1
|
Ma Y, Jiang Q, Liu X, Sun X, Liang G. In situ peptide assembly for cell membrane rewiring in tumor therapy. J Control Release 2025; 381:113637. [PMID: 40107514 DOI: 10.1016/j.jconrel.2025.113637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 02/14/2025] [Accepted: 03/14/2025] [Indexed: 03/22/2025]
Abstract
Peptide assembly on the cell membrane is capable of endowing cells with novel biological properties that are distinct from their original states, thereby playing a pivotal role in the regulation of diverse cellular biological events. In practical biomedical scenarios, in order to make peptide assembly more precisely meet the requirements of cells at different physiological stages and conditions to achieve desired effects of cell function regulation, it becomes particularly crucial to conduct precise in situ spatiotemporal control of peptide assembly on the cell membrane, thus attracting great attentions. Particularly for tumor treatment, this artificially manipulated cell surface engineering can achieve excellent anti-tumor effects by altering the cell membrane structure, influencing receptor clustering or interfering with relevant signal pathways. Of note, membrane-anchoring peptides play a key role in these processes. In this review, we focus on three main types of membrane-anchoring peptides, elaborating in detail on how their assembly regulation mechanisms influence the cell membrane remodeling effect, and further exert therapeutic effects on tumors. On this basis, we further introduce a variety of tumor treatment strategies combined with in situ peptide assembly on the cell membrane, and discuss the current opportunities and challenges in this field, aiming to present the overall research panorama and trend of in situ peptide self-assembly on the cell membrane for efficient tumor treatment.
Collapse
Affiliation(s)
- Yu Ma
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, 2 Southeast University Road, Nanjing 211189, China
| | - Qiaochu Jiang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, 2 Southeast University Road, Nanjing 211189, China
| | - Xiaoyang Liu
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, 2 Southeast University Road, Nanjing 211189, China
| | - Xianbao Sun
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, 2 Southeast University Road, Nanjing 211189, China.
| | - Gaolin Liang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, 2 Southeast University Road, Nanjing 211189, China.
| |
Collapse
|
2
|
Petit N, Chang YYJ, Lobianco FA, Hodgkinson T, Browne S. Hyaluronic acid as a versatile building block for the development of biofunctional hydrogels: In vitro models and preclinical innovations. Mater Today Bio 2025; 31:101596. [PMID: 40083836 PMCID: PMC11903855 DOI: 10.1016/j.mtbio.2025.101596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 02/07/2025] [Accepted: 02/17/2025] [Indexed: 03/16/2025] Open
Abstract
Hyaluronic acid (HyA) is a non-sulphated linear polysaccharide found abundantly in the extracellular matrix, known for its biocompatibility and versatility in tissue engineering. Chemical modifications of HyA, including methacrylate, acrylate, click chemistry, norbornene, or host-guest chemistry, are necessary for the formation of stable hydrogels with tuneable biophysical characteristics. These modifications enable precise control over stiffness, swelling, degradation, and advanced functionalities such as shear-thinning, self-healing, and injectability. Functionalisation further enhances hydrogel bioactivity, enabling controlled cell adhesion, modulation of cell behaviour, hydrogel degradation, and release profiles, as well as inflammation modulation or bacterial growth inhibition. These are achieved by conjugating proteins, peptides, antibodies, or reactive chemical groups. HyA hydrogels find broad applications both in vitro and in vivo. In vitro, HyA-based hydrogels can support the development of models to understand fundamental processes in health and mechanisms behind disease progression, serving as highly tuneable extracellular matrix mimetics. As therapeutic interventions, injectable or implantable HyA-based hydrogels have been developed to repair a range of tissues, including cartilage, bone, muscle, and skin defects. However, issues remain to be addressed before widespread adoption of HyA-based hydrogels as clinical options. Future innovations for HyA hydrogels include its establishment as an enabling technology for the delivery of novel therapeutics, with a particular focus on immunomodulatory molecules, and the development of more dynamic, tissue-mimetic HyA-based hydrogels.
