPP for activating SDT. This controllable generation of reactive oxygen species (ROS) could effectively decrease damage to normal tissues. The HA@Zn-TCPP exhibited remarkable antitumor effects in experiments, achieving a tumor inhibition rate of up to 82.1% when under ultrasound. This finding provides an imperative strategy to develop novel sonosensitizers for enhanced SDT.
Collapse
Affiliation(s)
- Jiaxin Li
- Department of Chemistry, Northeast Normal University, Changchun 130024, P. R. China
| | - Zhitong Zhao
- Department of Chemistry, Northeast Normal University, Changchun 130024, P. R. China
| | - Yongchang Tian
- Department of Chemistry, Northeast Normal University, Changchun 130024, P. R. China
| | - Wenchang Liu
- Department of Chemistry, Northeast Normal University, Changchun 130024, P. R. China
| | - Peng Zhang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Li Chen
- Department of Chemistry, Northeast Normal University, Changchun 130024, P. R. China
| |
Collapse
|
8
|
Yang F, Lv J, Ma W, Yang Y, Hu X, Yang Z. Engineering Sonosensitizer-Derived Nanotheranostics for Augmented Sonodynamic Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402669. [PMID: 38970544 DOI: 10.1002/smll.202402669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/13/2024] [Indexed: 07/08/2024]
Abstract
Sonodynamic therapy (SDT), featuring noninvasive, deeper penetration, low cost, and repeatability, is a promising therapy approach for deep-seated tumors. However, the general or only utilization of SDT shows low efficiency and unsatisfactory treatment outcomes due to the complicated tumor microenvironment (TME) and SDT process. To circumvent the issues, three feasible approaches for enhancing SDT-based therapeutic effects, including sonosensitizer optimization, strategies for conquering hypoxia TME, and combinational therapy are summarized, with a particular focus on the combination therapy of SDT with other therapy modalities, including chemodynamic therapy, photodynamic therapy, photothermal therapy, chemotherapy, starvation therapy, gas therapy, and immunotherapy. In the end, the current challenges in SDT-based therapy on tumors are discussed and feasible approaches for enhanced therapeutic effects are provided. It is envisioned that this review will provide new insight into the strategic design of high-efficiency sonosensitizer-derived nanotheranostics, thereby augmenting SDT and accelerating the potential clinical transformation.
Collapse
Affiliation(s)
- Fuhong Yang
- Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Key Laboratory of Flexible Electronics, Fujian Normal University and Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou, 350117, China
| | - Jingqi Lv
- Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Key Laboratory of Flexible Electronics, Fujian Normal University and Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou, 350117, China
| | - Wen Ma
- Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Key Laboratory of Flexible Electronics, Fujian Normal University and Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou, 350117, China
| | - Yanling Yang
- Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Key Laboratory of Flexible Electronics, Fujian Normal University and Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou, 350117, China
| | - Xiaoming Hu
- Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Key Laboratory of Flexible Electronics, Fujian Normal University and Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou, 350117, China
- Jiangxi Key Laboratory of Nanobiomaterials, School of Materials Science and Engineering, East China Jiaotong University, Nanchang, 330013, China
| | - Zhen Yang
- Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Key Laboratory of Flexible Electronics, Fujian Normal University and Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou, 350117, China
| |
Collapse
|
9
|
Huang H, Zheng Y, Chang M, Song J, Xia L, Wu C, Jia W, Ren H, Feng W, Chen Y. Ultrasound-Based Micro-/Nanosystems for Biomedical Applications. Chem Rev 2024; 124:8307-8472. [PMID: 38924776 DOI: 10.1021/acs.chemrev.4c00009] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
Due to the intrinsic non-invasive nature, cost-effectiveness, high safety, and real-time capabilities, besides diagnostic imaging, ultrasound as a typical mechanical wave has been extensively developed as a physical tool for versatile biomedical applications. Especially, the prosperity of nanotechnology and nanomedicine invigorates the landscape of ultrasound-based medicine. The unprecedented surge in research enthusiasm and dedicated efforts have led to a mass of multifunctional micro-/nanosystems being applied in ultrasound biomedicine, facilitating precise diagnosis, effective treatment, and personalized theranostics. The effective deployment of versatile ultrasound-based micro-/nanosystems in biomedical applications is rooted in a profound understanding of the relationship among composition, structure, property, bioactivity, application, and performance. In this comprehensive review, we elaborate on the general principles regarding the design, synthesis, functionalization, and optimization of ultrasound-based micro-/nanosystems for abundant biomedical applications. In particular, recent advancements in ultrasound-based micro-/nanosystems for diagnostic imaging are meticulously summarized. Furthermore, we systematically elucidate state-of-the-art studies concerning recent progress in ultrasound-based micro-/nanosystems for therapeutic applications targeting various pathological abnormalities including cancer, bacterial infection, brain diseases, cardiovascular diseases, and metabolic diseases. Finally, we conclude and provide an outlook on this research field with an in-depth discussion of the challenges faced and future developments for further extensive clinical translation and application.
