1
|
Huang B, Yu J, Dong J, Zhou Y, Zhai L, Dou L, Wu C, Liang X, Zhang C, Ostrikov KK, Shao T. Improving Charge Storage of Biaxially-Oriented Polypropylene under Extreme Electric Fields by Excimer UV Irradiation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311713. [PMID: 38302103 DOI: 10.1002/adma.202311713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/18/2024] [Indexed: 02/03/2024]
Abstract
Biaxially-oriented polypropylene (BOPP) is one of the most commonly used materials for film-based capacitors for power electronics and pulsed power systems. To address the pressing issue of performance-limiting loss under extreme electric-fields, here a one-step, high-throughput, and environment-friendly process based on very low-dose ultra-violet irradiation from KrCl (222 nm) and Xe2 (172 nm) excimer is demonstrated. The performance of commercial BOPP is boosted in terms of withstanding electric-field extremes (Weibull breakdown strength 694 to 811 V µm-1 by 17% at 25 °C and 428 to 651 V µm-1 by 52% at 120 °C), discharged energy density, and conduction losses. Importantly, the depth profile of space charge is precisely measured in situ with a high resolution of 500 nm by laser induced pressure pulse. Consequently, the space charge effect and electric-field distortion are reduced and related to the improved polymer films. It is demonstrated that energetic UV photons act as scissors for BOPP chains and dissociate oxygen molecules leading to the more thermally stable oxygen-containing structures, as deep traps to impede charge migration. This work provides a promising approach to produce polymers with customized microscopic characteristics that is compatible with the assembly lines of polymer-based capacitors.
Collapse
Affiliation(s)
- Bangdou Huang
- Beijing International S&T Cooperation Base for Plasma Science and Energy Conversion, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Jiachuan Yu
- Beijing International S&T Cooperation Base for Plasma Science and Energy Conversion, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Jie Dong
- Beijing International S&T Cooperation Base for Plasma Science and Energy Conversion, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Ying Zhou
- Department of Electrical Engineering, Tsinghua University, Beijing, 100084, China
| | - Lei Zhai
- Key Laboratory of Science and Technology on High-tech Polymer Materials, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Liguang Dou
- Beijing International S&T Cooperation Base for Plasma Science and Energy Conversion, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Chao Wu
- Department of Electrical Engineering, Tsinghua University, Beijing, 100084, China
| | - Xidong Liang
- Department of Electrical Engineering, Tsinghua University, Beijing, 100084, China
| | - Cheng Zhang
- Beijing International S&T Cooperation Base for Plasma Science and Energy Conversion, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Kostya Ken Ostrikov
- School of Chemistry and Physics and QUT Centre for Materials Science, Queensland University of Technology (QUT), Brisbane, QLD, 4000, Australia
| | - Tao Shao
- Beijing International S&T Cooperation Base for Plasma Science and Energy Conversion, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
2
|
Wang W, Wang S, Gu Y, Zhou J, Zhang J. Contact-separation-induced self-recoverable mechanoluminescence of CaF 2:Tb 3+/PDMS elastomer. Nat Commun 2024; 15:2014. [PMID: 38443411 PMCID: PMC10914845 DOI: 10.1038/s41467-024-46432-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 02/21/2024] [Indexed: 03/07/2024] Open
Abstract
Centrosymmetric-oxide/polydimethylsiloxane elastomers emit ultra-strong non-pre-irradiation mechanoluminescence under stress and are considered one of the most ideal mechanoluminescence materials. However, previous centrosymmetric-oxide/polydimethylsiloxane elastomers show severe mechanoluminescence degradation under stretching, which limits their use in applications. Here we show an elastomer based on centrosymmetric fluoride CaF2:Tb3+ and polydimethylsiloxane, with mechanoluminescence that can self-recover after each stretching. Experimentation indicates that the self-recoverable mechanoluminescence of the CaF2:Tb3+/polydimethylsiloxane elastomer occurs essentially due to contact electrification arising from contact-separation interactions between the centrosymmetric phosphors and the polydimethylsiloxane. Accordingly, a contact-separation cycle model of the phosphor-polydimethylsiloxane couple is established, and first-principles calculations are performed to model state energies in the contact-separation cycle. The results reveal that the fluoride-polydimethylsiloxane couple helps to induce contact electrification and maintain the contact-separation cycle at the interface, resulting in the self-recoverable mechanoluminescence of the CaF2:Tb3+/polydimethylsiloxane elastomer. Therefore, it would be a good strategy to develop self-recoverable mechanoluminescence elastomers based on centrosymmetric fluoride phosphors and polydimethylsiloxane.
