1
|
Bandzerewicz A, Howis J, Wierzchowski K, Slouf M, Hodan J, Denis P, Gołofit T, Pilarek M, Gadomska-Gajadhur A. Exploring the application of poly(1,2-ethanediol citrate)/polylactide nonwovens in cell culturing. Front Bioeng Biotechnol 2024; 12:1332290. [PMID: 38558787 PMCID: PMC10978747 DOI: 10.3389/fbioe.2024.1332290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 02/28/2024] [Indexed: 04/04/2024] Open
Abstract
Biomaterials containing citric acid as a building unit show potential for use as blood vessel and skin tissue substitutes. The success in commercializing implants containing a polymer matrix of poly(1,8-octanediol citrate) provides a rationale for exploring polycitrates based on other diols. Changing the aliphatic chain length of the diol allows functional design strategies to control the implant's mechanical properties, degradation profile and surface energy. In the present work, poly(1,2-ethanediol citrate) was synthesized and used as an additive to polylactide in the electrospinning process. It was established that the content of polycitrate greatly influences the nonwovens' properties: an equal mass ratio of polymers resulted in the best morphology. The obtained nonwovens were characterized by surface hydrophilicity, tensile strength, and thermal properties. L929 cell cultures were carried out on their surface. The materials were found to be non-cytotoxic and the degree of porosity was suitable for cell colonization. On the basis of the most important parameters for assessing the condition of cultured cells (cell density and viability, cell metabolic activity and lactate dehydrogenase activity), the potential of PLLA + PECit nonwovens for application in tissue engineering was established.
Collapse
Affiliation(s)
| | - Joanna Howis
- Faculty of Chemistry, Warsaw University of Technology, Warsaw, Poland
| | - Kamil Wierzchowski
- Faculty of Chemical and Process Engineering, Warsaw University of Technology, Warsaw, Poland
| | - Miroslav Slouf
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Prague, Czechia
| | - Jiri Hodan
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Prague, Czechia
| | - Piotr Denis
- Laboratory of Polymers and Biomaterials, Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, Poland
| | - Tomasz Gołofit
- Faculty of Chemistry, Warsaw University of Technology, Warsaw, Poland
| | - Maciej Pilarek
- Faculty of Chemical and Process Engineering, Warsaw University of Technology, Warsaw, Poland
| | | |
Collapse
|
2
|
Le KCM, Tran ATQ, Vu MP, Duong PVQ, Nguyen KT. Preventing Static Biofilm Formation of Staphylococcus aureus on Different Types of Surfaces Using Microbubbles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:1698-1706. [PMID: 38198688 DOI: 10.1021/acs.langmuir.3c02773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
Bacterial fouling and biofilm formation on surfaces have been ongoing problems in real life as well as in the medical field. Different approaches have been taken to tackle the issues, from costly surface modification to antibiotic-delivering strategies. In this study, we examined the potential of using stabilized microbubbles (MBs) to shield against bacterial adhesion. Three types of surfaces were tested: hydrophilic glass (hydrophilic surface), neutral hydrophobic polystyrene (PS)-coated surfaces, and negatively charged hydrophobic octadecyltrichlorosilane (OTS)-coated surfaces. By evaluating the colony-forming unit (CFU) values from each surface, MBs stabilized by 0.05 mM SDS were shown to only produce significant reduction of Staphylococcus aureus adhesion on PS surfaces, up to 60.29 and 82.32% compared to no-MB PS surfaces, and no-MB uncoated surfaces, correspondingly, due to the appropriate size, stability, and negative charges of the MB shielding layer. On the other hand, OTS coatings had an intrinsic antiadhesion effect (69.83% compared to uncoated surface), given that the negatively charged OTS-aqueous interface or surface porosity nature of the coating prohibited the attachment of MBs, leading to the elimination of the antifouling effect of MBs. Ultimately, MBs gave better shielding results than surface modification when compared to uncoated surfaces and hence can be applied more widely.