Collapse
Affiliation(s)
- Hui Huang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, P. R. China
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Yi Zheng
- Department of Ultrasound, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, P. R. China
| | - Meiqi Chang
- Laboratory Center, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, P. R. China
| | - Jun Song
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Lili Xia
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Chenyao Wu
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Wencong Jia
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Hongze Ren
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Wei Feng
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, P. R. China
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Yu Chen
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, P. R. China
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| |
Collapse
|
10
|
Qin W, Yang Q, Zhu C, Jiao R, Lin X, Fang C, Guo J, Zhang K. A Distinctive Insight into Inorganic Sonosensitizers: Design Principles and Application Domains. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311228. [PMID: 38225708 DOI: 10.1002/smll.202311228] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 12/29/2023] [Indexed: 01/17/2024]
Abstract
Sonodynamic therapy (SDT) as a promising non-invasive anti-tumor means features the preferable penetration depth, which nevertheless, usually can't work without sonosensitizers. Sonosensitizers produce reactive oxygen species (ROS) in the presence of ultrasound to directly kill tumor cells, and concurrently activate anti-tumor immunity especially after integration with tumor microenvironment (TME)-engineered nanobiotechnologies and combined therapy. Current sonosensitizers are classified into organic and inorganic ones, and current most reviews only cover organic sonosensitizers and highlighted their anti-tumor applications. However, there have few specific reviews that focus on inorganic sonosensitizers including their design principles, microenvironment regulation, etc. In this review, inorganic sonosensitizers are first classified according to their design rationales rather than composition, and the action rationales and underlying chemistry features are highlighted. Afterward, what and how TME is regulated based on the inorganic sonosensitizers-based SDT nanoplatform with an emphasis on the TME targets-engineered nanobiotechnologies are elucidated. Additionally, the combined therapy and their applications in non-cancer diseases are also outlined. Finally, the setbacks and challenges, and proposed the potential solutions and future directions is pointed out. This review provides a comprehensive and detailed horizon on inorganic sonosensitizers, and will arouse more attentions on SDT.
Collapse
Affiliation(s)
- Wen Qin
- State Key Laboratory of Targeting Oncology, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, National Center for International Research of Biotargeting Theranostics, Guangxi Key Laboratory of Biotargeting Theranostics, Guangxi Medical University, Nanning, Guangxi, 530021, P. R. China
- Department of Pharmacy and Department of Medical Ultrasound, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, No. 32, West Second Section, First Ring Road, Chengdu, Sichuan, 610072, P. R. China
| | - Qiaoling Yang
- State Key Laboratory of Targeting Oncology, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, National Center for International Research of Biotargeting Theranostics, Guangxi Key Laboratory of Biotargeting Theranostics, Guangxi Medical University, Nanning, Guangxi, 530021, P. R. China
- Department of Pharmacy and Department of Medical Ultrasound, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, No. 32, West Second Section, First Ring Road, Chengdu, Sichuan, 610072, P. R. China
| | - Chunyan Zhu
