1
|
Li J, Jiang Q, Qiu D, Chen M, Zhang W, Li Y, Huang J, Xu Q. Programming an Amplified and Self-Calibrated Electrochemical Biosensor with High Sensitivity, Reproducibility, and Stability for ORAOV 1 Detection. Anal Chem 2025; 97:3449-3457. [PMID: 39908191 DOI: 10.1021/acs.analchem.4c05679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2025]
Abstract
The ability to accurately detect oral cancer overexpressed 1 (ORAOV 1) offers significant potential for the noninvasive and rapid diagnosis of oral squamous cell carcinoma (OSCC). Present here is an amplified and self-calibrated electrochemical (EC) biosensor for ORAOV 1 detection. This cutting-edge EC biosensor adopts a fuel-driven DNA molecular machine to induce target recycling, thereby amplifying the signals. Meanwhile, by integrating UiO-66 with graphene oxide (GO), the resulting GO@UiO-66 nanomaterials can effectively load substantial amounts of methylene blue (MB), thereby enhancing the EC performance and dramatically improving detection sensitivity. Furthermore, a ratiometric output mode is being developed by using highly conductive GO@UiO-66/MB and silver nanoparticles (Ag NPs) as electroactive tags. By leveraging this ratiometric strategy, which incorporates a built-in self-calibration factor that effectively eliminates systematic errors, the reproducibility, stability, and accuracy of the biosensor can be significantly enhanced. Experimental results demonstrate that this newly developed EC biosensor exhibits ultrahigh sensitivity, with a detection limit as low as 0.28 aM, and a broad linear range from 0.01 fM to 1 pM. Notably, it offers greater reproducibility, stability, and anti-interference capability compared to single-signal output modes. Meanwhile, the detection of ORAOV 1 in human saliva samples has been exemplified with a satisfactory recovery rate and anti-interference capability. More importantly, it can discriminate oral cancer patients from clinical samples with high accuracy (AUC = 1). This approach provides new insights into the noninvasive and early diagnosis of OSCC in clinical applications.
Collapse
Affiliation(s)
- Jing Li
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, P. R. China
| | - Qi Jiang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, P. R. China
| | - Dengxue Qiu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, P. R. China
| | - Minhui Chen
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, P. R. China
| | - Wei Zhang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, P. R. China
| | - Yuchen Li
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, P. R. China
| | - Jin Huang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, P. R. China
| | - Qin Xu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, P. R. China
- Institute of Innovation Materials and Energy, School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, P. R. China
| |
Collapse
|
2
|
Yao C, Zhang GQ, Yu L, Li YL, Yang T, Yang JM, Yang YH, Hu R. Homogeneous electrochemical ratiometric biosensor for MircoRNA detection based on UiO-66-NH 2 signal probe and waste-free entropy-driven DNA machine. Talanta 2024; 274:125999. [PMID: 38583327 DOI: 10.1016/j.talanta.2024.125999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/19/2024] [Accepted: 03/25/2024] [Indexed: 04/09/2024]
Abstract
The construction of efficient methods for highly sensitive and rapid detection of disease markers is essential for the early diagnosis of serious diseases. In this paper, taking advantage of the UiO-66-NH2 signal molecule in combination with a waste-free entropy-driven DNA machine, a novel homogeneous electrochemical ratiometric platform is developed to detect MircoRNA (miRNA). Metal-organic framework materials (UiO-66-NH2 MOF) and ferrocene were utilized as electrochemical signal tags and reference probes, respectively. The target-initiated waste-free three-dimensional (3D) entropy-driven DNA nanomachine is activated in the presence of miRNA, resulting in DNA-labeled-UiO-66-NH2 falling off from the electrode, leading to a decrease in the signal of UiO-66-NH2 at 0.83V. Our strategy can mitigate false positive responses induced by the DNA probes immobilized on electrodes in traditional distance-dependent signal adjustment ratiometric strategies. The proposed ratiometric platform demonstrates superior sensitivity (a detection limit of 9.8 fM), simplified operation, high selectivity, and high repeatability. The ratiometric biosensor is also applied to detect miRNA content in spiked serum samples.
Collapse
Affiliation(s)
- Chao Yao
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, Yunnan, 650500, PR China
| | - Gui-Qun Zhang
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, Yunnan, 650500, PR China
| | - Lan Yu
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, Yunnan, 650500, PR China
| | - Yu-Long Li
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, Yunnan, 650500, PR China
| | - Tong Yang
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, Yunnan, 650500, PR China
| | - Jian-Mei Yang
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, Yunnan, 650500, PR China
| | - Yun-Hui Yang
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, Yunnan, 650500, PR China
| | - Rong Hu
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, Yunnan, 650500, PR China; Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Molecular Engineering for Theronastics, Hunan University, Changsha, 410082, PR China.