Collapse
Affiliation(s)
- Khoa C M Le
- School of Biotechnology, International University, Vietnam National University, Ho Chi Minh City 700000, Viet Nam
| | - Anh T Q Tran
- School of Biotechnology, International University, Vietnam National University, Ho Chi Minh City 700000, Viet Nam
| | - Mai P Vu
- School of Biotechnology, International University, Vietnam National University, Ho Chi Minh City 700000, Viet Nam
| | - Phuong V Q Duong
- School of Biotechnology, International University, Vietnam National University, Ho Chi Minh City 700000, Viet Nam
| | - Khoi T Nguyen
- School of Biotechnology, International University, Vietnam National University, Ho Chi Minh City 700000, Viet Nam
| |
Collapse
|
3
|
Tran NLH, Lam TQ, Duong PVQ, Doan LH, Vu MP, Nguyen KHP, Nguyen KT. Review on the Significant Interactions between Ultrafine Gas Bubbles and Biological Systems. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:984-996. [PMID: 38153335 DOI: 10.1021/acs.langmuir.3c03223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
Having sizes comparable with living cells and high abundance, ultrafine bubbles (UBs) are prone to inevitable interactions with different types of cells and facilitate alterations in physiological properties. The interactions of four typical cell types (e.g., bacterial, fungal, plant, and mammalian cells) with UBs have been studied over recent years. For bacterial cells, UBs have been utilized in creating the capillary force to tear down biofilms. The release of high amounts of heat, pressure, and free radicals during bubble rupture is also found to affect bacterial cell growth. Similarly, the bubble gas core identity plays an important role in the development of fungal cells. By the proposed mechanism of attachment of UBs on hydrophobin proteins in the fungal cell wall, oxygen and ozone gas-filled ultrafine bubbles can either promote or hinder the cell growth rate. On the other hand, reactive oxygen species (ROS) formation and mass transfer facilitation are two means of indirect interactions between UBs and plant cells. Likewise, the use of different gas cores in generating bubbles can produce different physical effects on these cells, for example, hydrogen gas for antioxidation against infections and oxygen for oxidation of toxic metal ions. For mammalian cells, the importance of investigating their interactions with UBs lies in the bubbles' action on cell viability as membrane poration for drug delivery can greatly affect cells' survival. UBs have been utilized and tested in forming the pores by different methods, ranging from bubble oscillation and microstream generation through acoustic cavitation to bubble implosion.
Collapse
Affiliation(s)
- Nguyen Le Hanh Tran
- School of Biotechnology, International University, Vietnam National University, Ho Chi Minh City 700000, Vietnam
| | - Thien Quang Lam
- School of Biotechnology, International University, Vietnam National University, Ho Chi Minh City 700000, Vietnam
| | - Phuong Vu Quynh Duong
- School of Biotechnology, International University, Vietnam National University, Ho Chi Minh City 700000, Vietnam
| | - Linh Hai Doan
- School of Biotechnology, International University, Vietnam National University, Ho Chi Minh City 700000, Vietnam
| | - Mai Phuong Vu
- School of Biotechnology, International University, Vietnam National University, Ho Chi Minh City 700000, Vietnam
| | - Khang Huy Phuc Nguyen
- School of Biotechnology, International University, Vietnam National University, Ho Chi Minh City 700000, Vietnam
| | - Khoi Tan Nguyen
- School of Biotechnology, International University, Vietnam National University, Ho Chi Minh City 700000, Vietnam
| |
Collapse
|
4
|
Bandzerewicz A, Wierzchowski K, Mierzejewska J, Denis P, Gołofit T, Szymczyk-Ziółkowska P, Pilarek M, Gadomska-Gajadhur A. Biological Activity of Poly(1,3-propanediol citrate) Films and Nonwovens: Mechanical, Thermal, Antimicrobial, and Cytotoxicity Studies. Macromol Rapid Commun 2024; 45:e2300452. [PMID: 37838916 DOI: 10.1002/marc.202300452] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/10/2023] [Indexed: 10/16/2023]
Abstract
Polymers are of great interest for medical and cosmeceutical applications. The current trend is to combine materials of natural and synthetic origin in order to obtain products with appropriate mechanical strength and good biocompatibility, additionally biodegradable and bioresorbable. Citric acid, being an important metabolite, is an interesting substance for the synthesis of materials for biomedical applications. Due to the high functionality of the molecule, it is commonly used in biomaterials chemistry as a crosslinking agent. Among citric acid-based biopolyesters, poly(1,8-octanediol citrate) is the best known. It shows application potential in soft tissue engineering. This work focuses on a much less studied polyester, poly(1,3-propanediol citrate). Porous and non-porous materials based on the synthesized polyesters are prepared and characterized, including mechanical, thermal, and surface properties, morphology, and degradation. The main focus is on assessing the biocompatibility and antimicrobial properties of the materials.