- Department of Pharmacy and Department of Medical Ultrasound, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, No. 32, West Second Section, First Ring Road, Chengdu, Sichuan, 610072, P. R. China
- Department of Medical Ultrasound, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, No. 301 Yanchangzhong Road, Shanghai, 200072, P. R. China
| | - Rong Jiao
- State Key Laboratory of Targeting Oncology, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, National Center for International Research of Biotargeting Theranostics, Guangxi Key Laboratory of Biotargeting Theranostics, Guangxi Medical University, Nanning, Guangxi, 530021, P. R. China
- Department of Pharmacy and Department of Medical Ultrasound, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, No. 32, West Second Section, First Ring Road, Chengdu, Sichuan, 610072, P. R. China
| | - Xia Lin
- State Key Laboratory of Targeting Oncology, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, National Center for International Research of Biotargeting Theranostics, Guangxi Key Laboratory of Biotargeting Theranostics, Guangxi Medical University, Nanning, Guangxi, 530021, P. R. China
- Department of Pharmacy and Department of Medical Ultrasound, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, No. 32, West Second Section, First Ring Road, Chengdu, Sichuan, 610072, P. R. China
| | - Chao Fang
- Department of Pharmacy and Department of Medical Ultrasound, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, No. 32, West Second Section, First Ring Road, Chengdu, Sichuan, 610072, P. R. China
- Department of Medical Ultrasound, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, No. 301 Yanchangzhong Road, Shanghai, 200072, P. R. China
| | - Jiaming Guo
- Department of Radiation Medicine, College of Naval Medicine, Naval Medical University, No. 800 Xiangyin Road, Shanghai, 200433, P. R. China
| | - Kun Zhang
- Department of Pharmacy and Department of Medical Ultrasound, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, No. 32, West Second Section, First Ring Road, Chengdu, Sichuan, 610072, P. R. China
| |
Collapse
|
11
|
Süngü Akdogan Ç, Akbay Çetin E, Onur MA, Önel S, Tuncel A. In Vitro Synergistic Photodynamic, Photothermal, Chemodynamic, and Starvation Therapy Performance of Chlorin e6 Immobilized, Polydopamine-Coated Hollow, Porous Ceria-Based, Hypoxia-Tolerant Nanozymes Carrying a Cascade System. ACS APPLIED BIO MATERIALS 2024; 7:2781-2793. [PMID: 38380497 PMCID: PMC11110068 DOI: 10.1021/acsabm.3c01181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/06/2024] [Accepted: 02/09/2024] [Indexed: 02/22/2024]
Abstract
A synergistic therapy agent (STA) with photothermal, photodynamic, chemodynamic, and starvation therapy (PTT, PDT, CDT, and ST) functions was developed. Hollow, mesoporous, and nearly uniform CeO2 nanoparticles (H-CeO2 NPs) were synthesized using a staged shape templating sol-gel protocol. Chlorin e6 (Ce6) was adsorbed onto H-CeO2 NPs, and a thin polydopamine (PDA) layer was formed on Ce6-adsorbed H-CeO2 NPs. Glucose oxidase (GOx) was bound onto PDA-coated Ce6-adsorbed H-CeO2 NPs to obtain the targeted STA (H-CeO2@Ce6@PDA@GOx NPs). A reversible photothermal conversion behavior with the temperature elevations up to 34 °C was observed by NIR laser irradiation at 808 nm. A cascade enzyme system based on immobilized GOx and intrinsic catalase-like activity of H-CeO2 NPs was rendered on STA for enhancing the effectiveness of PDT by elevation of ROS generation and alleviation of hypoxia in a tumor microenvironment. Glucose-mediated generation of highly toxic hydroxyl radicals (·OH) was evaluated for CDT. The effectiveness of PDT on glioblastoma T98G cells was markedly enhanced by O2 generation started by the decomposition of glucose. A similar increase in cell death was also observed when ST and CDT functions were enhanced by photothermal action. The viability of T98G cells decreased to 10.6% by in vitro synergistic action including ST, CDT, PDT, and PTT without using any antitumor agent.
