1
|
Doostmohammadi H, Kashmarizad K, Baniassadi M, Bodaghi M, Baghani M. 4D printing and optimization of biocompatible poly lactic acid/poly methyl methacrylate blends for enhanced shape memory and mechanical properties. J Mech Behav Biomed Mater 2024; 160:106719. [PMID: 39244990 DOI: 10.1016/j.jmbbm.2024.106719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/22/2024] [Accepted: 09/03/2024] [Indexed: 09/10/2024]
Abstract
This study introduces a novel approach to 4D printing of biocompatible Poly lactic acid (PLA)/poly methyl methacrylate (PMMA) blends using Artificial Neural Network (ANN) and Response Surface Methodology (RSM). The goal is to optimize PMMA content, nozzle temperature, raster angle, and printing speed to enhance shape memory properties and mechanical strength. The materials, PLA and PMMA, are melt-blended and 4D printed using a pellet-based 3D printer. Differential Scanning Calorimetry (DSC) and Dynamic Mechanical Thermal Analysis (DMTA) assess the thermal behavior and compatibility of the blends. The ANN model demonstrates superior prediction accuracy and generalization capability compared to the RSM model. Experimental results show a shape recovery ratio of 100% and an ultimate tensile strength of 65.2 MPa, significantly higher than pure PLA. A bio-screw, 4D printed with optimized parameters, demonstrates excellent mechanical properties and shape memory behavior, suitable for biomedical applications such as orthopaedics and dental implants. This research presents an innovative method for 4D printing PLA/PMMA blends, highlighting their potential in creating advanced, high-performance biocompatible materials for medical use.
Collapse
Affiliation(s)
- Hossein Doostmohammadi
- School of Mechanical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Kamyab Kashmarizad
- School of Mechanical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Majid Baniassadi
- School of Mechanical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Mahdi Bodaghi
- Department of Engineering, School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, UK.
| | - Mostafa Baghani
- School of Mechanical Engineering, College of Engineering, University of Tehran, Tehran, Iran.
| |
Collapse
|
2
|
Wang X, Zhang J, Wang Y, Qin S, Pan Y, Tu Y, Liu X. Superhydrophobic Thermoplastic Polyurethane Foam Fabricated by Phase Separation and Silica Coating for Oil-Water Separation. Macromol Rapid Commun 2023; 44:e2300333. [PMID: 37573031 DOI: 10.1002/marc.202300333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/25/2023] [Indexed: 08/14/2023]
Abstract
Oil spills and the presence of oily wastewater have resulted in substantial ecological damage. Superhydrophobic polymer foam with selectivity and adsorption capacity is a promising candidate for efficient oil-water separation. In this study, a method that combines phase separation and silica coating to produce superhydrophobic thermoplastic polyurethane (TPU) foam is proposed. The TPU foam demonstrates superhydrophobicity with a water contact angle of 155.62°, and exhibits a maximum saturated adsorption capacity of 54.11 g g-1 . Furthermore, the foam can be utilized as a filter for oil-water separation, maintaining its filtration efficiency (41.2 m3 m2 h-1 ) even after ten filtration cycles.