Collapse
Affiliation(s)
- Aleksandra Bandzerewicz
- Faculty of Chemistry, Warsaw University of Technology, 3 Noakowskiego Street, Warsaw, 00-664, Poland
| | - Kamil Wierzchowski
- Faculty of Chemical and Process Engineering, Warsaw University of Technology, Waryńskiego 1 Street, Warsaw, 00-645, Poland
| | - Jolanta Mierzejewska
- Faculty of Chemistry, Warsaw University of Technology, 3 Noakowskiego Street, Warsaw, 00-664, Poland
| | - Piotr Denis
- Laboratory of Polymers and Biomaterials, Institute of Fundamental Technological Research Polish Academy of Sciences, Pawińskiego 5B Street, Warsaw, 02-106, Poland
| | - Tomasz Gołofit
- Faculty of Chemistry, Warsaw University of Technology, 3 Noakowskiego Street, Warsaw, 00-664, Poland
| | - Patrycja Szymczyk-Ziółkowska
- Centre for Advanced Manufacturing Technologies-Fraunhofer Project Center, Faculty of Mechanical Engineering, Wroclaw University of Science and Technology, Lukasiewicza 5, Wroclaw, 50-371, Poland
| | - Maciej Pilarek
- Faculty of Chemical and Process Engineering, Warsaw University of Technology, Waryńskiego 1 Street, Warsaw, 00-645, Poland
| | | |
Collapse
|
5
|
Miyamoto S, Hirakawa T, Noguchi Y, Urushiyama D, Miyata K, Baba T, Yotsumoto F, Yasunaga S, Nakabayashi K, Hata K, Nakagawa W, Otsuka T, Nozawa Y, Furuhata I, Mikasa J. Physical Properties of Ultrafine Bubbles Generated Using a Generator System. In Vivo 2023; 37:2555-2563. [PMID: 37905634 PMCID: PMC10621414 DOI: 10.21873/invivo.13363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 07/27/2023] [Accepted: 08/03/2023] [Indexed: 11/02/2023]
Abstract
BACKGROUND/AIM Ultrafine bubbles (UFBs) have been extensively researched owing to their promising physical and biological properties. However, determining the lifespan or ideal concentration of UFBs for various biological events is challenging. This study aimed to determine the maximum concentration and longest lifespan of UFBs and to verify the validity of UFBs for assessing cell properties. MATERIALS AND METHODS A generator system (HMB-H0150+P001, TOSSLEC Corporation Limited, Kyoto, Japan) generated UFBs using various gases. The size and concentration of UFBs in ultrapure water and cell culture medium were measured through a nanoparticle tracking analysis method. RESULTS The UFB concentration increased when the generator operated in a time dependent manner. The mean size of UFBs was approximately 120 nm. In the UFB lifespan, the concentration decreased by approximately 30% within the first two weeks of generation and was stable for up to 6 months. The UFB size increased by approximately 20% within the first two weeks of generation and demonstrated minor changes until the 6th month. The number of cells differed significantly with various concentrations of nitrogen gas UFBs. CONCLUSION The generator system can generate UFBs with multiple concentrations within a suitable temperature. Consequently, the solution containing UFBs could be widely acceptable in cell culture systems.