Collapse
Affiliation(s)
- Çağıl
Zeynep Süngü Akdogan
- Bioengineering
Division, Hacettepe University, Ankara 06800, Turkey
- Graduate
School of Science and Engineering, Hacettepe
University, Ankara 06800, Turkey
| | - Esin Akbay Çetin
- Department
of Biology, Hacettepe University, Ankara 06800, Turkey
| | - Mehmet Ali Onur
- Bioengineering
Division, Hacettepe University, Ankara 06800, Turkey
- Department
of Biology, Hacettepe University, Ankara 06800, Turkey
| | - Selis Önel
- Bioengineering
Division, Hacettepe University, Ankara 06800, Turkey
- Chemical
Engineering Department, Hacettepe University, Ankara 06800, Turkey
| | - Ali Tuncel
- Bioengineering
Division, Hacettepe University, Ankara 06800, Turkey
- Chemical
Engineering Department, Hacettepe University, Ankara 06800, Turkey
| |
Collapse
|
12
|
Sivasubramanian M, Wang Y, Lo LW, Liao LD. Personalized Cancer Therapeutics Using Photoacoustic Imaging-Guided Sonodynamic Therapy. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2023; 70:1682-1690. [PMID: 37216240 DOI: 10.1109/tuffc.2023.3277283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Sonodynamic therapy (SDT) is a promising approach for cancer treatment that uses sonosensitizers (SNSs) to generate reactive oxygen species (ROS) in the presence of ultrasound (US). However, SDT is oxygen-dependent and requires an imaging tool to monitor the tumor microenvironment and guide treatment. Photoacoustic imaging (PAI) is a noninvasive and powerful imaging tool that offers high spatial resolution and deep tissue penetration. PAI can quantitatively assess tumor oxygen saturation (sO2) and guide SDT by monitoring time-dependent sO2 changes in the tumor microenvironment. Here, we discuss recent advances in PAI-guided SDT for cancer therapy. We discuss various exogenous contrast agents and nanomaterial-based SNSs developed for PAI-guided SDT. Additionally, combining SDT with other therapies, including photothermal (PTT) therapy, can enhance its therapeutic effect. However, the application of nanomaterial-based contrast agents in PAI-guided SDT for cancer therapy remains challenging due to the lack of simple designs, the need for extensive pharmacokinetic studies, and high production costs. Integrated efforts from researchers, clinicians, and industry consortia are necessary for the successful clinical translation of these agents and SDT for personalized cancer therapy. PAI-guided SDT shows the potential to revolutionize cancer therapy and improve patient outcomes, but further research is necessary to realize its full potential.
Collapse
|
13
|
Cao X, Li M, Liu Q, Zhao J, Lu X, Wang J. Inorganic Sonosensitizers for Sonodynamic Therapy in Cancer Treatment. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2303195. [PMID: 37323087 DOI: 10.1002/smll.202303195] [Citation(s) in RCA: 62] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 05/30/2023] [Indexed: 06/17/2023]
Abstract
The rapid development of nanomedicine and nanobiotechnology has allowed the emergence of various therapeutic modalities with excellent therapeutic efficiency and biosafety, among which, the sonodynamic therapy (SDT), a combination of low-intensity ultrasound and sonosensitizers, is emerging as a promising noninvasive treatment modality for cancer treatment due to its deeper penetration, good patient compliance, and minimal damage to normal tissue. The sonosensitizers are indispensable components in the SDT process because their structure and physicochemical properties are decisive for therapeutic efficacy. Compared to the conventional and mostly studied organic sonosensitizers, inorganic sonosensitizers (noble metal-based, transition metal-based, carbon-based, and silicon-based sonosensitizers) display excellent stability, controllable morphology, and multifunctionality, which greatly expand their application in SDT. In this review, the possible mechanisms of SDT including the cavitation effect and reactive oxygen species generation are briefly discussed. Then, the recent advances in inorganic sonosensitizers are systematically summarized and their formulations and antitumor effects, particularly highlighting the strategies for optimizing the therapeutic efficiency, are outlined. The challenges and future perspectives for developing state-of-the-art sonosensitizers are also discussed. It is expected that this review will shed some light on future screening of decent inorganic sonosensitizers for SDT.
Collapse
Affiliation(s)
- Xianshuo Cao
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Minxing Li
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, P. R. China
- Department of Biotherapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Qiyu Liu
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Jingjing Zhao
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, P. R. China
- Department of Biotherapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Xihong Lu
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Jianwei Wang
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| |
Collapse
|
14
|
Wang S, Zhang C, Fang F, Fan Y, Yang J, Zhang J. Beyond traditional light: NIR-II light-activated photosensitizers for cancer therapy. J Mater Chem B 2023; 11:8315-8326. [PMID: 37523205 DOI: 10.1039/d3tb00668a] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/01/2023]
Abstract
With increasing demand for the accurate and safe treatment of cancer, non-invasive photodynamic therapy (PDT) has received widespread attention. However, most conventional photosensitizers are typically excited by short-wavelength visible light (400-700 nm), thus substantially hindering the penetration of light and the therapeutic effectiveness of the PDT procedure. Fortunately, near-infrared (NIR) light (>700 nm), in particular, light in the second near-infrared region (NIR-II, 1000-1700 nm) has a higher upper radiation limit, greater tissue tolerance, and deeper tissue penetration compared with traditional short-wavelength light excitation, and shows considerable potential in the clinical treatment of cancer. Therefore, it is of paramount importance and clinical value to develop photosensitizers that are excited by NIR-II light. In this review, for the first time we focus completely on recent progress made with various NIR-II photosensitizers for cancer treatment via PDT, and we briefly present the ongoing challenges and prospects of currently developed NIR-II photosensitizers for clinical practice in the near future. We believe that the above topics will inspire broad interest in researchers from interdisciplinary fields that include chemistry, materials science, pharmaceuticals, and clinical medicine, and provide insightful perspectives for exploiting new NIR-II photosensitizers for biomedical applications.