Collapse
Affiliation(s)
- Noémie Petit
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, 123, St Stephen's Green, Dublin 2, Ireland
- CÚRAM, Research Ireland Centre for Medical Devices, University of Galway, Galway, H91 W2TY, Ireland
| | - Yu-yin Joanne Chang
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, 123, St Stephen's Green, Dublin 2, Ireland
- CÚRAM, Research Ireland Centre for Medical Devices, University of Galway, Galway, H91 W2TY, Ireland
| | - Franz Acker Lobianco
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, 123, St Stephen's Green, Dublin 2, Ireland
| | - Tom Hodgkinson
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, 123, St Stephen's Green, Dublin 2, Ireland
| | - Shane Browne
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, 123, St Stephen's Green, Dublin 2, Ireland
- CÚRAM, Research Ireland Centre for Medical Devices, University of Galway, Galway, H91 W2TY, Ireland
- Trinity Centre for Biomedical Engineering, Trinity College Dublin, Dublin 2, Ireland
| |
Collapse
|
3
|
Li J, Song J, Shao L, Zhang X, Wang Z, Li G, Wang J, Zhang J. Acid-assisted self-assembly of pyrene-capped tyrosine ruptures lysosomes to induce cancer cell apoptosis. RSC Adv 2024; 14:15840-15847. [PMID: 38756853 PMCID: PMC11095371 DOI: 10.1039/d4ra01328j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 05/10/2024] [Indexed: 05/18/2024] Open
Abstract
Induced lysosomal membrane permeabilization (LMP) by peptide self-assembly has emerged as an effective platform for lysosome-targeted cancer therapy. In this study, we shift this strategical paradigm and present an innovative approach to LMP induction through amino acid-based self-assembly. Pyrene-capped tyrosine (Py-Tyr), as a proof-of-concept molecule, is designed with acidity-responsive self-assembly. Under acidic conditions (pH 4), Py-Tyr is protonated with reduced charge repulsion, and self-assembles into micrometer-scaled aggregates, which exceed the biological size of lysosomes. Cell experiments showed that Py-Tyr specifically accumulates in lysosomes and induces lysosome rupture, leading to the release of cathepsin B into the cytoplasm for subsequent apoptosis activation in cancer cells. This study capitalizes on the concept of amino acid assembly for efficient LMP induction, providing a simple and versatile platform for precise and effective therapeutic interventions in cancer therapy.
Collapse
Affiliation(s)
- Jing Li
- The Second Clinical Medical School, Shaanxi University of Chinese Medicine Xianyang Shaanxi China
- The Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University Xi'an Shaanxi China
| | - Jiaqi Song
- Department of Biophysics, School of Basic Medical Sciences, Xi'an Jiaotong University Xi'an Shaanxi China
| | - Liang Shao
- Department of Biophysics, School of Basic Medical Sciences, Xi'an Jiaotong University Xi'an Shaanxi China
| | - Xianpeng Zhang
- Department of Biophysics, School of Basic Medical Sciences, Xi'an Jiaotong University Xi'an Shaanxi China
| | - Ziyi Wang
- The Second Clinical Medical School, Shaanxi University of Chinese Medicine Xianyang Shaanxi China
- The Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University Xi'an Shaanxi China
| | - Guanying Li
- Department of Biophysics, School of Basic Medical Sciences, Xi'an Jiaotong University Xi'an Shaanxi China
| | - Jiansheng Wang
- The Second Clinical Medical School, Shaanxi University of Chinese Medicine Xianyang Shaanxi China
- The Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University Xi'an Shaanxi China
| | - Jia Zhang
- The Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University Xi'an Shaanxi China
| |
Collapse
|
4
|
Song J, Shao L, Yu H, Meng C, Li G. Self-Assembly of Sulfate-Containing Peptides Sequesters VEGF for Inhibiting Cancer Cell Invasion. Biomacromolecules 2024; 25:3087-3097. [PMID: 38584438 DOI: 10.1021/acs.biomac.4c00168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Heparan sulfate proteoglycans (HSPGs) play a crucial role in regulating cancer growth and migration by mediating interactions with growth factors. In this study, we developed a self-assembling peptide (S1) containing a sulfate group to simulate the contiguous sulfated regions (S-domains) in heparan sulfate for growth factor binding, aiming to sequester growth factors like VEGF. Spectral and structural studies as well as simulation studies suggested that S1 self-assembled into nanostructures similar to the heparan sulfate chains and effectively bound to VEGF. On cancer cell surfaces, S1 self-assemblies sequestered VEGF, leading to a reduction in VEGF levels in the medium, consequently inhibiting cancer cell growth, invasion, and angiogenesis. This study highlights the potential of self-assembling peptides to emulate extracellular matrix functions, offering insights for future cancer therapeutic strategies.