Collapse
Affiliation(s)
- Shingo Miyamoto
- Department of Obstetrics & Gynecology, School of Medicine, Iwate Medical University, Iwate, Japan;
| | - Toyofumi Hirakawa
- Department of Obstetrics & Gynecology, Faculty of Medicine, Fukuoka University, Fukuoka, Japan;
| | - Yukiko Noguchi
- Department of Obstetrics & Gynecology, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
| | - Daichi Urushiyama
- Department of Obstetrics & Gynecology, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
| | - Kohei Miyata
- Department of Obstetrics & Gynecology, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
| | - Tsukasa Baba
- Department of Obstetrics & Gynecology, School of Medicine, Iwate Medical University, Iwate, Japan
| | - Fusanori Yotsumoto
- Department of Obstetrics & Gynecology, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
| | - Shin'ichiro Yasunaga
- Department of Biochemistry, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
| | - Kazuhiko Nakabayashi
- Department of Maternal-Fetal Biology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Kenichiro Hata
- Department of Maternal-Fetal Biology, National Research Institute for Child Health and Development, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
6
|
Hansen HHWB, Cha H, Ouyang L, Zhang J, Jin B, Stratton H, Nguyen NT, An H. Nanobubble technologies: Applications in therapy from molecular to cellular level. Biotechnol Adv 2023; 63:108091. [PMID: 36592661 DOI: 10.1016/j.biotechadv.2022.108091] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 12/27/2022] [Indexed: 12/31/2022]
Abstract
Nanobubbles are gaseous entities suspended in bulk liquids that have widespread beneficial usage in many industries. Nanobubbles are already proving to be versatile in furthering the effectiveness of disease treatment on cellular and molecular levels. They are functionalized with biocompatible and stealth surfaces to aid in the delivery of drugs. At the same time, nanobubbles serve as imaging agents due to the echogenic properties of the gas core, which can also be utilized for controlled and targeted delivery. This review provides an overview of the biomedical applications of nanobubbles, covering their preparation and characterization methods, discussing where the research is currently focused, and how they will help shape the future of biomedicine.
Collapse
Affiliation(s)
- Helena H W B Hansen
- Queensland Micro and Nanotechnology Centre, Griffith University, 170 Kessels Road, Nathan, QLD 4111, Australia
| | - Haotian Cha
- Queensland Micro and Nanotechnology Centre, Griffith University, 170 Kessels Road, Nathan, QLD 4111, Australia
| | - Lingxi Ouyang
- Queensland Micro and Nanotechnology Centre, Griffith University, 170 Kessels Road, Nathan, QLD 4111, Australia
| | - Jun Zhang
- Queensland Micro and Nanotechnology Centre, Griffith University, 170 Kessels Road, Nathan, QLD 4111, Australia
| | - Bo Jin
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Helen Stratton
- School of Environment and Science, Griffith University, Nathan, QLD 4111, Australia
| | - Nam-Trung Nguyen
- Queensland Micro and Nanotechnology Centre, Griffith University, 170 Kessels Road, Nathan, QLD 4111, Australia.
| | - Hongjie An
- Queensland Micro and Nanotechnology Centre, Griffith University, 170 Kessels Road, Nathan, QLD 4111, Australia.