Collapse
Affiliation(s)
- Wenxiang Wang
- National & Local Joint Engineering Laboratory for Optical Conversion Materials and Technology, Lanzhou University, Lanzhou, P. R. China
| | - Shanwen Wang
- National & Local Joint Engineering Laboratory for Optical Conversion Materials and Technology, Lanzhou University, Lanzhou, P. R. China
| | - Yan Gu
- National & Local Joint Engineering Laboratory for Optical Conversion Materials and Technology, Lanzhou University, Lanzhou, P. R. China
| | - Jinyu Zhou
- National & Local Joint Engineering Laboratory for Optical Conversion Materials and Technology, Lanzhou University, Lanzhou, P. R. China
| | - Jiachi Zhang
- National & Local Joint Engineering Laboratory for Optical Conversion Materials and Technology, Lanzhou University, Lanzhou, P. R. China.
| |
Collapse
|
3
|
Kumar A, Gautam S, Atri S, Tafreshi HV, Pourdeyhimi B. Importance of Dipole Orientation in Electrostatic Aerosol Filtration. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023. [PMID: 38019151 DOI: 10.1021/acs.langmuir.3c02016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
Electrostatic charge is a major part of modern-day aerosol filtration media (e.g., N95 respirators and surgical facemasks) that has remained poorly understood due to its complicated physics. As such, charging a fibrous material has relied on empiricism in dire need of a mathematical foundation to further advance product design and optimization. In this concern, we have conducted a series of numerical simulations to improve our understanding of how an electrostatically charged fiber captures airborne particles and to quantify how the fiber's dipole orientation impacts its capture efficiency. Special attention was paid to the role of Coulomb and dielectrophoretic forces in the capture of particles of different charge polarities (e.g., particles having a Boltzmann charge distribution). Simulation results were compared with the predictions of the popular empirical correlations from the literature and discussed in detail. Predictions of the empirical correlations better agreed with the simulation results obtained for fibers with a dipole perpendicular to the flow direction rather than for fibers with a dipole parallel to the flow. This indicates that such empirical correlations are more suitable for filters charged via contact electrification (friction charging), where the dipoles are mostly perpendicular to the flow direction, and less suitable for corona-charged media, where the fiber dipoles are generally parallel to the flow direction.
Collapse
Affiliation(s)
- A Kumar
- Department of Mechanical and Aerospace Engineering, NC State University, Raleigh, North Carolina 27695-7910, United States
| | - S Gautam
- Department of Mechanical and Aerospace Engineering, NC State University, Raleigh, North Carolina 27695-7910, United States
| | - S Atri
- Department of Mechanical and Aerospace Engineering, NC State University, Raleigh, North Carolina 27695-7910, United States
| | - H V Tafreshi
- Department of Mechanical and Aerospace Engineering, NC State University, Raleigh, North Carolina 27695-7910, United States
- The Nonwovens Institute, NC State University, Raleigh, North Carolina 27606, United States
| | - B Pourdeyhimi
- The Nonwovens Institute, NC State University, Raleigh, North Carolina 27606, United States
| |
Collapse
|
4
|
Zhu N, Zhou J, Zhang L, Yao N, Dastan D, Zhang J, Chen Y, Zhang X. Design and characterization of molecular, crystal and interfacial structures of PVDF-based dielectric nanocomposites for electric energy storage. SOFT MATTER 2023. [PMID: 37309746 DOI: 10.1039/d3sm00291h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
PVDF-based polymers with polar covalent bonds are next-generation dielectric materials for electric energy storage applications. Several types of PVDF-based polymers, such as homopolymers, copolymers, terpolymers and tetrapolymers, were synthesized by radical addition reactions, controlled radical polymerizations, chemical modifications or reduction with the monomers of vinylidene fluoride (VDF), tetrafluoroethylene (TFE), trifluoroethylene (TrFE), hexafluoropropylene (HFP) and chlorotrifluoroethylene (CTFE). Owing to rich molecular structures and complicated crystal structures, PVDF-based dielectric polymers can show versatile dielectric polarization properties, including normal ferroelectrics, relaxor ferroelectrics, anti-ferroelectrics and linear dielectrics, which are beneficial for designing polymer films with high capacity and high charge-discharge efficiency for capacitor applications. Furthermore, to satisfy the requirements of practical high-capacity capacitors, the polymer nanocomposite method is another promising strategy to achieve high-capacitance dielectric materials by the addition of high-dielectric ceramic nanoparticles, moderate-dielectric nanoparticles (MgO, and Al2O3), high-insulation nanosheets (BN), etc. It is concluded with the current problems and future perspectives of interfacial engineering, such as core-shell strategies and hierarchical interfaces in polymer-based composite dielectrics for high-energy-density capacitor applications. In addition, an in-depth understanding of the roles of interfaces on the dielectric properties of nanocomposites can be achieved by indirect analysis techniques (theoretical simulation) and direct analysis techniques (scanning probe microscopy). Our systematic discussions on molecular, crystal and interfacial structures provide guidance for designing fluoropolymer-based nanocomposites for high-performance capacitor applications.