Collapse
Affiliation(s)
- Sa Wang
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Sciences, Beijing Institute of Technology, Beijing 100081, P. R. China.
| | - Chuang Zhang
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Sciences, Beijing Institute of Technology, Beijing 100081, P. R. China.
| | - Fang Fang
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Sciences, Beijing Institute of Technology, Beijing 100081, P. R. China.
| | - Yueyun Fan
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Sciences, Beijing Institute of Technology, Beijing 100081, P. R. China.
| | - Jiani Yang
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Sciences, Beijing Institute of Technology, Beijing 100081, P. R. China.
| | - Jinfeng Zhang
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Sciences, Beijing Institute of Technology, Beijing 100081, P. R. China.
| |
Collapse
|
15
|
Fu W, Lu Q, Xing S, Yan L, Zhang X. Iron-Doped Metal-Zinc-Centered Organic Framework Mesoporous Carbon Derivatives for Single-Wavelength NIR-Activated Photothermal/Photodynamic Synergistic Therapy. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:6505-6513. [PMID: 37098018 DOI: 10.1021/acs.langmuir.3c00430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Recently, single-wavelength synergetic photothermal/photodynamic (PTT/PDT) therapy is beginning to make its mark in cancer treatment, and the key to it is a photosensitizer. In this work, an iron-doped metal-zinc-centered organic framework mesoporous carbon derivative (denoted as Fex-Zn-NCT) with a similar porphyrin property was successfully synthesized by a mild, simple, and green aqueous reaction. The effects of different Fe contents and pyrolysis temperatures on the morphology, structure, and PTT/PDT of Fex-Zn-NCT were investigated. Most importantly, we found that Fe50-Zn-NC900 exhibited excellent PTT/PDT performance under single-wavelength near-infrared (808 nm) light irradiation in a hydrophilic environment. The photothermal conversion efficiency (η) was counted as ∼81.3%, and the singlet oxygen (1O2) quantum yield (Φ) was compared with indocyanine green (ICG) as ∼0.0041. Furthermore, Fe50-Zn-NC900 is provided with a clear ability for generating 1O2 in living tumor cells and inducted massive necrosis/apoptosis of tumor cells with single-wavelength near-infrared laser irradiation. All of these are clear to consider that Fe50-Zn-NC900 displays great potential as an excellent photosensitizer for single-wavelength dual-mode PTT/PDT therapy.