Collapse
Affiliation(s)
- Jiaqi Song
- Department of Biophysics, School of Basic Medical Sciences, Health Science Centre, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P. R. China
| | - Liang Shao
- Department of Biophysics, School of Basic Medical Sciences, Health Science Centre, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P. R. China
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, P. R. China
| | - Hongwen Yu
- Department of Biophysics, School of Basic Medical Sciences, Health Science Centre, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P. R. China
| | - Caiting Meng
- Department of Biophysics, School of Basic Medical Sciences, Health Science Centre, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P. R. China
| | - Guanying Li
- Department of Biophysics, School of Basic Medical Sciences, Health Science Centre, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P. R. China
- The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P. R. China
| |
Collapse
|
5
|
Kumar M, Kumar D, Kumar D, Garg Y, Chopra S, Bhatia A. Therapeutic Potential of Nanocarrier Mediated Delivery of Peptides for Wound Healing: Current Status, Challenges and Future Prospective. AAPS PharmSciTech 2024; 25:108. [PMID: 38730090 DOI: 10.1208/s12249-024-02827-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 05/01/2024] [Indexed: 05/12/2024] Open
Abstract
Wound healing presents a complex physiological process that involves a sequence of events orchestrated by various cellular and molecular mechanisms. In recent years, there has been growing interest in leveraging nanomaterials and peptides to enhance wound healing outcomes. Nanocarriers offer unique properties such as high surface area-to-volume ratio, tunable physicochemical characteristics, and the ability to deliver therapeutic agents in a controlled manner. Similarly, peptides, with their diverse biological activities and low immunogenicity, hold great promise as therapeutics in wound healing applications. In this review, authors explore the potential of peptides as bioactive components in wound healing formulations, focusing on their antimicrobial, anti-inflammatory, and pro-regenerative properties. Despite the significant progress made in this field, several challenges remain, including the need for standardized characterization methods, optimization of biocompatibility and safety profiles, and translation from bench to bedside. Furthermore, developing multifunctional nanomaterial-peptide hybrid systems represents promising avenues for future research. Overall, the integration of nanomaterials made up of natural or synthetic polymers with peptide-based formulations holds tremendous therapeutic potential in advancing the field of wound healing and improving clinical outcomes for patients with acute and chronic wounds.
Collapse
Affiliation(s)
- Mohit Kumar
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University (MRSPTU), Bathinda, 151001, Punjab, India
| | - Dikshant Kumar
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University (MRSPTU), Bathinda, 151001, Punjab, India
| | - Devesh Kumar
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University (MRSPTU), Bathinda, 151001, Punjab, India
| | - Yogesh Garg
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University (MRSPTU), Bathinda, 151001, Punjab, India
| | - Shruti Chopra
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University (MRSPTU), Bathinda, 151001, Punjab, India
| | - Amit Bhatia
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University (MRSPTU), Bathinda, 151001, Punjab, India.
| |
Collapse
|
6
|
Gwon Y, Park S, Kim W, Park S, Sharma H, Jeong HE, Kong H, Kim J. Graphene Hybrid Tough Hydrogels with Nanostructures for Tissue Regeneration. NANO LETTERS 2024; 24:2188-2195. [PMID: 38324001 DOI: 10.1021/acs.nanolett.3c04188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
Over the past few decades, hydrogels have attracted considerable attention as promising biomedical materials. However, conventional hydrogels require improved mechanical properties, such as brittleness, which significantly limits their widespread use. Recently, hydrogels with remarkably improved toughness have been developed; however, their low biocompatibility must be addressed. In this study, we developed a tough graphene hybrid hydrogel with nanostructures. The resultant hydrogel exhibited remarkable mechanical properties while representing an aligned nanostructure that resembled the extracellular matrix of soft tissue. Owing to the synergistic effect of the topographical properties, and the enhanced biochemical properties, the graphene hybrid hydrogel had excellent stretchability, resilience, toughness, and biocompatibility. Furthermore, the hydrogel displayed outstanding tissue regeneration capabilities (e.g., skin and tendons). Overall, the proposed graphene hybrid tough hydrogel may provide significant insights into the application of tough hydrogels in tissue regeneration.