Collapse
Affiliation(s)
- Ning Zhu
- Institute of Advanced Magnetic Materials and International Research Center for EM Metamaterials, College of Materials & Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China.
| | - Jingtao Zhou
- Institute of Advanced Magnetic Materials and International Research Center for EM Metamaterials, College of Materials & Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China.
| | - Lei Zhang
- State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University Xi'an, 710049, China
| | - Ni Yao
- Research Center for Intelligent Sensing, Zhejiang Lab, Hangzhou, 311121, China
| | - Davoud Dastan
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY, 15850, USA
| | - Jian Zhang
- Institute of Advanced Magnetic Materials and International Research Center for EM Metamaterials, College of Materials & Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China.
| | - Yingxin Chen
- Institute of Advanced Magnetic Materials and International Research Center for EM Metamaterials, College of Materials & Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China.
| | - Xuefeng Zhang
- Institute of Advanced Magnetic Materials and International Research Center for EM Metamaterials, College of Materials & Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China.
| |
Collapse
|
5
|
Wang S, Luo Z, Liang J, Hu J, Jiang N, He J, Li Q. Polymer Nanocomposite Dielectrics: Understanding the Matrix/Particle Interface. ACS NANO 2022; 16:13612-13656. [PMID: 36107156 DOI: 10.1021/acsnano.2c07404] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Polymer nanocomposite dielectrics possess exceptional electric properties that are absent in the pristine dielectric polymers. The matrix/particle interface in polymer nanocomposite dielectrics is suggested to play decisive roles on the bulk material performance. Herein, we present a critical overview of recent research advances and important insights in understanding the matrix/particle interfacial characteristics in polymer nanocomposite dielectrics. The primary experimental strategies and state-of-the-art characterization techniques for resolving the local property-structure correlation of the matrix/particle interface are dissected in depth, with a focus on the characterization capabilities of each strategy or technique that other approaches cannot compete with. Limitations to each of the experimental strategy are evaluated as well. In the last section of this Review, we summarize and compare the three experimental strategies from multiple aspects and point out their advantages and disadvantages, critical issues, and possible experimental schemes to be established. Finally, the authors' personal viewpoints regarding the challenges of the existing experimental strategies are presented, and potential directions for the interface study are proposed for future research.
Collapse
Affiliation(s)
- Shaojie Wang
- State Key Laboratory of Power Systems, Department of Electrical Engineering, Tsinghua University, Beijing 100084, China
| | - Zhen Luo
- State Key Laboratory of Power Systems, Department of Electrical Engineering, Tsinghua University, Beijing 100084, China
| | - Jiajie Liang
- State Key Laboratory of Power Systems, Department of Electrical Engineering, Tsinghua University, Beijing 100084, China
| | - Jun Hu
- State Key Laboratory of Power Systems, Department of Electrical Engineering, Tsinghua University, Beijing 100084, China
| | - Naisheng Jiang
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Jinliang He
- State Key Laboratory of Power Systems, Department of Electrical Engineering, Tsinghua University, Beijing 100084, China
| | - Qi Li
- State Key Laboratory of Power Systems, Department of Electrical Engineering, Tsinghua University, Beijing 100084, China
| |
Collapse
|