Collapse
Affiliation(s)
- Xiaolong Wang
- College of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450002, P. R. China
- Équipe de Recherche sur les Processus Innovatifs (ERPI), Université de Lorraine, Nancy, 54000, France
| | - Jingna Zhang
- State Key Laboratory of Structural Analysis, Optimization and CAE Software for Industrial Equipment, National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Wenhua Road 97-1, Zhengzhou, 450002, P. R. China
| | - Yiding Wang
- State Key Laboratory of Structural Analysis, Optimization and CAE Software for Industrial Equipment, National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Wenhua Road 97-1, Zhengzhou, 450002, P. R. China
| | - Shengxue Qin
- College of Mechanical and Electrical Engineering, Shandong University of Science and Technology, Qingdao, Shandong, 266590, P. R. China
| | - Yamin Pan
- College of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450002, P. R. China
| | - Yongqiang Tu
- College of Marine Equipment and Mechanical Engineering, Jimei University, Xiamen, 361021, P. R. China
| | - Xianhu Liu
- State Key Laboratory of Structural Analysis, Optimization and CAE Software for Industrial Equipment, National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Wenhua Road 97-1, Zhengzhou, 450002, P. R. China
| |
Collapse
|
3
|
Liu H, Zhang Z, Wu C, Su K, Kan X. Biomimetic Superhydrophobic Materials through 3D Printing: Progress and Challenges. MICROMACHINES 2023; 14:1216. [PMID: 37374801 DOI: 10.3390/mi14061216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/02/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023]
Abstract
Superhydrophobicity, a unique natural phenomenon observed in organisms such as lotus leaves and desert beetles, has inspired extensive research on biomimetic materials. Two main superhydrophobic effects have been identified: the "lotus leaf effect" and the "rose petal effect", both showing water contact angles larger than 150°, but with differing contact angle hysteresis values. In recent years, numerous strategies have been developed to fabricate superhydrophobic materials, among which 3D printing has garnered significant attention due to its rapid, low-cost, and precise construction of complex materials in a facile way. In this minireview, we provide a comprehensive overview of biomimetic superhydrophobic materials fabricated through 3D printing, focusing on wetting regimes, fabrication techniques, including printing of diverse micro/nanostructures, post-modification, and bulk material printing, and applications ranging from liquid manipulation and oil/water separation to drag reduction. Additionally, we discuss the challenges and future research directions in this burgeoning field.
Collapse
Affiliation(s)
- Haishuo Liu
- School of Mechanical Engineering, Shijiazhuang Tiedao University, Shijiazhuang 050043, China
| | - Zipeng Zhang
- College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Chenyu Wu
- Qingdao Institute for Theoretical and Computational Sciences, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao 266237, China
| | - Kang Su
- School of Mechanical Engineering, Shijiazhuang Tiedao University, Shijiazhuang 050043, China
| | - Xiaonan Kan
- College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| |
Collapse
|
4
|
Chang Y, Bao M, Waitkus J, Cai H, Du K. On-Demand Fully Enclosed Superhydrophobic-Optofluidic Devices Enabled by Microstereolithography. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:10672-10678. [PMID: 35984448 PMCID: PMC9897971 DOI: 10.1021/acs.langmuir.2c01658] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Superhydrophobic surface-based optofluidics have been introduced to biosensors and unconventional optics with unique advantages, such as low light loss and power consumption. However, most of these platforms were made with planar-like microstructures and nanostructures, which may cause bonding issues and result in significant waveguide loss. Here, we introduce a fully enclosed superhydrophobic-based optofluidics system, enabled by a one-step microstereolithography procedure. Various microstructured cladding designs with a feature size down to 100 μm were studied and a "T-type" overhang design exhibits the lowest optical loss, regardless of the excitation wavelength. Surprisingly, the optical loss of superhydrophobic-based optofluidics is not solely decided by the solid area fraction at the solid/water/air interface, but also the cross-section shape and the effective cladding layer composition. We show that this fully enclosed optofluidic system can be used for CRISPR-labeled quantum dot quantification, intended for in vitro and in vivo CRISPR therapeutics.
Collapse
Affiliation(s)
- Yu Chang
- Department of Mechanical Engineering, Rochester Institute of Technology, Rochester, New York 14623, United States
| | - Mengdi Bao
- Department of Mechanical Engineering, Rochester Institute of Technology, Rochester, New York 14623, United States
| | - Jacob Waitkus
- Department of Mechanical Engineering, Rochester Institute of Technology, Rochester, New York 14623, United States
| | - Haogang Cai
- Tech4Health Institute and Department of Radiology, NYU Langone Health, New York, New York 10016, United States
| | - Ke Du
- Department of Mechanical Engineering, Rochester Institute of Technology, Rochester, New York 14623, United States
- Department of Microsystems Engineering, Rochester Institute of Technology, Rochester, New York 14623, United States
- School of Chemistry and Materials Science, Rochester Institute of Technology, Rochester, New York 14623, United States
- College of Health Science and Technology, Rochester Institute of Technology, Rochester, New York 14623, United States
| |
Collapse
|