Collapse
Affiliation(s)
- Yonghyun Gwon
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
- Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
- Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Sangbae Park
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
- Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
- Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju 61186, Republic of Korea
- Institute of Nano-Stem Cells Therapeutics, NANOBIOSYSTEM Co., Ltd, Gwangju 61011, Republic of Korea
- Department of Biosystems Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Woochan Kim
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
- Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
- Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Sunho Park
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
- Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
- Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju 61186, Republic of Korea
- Department of Bio-Industrial Machinery Engineering, Pusan National University, Miryang 50463, Republic of Korea
| | - Harshita Sharma
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
- Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
- Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Hoon Eui Jeong
- Department of Mechanical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Hyunjoon Kong
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Jangho Kim
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
- Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
- Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju 61186, Republic of Korea
- Institute of Nano-Stem Cells Therapeutics, NANOBIOSYSTEM Co., Ltd, Gwangju 61011, Republic of Korea
| |
Collapse
|
7
|
Yu H, Song J, Zhang X, Jiang K, Fan H, Li Y, Zhao Y, Liu S, Hao D, Li G. Hydroxyapatite-Tethered Peptide Hydrogel Promotes Osteogenesis. Gels 2022; 8:gels8120804. [PMID: 36547328 PMCID: PMC9777555 DOI: 10.3390/gels8120804] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/01/2022] [Accepted: 12/02/2022] [Indexed: 12/13/2022] Open
Abstract
Hydroxyapatite (HAp) as natural bone composition is highly osteoinductive. To harvest its osteoinductivity in bone regenerative engineering, the HAp-supporting hydrogel is urgently needed to minimize inhomogeneous aggregation of HAp. Here, we developed a HAp-stabilizing hydrogel based on peptide self-assembly. FmocFFRR was efficient for HAp-capping due to arginine-phosphate interaction. Tethering FmocFFRR on the HAp surface facilitated self-assembly to form FmocFFRR/HAp hybrid hydrogel, enabling stable dispersion of HAp in it. The molecular interactions between FmocFFRR and HAp particles were studied using microscopic and spectral characterizations. FmocFFRR/HAp hydrogel exhibited more enhanced mechanical properties than FmocFFRR. The biocompatibility of FmocFFRR/HAp hydrogel was verified using an ATP assay and live-dead staining assay. More importantly, FmocFFRR/HAp hydrogel not only enabled cell attachment on its surface, but also supported 3D cell culturing inside the hydrogel. Further, 3D culturing of MC3T3-E1 preosteoblasts inside FmocFFRR/HAp hydrogel significantly enhanced the expressions of osteogenesis markers, including alkaline phosphate (ALP), type-I collagen (COL1), and osteocalcin (OCN), demonstrating the promoting effect of osteoblast differentiation. These findings inspire its potential application in bone regenerative engineering.
Collapse
Affiliation(s)
- Hongwen Yu
- The Second Clinical Medical School, Shaanxi University of Chinese Medicine, Xianyang 712046, China
- Honghui Hospital, Xi’an Jiaotong University, Xi’an 710054, China
- School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an 710061, China
| | - Jiaqi Song
- School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an 710061, China
| | - Xianpeng Zhang
- School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an 710061, China
| | - Kuo Jiang
- Honghui Hospital, Xi’an Jiaotong University, Xi’an 710054, China
| | - Hong Fan
- Honghui Hospital, Xi’an Jiaotong University, Xi’an 710054, China
| | - Yibing Li
- Honghui Hospital, Xi’an Jiaotong University, Xi’an 710054, China
| | - Yuanting Zhao
- Honghui Hospital, Xi’an Jiaotong University, Xi’an 710054, China
| | - Shichang Liu
- The Second Clinical Medical School, Shaanxi University of Chinese Medicine, Xianyang 712046, China
- Honghui Hospital, Xi’an Jiaotong University, Xi’an 710054, China
- Correspondence: (S.L.); (D.H.); (G.L.)
| | - Dingjun Hao
- The Second Clinical Medical School, Shaanxi University of Chinese Medicine, Xianyang 712046, China
- Honghui Hospital, Xi’an Jiaotong University, Xi’an 710054, China
- Correspondence: (S.L.); (D.H.); (G.L.)
| | - Guanying Li
- School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an 710061, China
- Correspondence: (S.L.); (D.H.); (G.L.)
| |
Collapse
|