1
|
Rabbani G, Ahmad A, Zamzami MA, Baothman OA, Hosawi SA, Altayeb H, Shahid Nadeem M, Ahmad V. Fabrication of an affordable and sensitive corticosteroid-binding globulin immunosensor based on electrodeposited gold nanoparticles modified glassy carbon electrode. Bioelectrochemistry 2024; 157:108671. [PMID: 38401223 DOI: 10.1016/j.bioelechem.2024.108671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/09/2024] [Accepted: 02/19/2024] [Indexed: 02/26/2024]
Abstract
Herein, we fabricated an ultrasensitive electrochemical immunosensor for the quantitative detection of corticosteroid-binding globulin (CBG). CBG is a protein that regulates glucocorticoid levels and is an important biomarker for inflammation. A decrease in CBG levels is a key biomarker for inflammatory diseases, such as septic shock. To enhance the electrochemical performance and provide a large surface area for anti-CBG immobilization, we functionalized the glassy carbon electrode surface with AuNPs. Electrochemical characterization methods including cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) were used to examine the construction of the fabricated immunosensor. The electrochemical signal demonstrated a remarkable sensitivity to the CBG antigen, with a detection range from 0.01 to 100 μg/mL and a limit of detection of 0.012 μg/mL, making it suitable for both clinical and research applications. This label-free immunosensor offers significant advantages, including high sensitivity, low detection limits and excellent selectivity, making it a promising tool for detecting CBG in complex biological samples. Its potential applications include early disease diagnosis, treatment monitoring and studying CBG-related physiological processes.
Collapse
Affiliation(s)
- Gulam Rabbani
- IT-medical Fusion Center, 350-27 Gumidae-ro, Gumi-si, Gyeongbuk 39253, Republic of Korea.
| | - Abrar Ahmad
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21452, Saudi Arabia.
| | - Mazin A Zamzami
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21452, Saudi Arabia
| | - Othman A Baothman
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21452, Saudi Arabia
| | - Salman A Hosawi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21452, Saudi Arabia
| | - Hisham Altayeb
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21452, Saudi Arabia
| | - Muhammad Shahid Nadeem
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21452, Saudi Arabia
| | - Varish Ahmad
- Department of Health Information Technology, Faculty of Applied Studies, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
2
|
Ramasamy M, Ha JW. Single-Particle Spectroelectrochemistry: Promoting the Electrocatalytic Activity of Gold Nanorods via Oxygen Plasma Treatment without Structural Deformation. Anal Chem 2024; 96:737-745. [PMID: 38175953 DOI: 10.1021/acs.analchem.3c03850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
Understanding of the electrocatalytic activity enhancement in gold nanoparticles is still limited. Herein, we present the effect of the oxygen plasma treatment on the electrochemical activity of gold nanorods (AuNRs). Oxygen plasma treatment resulted in the blueshift and line width narrowing of the localized surface plasmon resonance (LSPR) spectra obtained from individual AuNRs immobilized on an indium tin oxide (ITO) surface. These changes can be attributed to increases in the surface charges of the AuNRs. The formation of a Au-ITO heterojunction provided structural stability to the immobilized AuNRs regardless of the duration of oxygen plasma exposure. The electrocatalytic oxidation of hydrogen peroxide (H2O2) was induced by increases in the free-electron densities on the surfaces of these AuNRs owing to oxygen plasma treatment, and Au did not dissolve under the experimental conditions. However, the potential-dependent LSPR spectra of the individual AuNRs showed similar patterns of LSPR behavior, irrespective of the duration of oxygen plasma treatment and the concentration of H2O2. Therefore, this study based on single-particle spectroelectrochemistry and cyclic voltammetry improves the understanding of the role of oxygen plasma treatment in promoting the catalytic activity of structurally stable AuNRs immobilized on an ITO surface.