| |
Collapse
|
3
|
Fan B, Wang Q, Wang S, Gao Y, Liang Y, Pan J, Fu X, Li L, Meng W. Label-Free Ratiometric Homogeneous Electrochemical Strategy Based on Exonuclease III-Aided Signal Amplification for Facile and Rapid Detection of miR-378. Int J Anal Chem 2024; 2024:8368987. [PMID: 38807657 PMCID: PMC11132827 DOI: 10.1155/2024/8368987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 02/24/2024] [Accepted: 05/06/2024] [Indexed: 05/30/2024] Open
Abstract
MiR-378 is abnormally expressed in various cancers, such as hepatocellular carcinoma, renal cell carcinoma, and nonsmall cell lung cancer. Here, we developed a label- and immobilization-free ratiometric homogeneous electrochemical strategy based on exonuclease III (Exo III) for the facile and rapid determination of miR-378. Two 3'-protruding hairpin DNA probes (HPs) are designed in this strategy. Doxorubicin (DOX) and potassium ferrocyanide (Fe2+) were used as label-free probes to produce a response signal (IDOX) and a reference signal (IFe2+) in the solution phase. When no target was present in the solution, the HP was stable, most of the DOX was intercalated in the stem of the HP, and the diffusion rate of DOX was significantly reduced, resulting in reduced electrochemical signal response. When miR-378 was present, double-cycle signal amplification triggered by Exo III cleavage was initiated, ultimately disrupting the hairpin structures of HP1 and HP2 and releasing a large amount of DOX into the solution, yielding a stronger electrochemical signal, which was low to 50 pM. This detection possesses excellent selectivity, demonstrating high application potential in biological systems, and offers simple and low-cost electrochemical detection for miR-378.
Collapse
Affiliation(s)
- Bingyuan Fan
- Key Laboratory of Biomedical Functional Materials, School of Sciences, China Pharmaceutical University, Nanjing 211198, China
| | - Qian Wang
- Key Laboratory of Biomedical Functional Materials, School of Sciences, China Pharmaceutical University, Nanjing 211198, China
- Nanpi No. 1 Middle School, Cangzhou 061599, China
| | - Shan Wang
- Key Laboratory of Biomedical Functional Materials, School of Sciences, China Pharmaceutical University, Nanjing 211198, China
| | - Yahui Gao
- Key Laboratory of Biomedical Functional Materials, School of Sciences, China Pharmaceutical University, Nanjing 211198, China
| | - Yan Liang
- Key Laboratory of Biomedical Functional Materials, School of Sciences, China Pharmaceutical University, Nanjing 211198, China
| | - Jinru Pan
- Key Laboratory of Biomedical Functional Materials, School of Sciences, China Pharmaceutical University, Nanjing 211198, China
| | - Xinrui Fu
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, China
| | - Li Li
- Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Wei Meng
- Key Laboratory of Biomedical Functional Materials, School of Sciences, China Pharmaceutical University, Nanjing 211198, China
| |
Collapse
|
4
|
Kimura Y, Tohmyoh H. Nanostructure-Based Solution Sensor Fabricated with p-CuO x/ n-TiO 2 Nanojunctions To Identify Species and Concentrations of Alcohol Molecules. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:1079-1086. [PMID: 38151462 DOI: 10.1021/acs.langmuir.3c03330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
Chemiresistive sensors fabricated based on metal-oxide-semiconductors, the most widely used high-sensitivity sensor materials, are required for detecting target solutions and gases and identifying them with a high degree of accuracy. In this study, we used p-n nanojunctions and nanowire shapes for identifying alcohol solutions. The solution sensors fabricated based on CuOx nanowires with p-CuOx/n-TiO2 nanojunctions detected ethanol, ethylene glycol, and diethylene glycol solutions via DC voltage and electrochemical impedance measurements. The p-n nanojunctions affected the sensors' sensitivity in the diethylene glycol solution, and the nanowire surface areas affected the relaxation time in ethanol and ethylene glycol solutions. To identify alcohol solutions, principal component analysis was performed based on the relationship between the sensor information, such as the presence of p-n nanojunctions and nanowire surface areas, and the sensing performance. This analysis identified alcohol molecular species and predicted alcohol-solution concentrations in the 0.1-20 vol % range with a high degree of accuracy. The concept of using sensors with different surface conditions with respect to p-n nanojunctions and nanowire surface areas offers designs for metal-oxide-semiconductor sensors to identify various molecules in solution.