| |
Collapse
|
7
|
Dobrowolska K, Odziomek M, Ulatowski K, Kędziora W, Soszyńska K, Sobieszuk P, Sosnowski TR. Interactions between O 2 Nanobubbles and the Pulmonary Surfactant in the Presence of Inhalation Medicines. MATERIALS (BASEL, SWITZERLAND) 2022; 15:6353. [PMID: 36143658 PMCID: PMC9503299 DOI: 10.3390/ma15186353] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/02/2022] [Accepted: 09/07/2022] [Indexed: 06/16/2023]
Abstract
A dispersion of oxygen nanobubbles (O2-NBs) is an extraordinary gas-liquid colloidal system where spherical gas elements can be considered oxygen transport agents. Its conversion into inhalation aerosol by atomization with the use of nebulizers, while maintaining the properties of the dispersion, gives new opportunities for its applications and may be attractive as a new concept in treating lung diseases. The screening of O2-NBs interactions with lung fluids is particularly needed in view of an O2-NBs application as a promising aerosol drug carrier with the additional function of oxygen supplementation. The aim of the presented studies was to investigate the influence of O2-NBs dispersion combined with the selected inhalation drugs on the surface properties of two types of pulmonary surfactant models (lipid and lipid-protein model). The characteristics of the air-liquid interface were carried out under breathing-like conditions using two selected tensiometer systems: Langmuir-Wilhelmy trough and the oscillating droplet tensiometer. The results indicate that the presence of NBs has a minor effect on the dynamic characteristics of the air-liquid interface, which is the desired effect in the context of a potential use in inhalation therapies.
Collapse
Affiliation(s)
| | - Marcin Odziomek
- Faculty of Chemical and Process Engineering, Warsaw University of Technology, Waryńskiego 1, 00-645 Warsaw, Poland
| | | | | | | | | | - Tomasz R. Sosnowski
- Faculty of Chemical and Process Engineering, Warsaw University of Technology, Waryńskiego 1, 00-645 Warsaw, Poland
| |
Collapse
|
8
|
Odziomek M, Ulatowski K, Dobrowolska K, Górniak I, Sobieszuk P, Sosnowski TR. Aqueous dispersions of oxygen nanobubbles for potential application in inhalation therapy. Sci Rep 2022; 12:12455. [PMID: 35864438 PMCID: PMC9302230 DOI: 10.1038/s41598-022-16720-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 07/14/2022] [Indexed: 11/22/2022] Open
Abstract
Inhalation is a non-invasive method of local drug delivery to the respiratory system. This study analyzed the potential use of aqueous dispersion of oxygen nanobubbles (ADON) as a drug carrier with the additional function of oxygen supplementation to diseased lungs. The suitability of the membrane-based method of ADON preparation and, next, the stability of ADON properties during storage and after aerosolization in nebulizers of various designs (jet, ultrasonic, and two vibrating mesh devices) was investigated. The increased oxygen content in the aerosol generated in two mesh nebulizers suggests that the proposed concept may be helpful in the oxygen supplementation during drug delivery by aerosol inhalation without using an additional oxygen source. This application can increase the overall effectiveness of lung disease treatment and pulmonary rehabilitation.
Collapse
Affiliation(s)
- Marcin Odziomek
- Faculty of Chemical and Process Engineering, Warsaw University of Technology, Waryńskiego 1 Street, 00-645, Warsaw, Poland.
| | - Karol Ulatowski
- Faculty of Chemical and Process Engineering, Warsaw University of Technology, Waryńskiego 1 Street, 00-645, Warsaw, Poland
| | - Katarzyna Dobrowolska
- Faculty of Chemical and Process Engineering, Warsaw University of Technology, Waryńskiego 1 Street, 00-645, Warsaw, Poland
| | - Izabela Górniak
- Faculty of Chemical and Process Engineering, Warsaw University of Technology, Waryńskiego 1 Street, 00-645, Warsaw, Poland
| | - Paweł Sobieszuk
- Faculty of Chemical and Process Engineering, Warsaw University of Technology, Waryńskiego 1 Street, 00-645, Warsaw, Poland
| | - Tomasz R Sosnowski
- Faculty of Chemical and Process Engineering, Warsaw University of Technology, Waryńskiego 1 Street, 00-645, Warsaw, Poland.
| |
Collapse
|