Collapse
Affiliation(s)
- Mukunthan Ramasamy
- Energy Harvest-Storage Research Center (EHSRC), University of Ulsan, 93 Daehak-ro, Nam-gu, Ulsan 44610, Republic of Korea
| | - Ji Won Ha
- Energy Harvest-Storage Research Center (EHSRC), University of Ulsan, 93 Daehak-ro, Nam-gu, Ulsan 44610, Republic of Korea
- Department of Chemistry, University of Ulsan, 93 Daehak-ro, Nam-gu, Ulsan 44610, Republic of Korea
| |
Collapse
|
3
|
Jiang S, Sun M, Meng P, Zhang X, Sun Y. Ultramicro and ultrasensitive detection of lipopolysaccharides based on triple-signal amplification via ultrafast ATRP and an ultramicroelectrode. Analyst 2023; 148:6359-6368. [PMID: 37966725 DOI: 10.1039/d3an01624b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
Highly sensitive testing of trace lipopolysaccharides (LPS) is very important due to their high toxicity to the human body. Here, an ultrasensitive electrochemical sensor requiring only 5 μL solution was developed for LPS detection via triple-signal amplification based on ultrafast atom transfer radical polymerization (UATRP) and a Au ultramicroelectrode (UME). Firstly, the Au UME was modified with gold nanoparticles (nAu) and an LPS aptamer (Apt) in turn. When the Apt recognized LPS, the ATRP initiator of 4-(bromomethyl)phenylboronic acid (BPA) could be tethered to the electrode by covalent cross-linking between the phenylboronic acid moiety and the cis-diol site of LPS. Then UATRP was conducted for 2.5 min with nitrogen-doped carbon quantum dots (N-CQDs) as the photocatalyst and methylacrolein (MLA) as the monomer. After the electroactive probes of Ag nanoparticles (AgNPs) were formed on the surface of poly(MLA) by the silver mirror reaction, the electrochemical sensor was successfully prepared. Under the optimal conditions, the sensor exhibited a lower detection limit and a wider linear range when it was compared with a similar assay for LPS. In particular, the LOD of 7.99 × 10-2 pg mL-1 was better than that of the limulus amoebocyte lysate (LAL)-based technique, which is the gold standard for LPS detection. In the end, the sensor reported in this paper showed good selectivity and satisfactory feasibility for LPS detection in real biological samples and food products. The results obtained from the drug, blood and potable water samples laid a strong foundation for its clinical applications and application in other fields.
Collapse
Affiliation(s)
- Shipeng Jiang
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, China.
| | - Mingyang Sun
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, China.
| | - Peiran Meng
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, China.
| | - Xiaoyu Zhang
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, China.
| | - Yue Sun
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, China.
| |
Collapse
|
4
|
Koterwa A, Pierpaoli M, Nejman-Faleńczyk B, Bloch S, Zieliński A, Adamus-Białek W, Jeleniewska Z, Trzaskowski B, Bogdanowicz R, Węgrzyn G, Niedziałkowski P, Ryl J. Discriminating macromolecular interactions based on an impedimetric fingerprint supported by multivariate data analysis for rapid and label-free Escherichia coli recognition in human urine. Biosens Bioelectron 2023; 238:115561. [PMID: 37549553 DOI: 10.1016/j.bios.2023.115561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/29/2023] [Accepted: 07/31/2023] [Indexed: 08/09/2023]
Abstract
This manuscript presents a novel approach to address the challenges of electrode fouling and highly complex electrode nanoarchitecture, which are primary concerns for biosensors operating in real environments. The proposed approach utilizes multiparametric impedance discriminant analysis (MIDA) to obtain a fingerprint of the macromolecular interactions on flat glassy carbon surfaces, achieved through self-organized, drop-cast, receptor-functionalized Au nanocube (AuNC) patterns. Real-time monitoring is combined with singular value decomposition and partial least squares discriminant analysis, which enables selective identification of the analyte from raw impedance data, without the use of electric equivalent circuits. As a proof-of-concept, the authors demonstrate the ability to detect Escherichia coli in real human urine using an aptamer-based biosensor that targets RNA polymerase. This is significant, as uropathogenic E. coli is a difficult-to-treat pathogen that is responsible for the majority of hospital-acquired urinary tract infection cases. The proposed approach offers a limit of detection of 11.3 CFU/mL for the uropathogenic E. coli strain No. 57, an analytical range in all studied concentrations (up to 105 CFU/mL), without the use of antifouling strategies, yet not being specific vs other E.coli strain studied (BL21(DE3)). The MIDA approach allowed to identify negative overpotentials (-0.35 to -0.10 V vs Ag/AgCl) as most suitable for the analysis, offering over 80% sensitivity and accuracy, and the measurement was carried out in just 2 min. Moreover, this approach is scalable and can be applied to other biosensor platforms.