Collapse
Affiliation(s)
- Yoshinari Kimura
- Department of Finemechanics, Graduate School of Engineering, Tohoku University, 6-6-01 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan
| | - Hironori Tohmyoh
- Department of Finemechanics, Graduate School of Engineering, Tohoku University, 6-6-01 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan
| |
Collapse
|
5
|
Yu L, Wang Y, Sun Y, Tang Y, Xiao Y, Wu G, Peng S, Zhou X. Nanoporous Crystalline Materials for the Recognition and Applications of Nucleic Acids. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2305171. [PMID: 37616525 DOI: 10.1002/adma.202305171] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/12/2023] [Indexed: 08/26/2023]
Abstract
Nucleic acid plays a crucial role in countless biological processes. Hence, there is great interest in its detection and analysis in various fields from chemistry, biology, to medicine. Nanoporous crystalline materials exhibit enormous potential as an effective platform for nucleic acid recognition and application. These materials have highly ordered and uniform pore structures, as well as adjustable surface chemistry and pore size, making them good carriers for nucleic acid extraction, detection, and delivery. In this review, the latest developments in nanoporous crystalline materials, including metal organic frameworks (MOFs), covalent organic frameworks (COFs), and supramolecular organic frameworks (SOFs) for nucleic acid recognition and applications are discussed. Different strategies for functionalizing these materials are explored to specifically identify nucleic acid targets. Their applications in selective separation and detection of nucleic acids are highlighted. They can also be used as DNA/RNA sensors, gene delivery agents, host DNAzymes, and in DNA-based computing. Other applications include catalysis, data storage, and biomimetics. The development of novel nanoporous crystalline materials with enhanced biocompatibility has opened up new avenues in the fields of nucleic acid analysis and therapy, paving the way for the development of sensitive, selective, and cost-effective diagnostic and therapeutic tools with widespread applications.
Collapse
Affiliation(s)
- Long Yu
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers-Ministry of Education, Department of Hematology of Zhongnan Hospital, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430072, China
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Yuhao Wang
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers-Ministry of Education, Department of Hematology of Zhongnan Hospital, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430072, China
| | - Yuqing Sun
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers-Ministry of Education, Department of Hematology of Zhongnan Hospital, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430072, China
| | - Yongling Tang
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers-Ministry of Education, Department of Hematology of Zhongnan Hospital, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430072, China
| | - Yuxiu Xiao
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Gaosong Wu
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Shuang Peng
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers-Ministry of Education, Department of Hematology of Zhongnan Hospital, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430072, China
| | - Xiang Zhou
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers-Ministry of Education, Department of Hematology of Zhongnan Hospital, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430072, China
| |
Collapse
|
6
|
Liu S, Weng B, Liu Y, Wang S, Kang N, Ran J, Liu H, Huang S, Deng Z, Yang C, Wang H, Wang F. Dual-Signal Cascaded Nucleic Acid Amplification Circuit-Loaded Metal-Organic Frameworks for Accurate and Robust Imaging of Intracellular MicroRNA. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023. [PMID: 37486222 DOI: 10.1021/acs.langmuir.3c00897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
Cascaded signal amplification technologies play an important role in the sensitive detection of lowly expressed biomarkers of interests yet are constrained by severe background interference and low cellular accessibility. Herein, we constructed a metal-organic framework-encapsulating dual-signal cascaded nucleic acid sensor for precise intracellular miRNA imaging. ZIF-8 nanoparticles load and deliver FAM-labeled upstream catalytic hairpin assembly (CHA) and Cy5-modified downstream hybridization chain reaction (HCR) hairpin reactants to tumor cells, enabling visualization of the target-initiated signal amplification process for double-insurance detection of analytes. The pH-responsive ZIF-8 nanoparticles effectively protect DNA hairpins from degradation and allow the release of them in the acid tumor microenvironment. Then, intracellular target miRNAs orderly trigger cascaded nucleic acid signal amplification reaction, of which the exact progress is investigated through the analysis of the fluorescence recovering process of FAM and Cy5. In addition, DNA@ZIF-8 nanoparticles improve measurement accuracy by dual-signal colocalization imaging, effectively avoiding nonspecific false-positive signals and enabling in situ imaging of miRNAs in living cells. A dual-signal colocalization strategy allows accurate target detection in living cells, and DNA@ZIF-8 provides a promising intracellular sensing platform for signal amplification and visual monitoring.
Collapse
Affiliation(s)
- Sijia Liu
- Hubei Key Laboratory of Natural Products Research and Development, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, Hubei, P. R. China
| | - Benrui Weng
- Hubei Key Laboratory of Natural Products Research and Development, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, Hubei, P. R. China
| | - Yaqi Liu
- Hubei Key Laboratory of Natural Products Research and Development, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, Hubei, P. R. China
| | - Siyuan Wang
- Hubei Key Laboratory of Natural Products Research and Development, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, Hubei, P. R. China
| | - Nana Kang
- Hubei Key Laboratory of Natural Products Research and Development, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, Hubei, P. R. China
| | - Jiabing Ran
- Hubei Key Laboratory of Natural Products Research and Development, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, Hubei, P. R. China
| | - Hanghang Liu
- Hubei Key Laboratory of Natural Products Research and Development, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, Hubei, P. R. China
| | - Shuo Huang
- Wuhan Sports University, Wuhan 430079, Hubei, P. R. China
| | - Zhangshuang Deng
- Hubei Key Laboratory of Natural Products Research and Development, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, Hubei, P. R. China
| | - Changying Yang
- Hubei Key Laboratory of Natural Products Research and Development, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, Hubei, P. R. China
| | - Huimin Wang
- Hubei Key Laboratory of Natural Products Research and Development, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, Hubei, P. R. China
| | - Fuan Wang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430000, Hubei, P. R. China
| |
Collapse
|