Collapse
Affiliation(s)
- Wen Fu
- School of Materials Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, P. R. China
| | - Qian Lu
- School of Materials Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, P. R. China
| | - Shu Xing
- School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, P. R. China
| | - Liting Yan
- School of Materials Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, P. R. China
| | - Xian Zhang
- School of Materials Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, P. R. China
| |
Collapse
|
16
|
Meng N, Xu P, Wen C, Liu H, Gao C, Shen XC, Liang H. Near-infrared-II-activatable sulfur-deficient plasmonic Bi 2S 3-x-Au heterostructures for photoacoustic imaging-guided ultrasound enhanced high performance phototherapy. J Colloid Interface Sci 2023; 644:437-453. [PMID: 37126893 DOI: 10.1016/j.jcis.2023.04.108] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/19/2023] [Accepted: 04/21/2023] [Indexed: 05/03/2023]
Abstract
Bismuth sulfide is widely used as an n-type semiconductor material in photocatalytic reactions. However, bismuth sulfide has poor absorption in the near-infrared region and low charge separation efficiency, limiting its application in phototherapy and sonodynamic therapy (SDT). In this study, we successfully synthesized an "all-in-one" phototheranostic nanoplatform, namely Bi2S3-x-Au@HA, based on a single second near-infrared (NIR-II) light-responsive Schottky-type Bi2S3-x-Au heterostructure for photoacoustic (PA) imaging-guided SDT-enhanced photodynamic therapy (PDT)/photothermal therapy (PTT). Bi2S3-x-Au@HA exhibits excellent NIR-II plasmonic and photothermal properties, rendering it with NIR-II PA imaging capabilities for accurate diagnosis. Additionally, the high-density sulfur vacancies constructed on the Bi2S3 surface cause it to possess a reduced band gap (1.21 eV) that can act as an electron trap. Using the density functional theory, we confirmed that the light and ultrasound-induced electrons are more likely to aggregate on the Au nanoparticle surface through interfacial self-assembly, which promotes electron-hole separation and enhances photocatalytic activity with increased reactive oxygen species (ROS) generation. With a further modification of hyaluronic acid (HA), Bi2S3-x-Au@HA can selectively target cancer cells through HA and CD44 protein interactions. Both in vitro and in vivo experiments demonstrated that Bi2S3-x-Au@HA effectively suppressed tumor growth through SDT-enhanced PTT/PDT under a single NIR-II laser and ultrasound irradiation with negligible toxicity. Our findings provide a framework for fabricating Schottky-type heterostructures as single NIR-II light-responsive nanotheranostic agents for PA imaging-guided cancer phototherapy.
Collapse
Affiliation(s)
- Nianqi Meng
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, People's Republic of China
| | - Peijing Xu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, People's Republic of China
| | - Changchun Wen
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, People's Republic of China
| | - Huihui Liu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, People's Republic of China
| | - Cunji Gao
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, People's Republic of China.
| | - Xing-Can Shen
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, People's Republic of China.
| | - Hong Liang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, People's Republic of China
| |
Collapse
|
17
|
Geng H, Chen K, Cao L, Liu L, Huang Y, Liu J. Hypoxia-Responsive Aggregation of Gold Nanoparticles for Near-Infrared-II Photoacoustic Imaging-Guided Enhanced Radiotherapy. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:4037-4048. [PMID: 36907993 DOI: 10.1021/acs.langmuir.2c03399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
By directly harming cancer cells, radiotherapy (RT) is a crucial therapeutic approach for the treatment of cancers. However, the efficacy of RT is reduced by the limited accumulation and short retention time of the radiosensitizer in the tumor. Herein, we developed hypoxia-triggered in situ aggregation of nanogapped gold nanospheres (AuNNP@PAA/NIC NPs) within the tumor, resulting in second near-infrared window (NIR-II) photoacoustic (PA) imaging and enhanced radiosensitization. AuNNP@PAA/NIC NPs demonstrated increased accumulation and retention in hypoxic tumors, mainly due to the hypoxia-triggered aggregation. After aggregation of AuNNP@PAA/NIC NPs, the absorption of the system extended from visible light to NIR-II light owing to the plasmon coupling effects between adjacent nanoparticles. Compared to the normoxic tumor, the PA intensity at 1200 nm in the hypoxic tumor increased from 0.42 to 1.88 at 24 h postintravenous injection of AuNNP@PAA/NIC NPs, leading to an increase of 4.5 times. This indicated that the hypoxic microenvironment in the tumor successfully triggered the in situ aggregation of AuNNP@PAA/NIC NPs. The in vivo radiotherapeutic effect demonstrated that this hypoxia-triggered in situ aggregation of radiosensitizers significantly enhanced radiosensitization and thus resulted in superior cancer radiotherapeutic outcomes.
Collapse
Affiliation(s)
- Huafeng Geng
- Department of Obstetrics and Gynecology, China-Japan Union Hospital of Jilin University, No. 126, Xiantai Street, Changchun 130033, China
| | - Ke Chen
- Department of Obstetrics and Gynecology, China-Japan Union Hospital of Jilin University, No. 126, Xiantai Street, Changchun 130033, China
| | - Lu Cao
- Department of Obstetrics and Gynecology, China-Japan Union Hospital of Jilin University, No. 126, Xiantai Street, Changchun 130033, China
| | - Luntao Liu
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Yue Huang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Junbao Liu
- Department of Obstetrics and Gynecology, China-Japan Union Hospital of Jilin University, No. 126, Xiantai Street, Changchun 130033, China
| |
Collapse
|