Collapse
Affiliation(s)
- Adrian Koterwa
- Department of Analytical Chemistry, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308, Gdańsk, Poland.
| | - Mattia Pierpaoli
- Department of Metrology and Optoelectronics, Gdańsk University of Technology, Narutowicza 11/12, 80-233, Gdańsk, Poland.
| | - Bożena Nejman-Faleńczyk
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308, Poland.
| | - Sylwia Bloch
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308, Poland.
| | - Artur Zieliński
- Faculty of Chemistry, Gdańsk University of Technology, Narutowicza 11/12, 80-233, Gdańsk, Poland.
| | - Wioletta Adamus-Białek
- Institute of Medical Sciences, Jan Kochanowski University of Kielce, IX Wieków Kielc 19A, 25-317, Kielce, Poland.
| | - Zofia Jeleniewska
- Division of Electrochemistry and Surface Physical Chemistry, Faculty of Applied Physics and Mathematics, Gdańsk University of Technology, Narutowicza 11/12, Gdańsk, 80-233, Poland.
| | - Bartosz Trzaskowski
- Centre of New Technologies, University of Warsaw, Banach 2c, 02-097, Warsaw, Poland.
| | - Robert Bogdanowicz
- Department of Metrology and Optoelectronics, Gdańsk University of Technology, Narutowicza 11/12, 80-233, Gdańsk, Poland.
| | - Grzegorz Węgrzyn
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308, Poland.
| | - Paweł Niedziałkowski
- Department of Analytical Chemistry, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308, Gdańsk, Poland.
| | - Jacek Ryl
- Division of Electrochemistry and Surface Physical Chemistry, Faculty of Applied Physics and Mathematics, Gdańsk University of Technology, Narutowicza 11/12, Gdańsk, 80-233, Poland.
| |
Collapse
|
5
|
Pierpaoli M, Szopińska M, Olejnik A, Ryl J, Fudala-Ksiażek S, Łuczkiewicz A, Bogdanowicz R. Engineering boron and nitrogen codoped carbon nanoarchitectures to tailor molecularly imprinted polymers for PFOS determination. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:131873. [PMID: 37379604 DOI: 10.1016/j.jhazmat.2023.131873] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/13/2023] [Accepted: 06/14/2023] [Indexed: 06/30/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) have gained significant attention as emerging contaminants due to their persistence, abundance, and adverse health effects. Consequently, the urgent need for ubiquitous and effective sensors capable of detecting and quantifying PFAS in complex environmental samples has become a priority. In this study, we present the development of an ultrasensitive molecularly imprinted polymer (MIP) electrochemical sensor tailored by chemically vapour-deposited boron and nitrogen codoped diamond-rich carbon nanoarchitectures for the selective determination of perfluorooctanesulfonic acid (PFOS). This approach allows for a multiscale reduction of MIP heterogeneities, leading to improved selectivity and sensitivity in PFOS detection. Interestingly, the peculiar carbon nanostructures induce a specific distribution of binding sites in the MIPs that exhibit a strong affinity for PFOS. The designed sensors demonstrated a low limit of detection (1.2 μg L-1) and exhibited satisfactory selectivity and stability. To gain further insights into the molecular interactions between diamond-rich carbon surfaces, electropolymerised MIP, and the PFOS analyte, a set of density functional theory (DFT) calculations was performed. Validation of the sensor's performance was carried out by successfully determining PFOS concentrations in real complex samples, such as tap water and treated wastewater, with average recovery rates consistent with UHPLC-MS/MS results. These findings demonstrate the potential of MIP-supported diamond-rich carbon nanoarchitectures for water pollution monitoring, specifically targeting emerging contaminants. The proposed sensor design holds promise for the development of in situ PFOS monitoring devices operating under relevant environmental concentrations and conditions.
Collapse
Affiliation(s)
- Mattia Pierpaoli
- Faculty of Electronics, Telecommunication and Informatics, Gdańsk University of Technology, Poland.
| | - Małgorzata Szopińska
- Faculty of Civil and Environmental Engineering, Gdańsk University of Technology, Poland
| | - Adrian Olejnik
- Faculty of Electronics, Telecommunication and Informatics, Gdańsk University of Technology, Poland
| | - Jacek Ryl
- Institute of Nanotechnology and Materials Engineering, Gdańsk University of Technology, Poland
| | - Sylwia Fudala-Ksiażek
- Faculty of Civil and Environmental Engineering, Gdańsk University of Technology, Poland
| | - Aneta Łuczkiewicz
- Faculty of Civil and Environmental Engineering, Gdańsk University of Technology, Poland
| | - Robert Bogdanowicz
- Faculty of Electronics, Telecommunication and Informatics, Gdańsk University of Technology, Poland
| |
Collapse
|
6
|
Lipińska W, Olejnik A, Janik M, Brodowski M, Sapiega K, Pierpaoli M, Siuzdak K, Bogdanowicz R, Ryl J. Texture or Linker? Competitive Patterning of Receptor Assembly toward Ultra-Sensitive Impedimetric Detection of Viral Species at Gold-Nanotextured Titanium Surfaces. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2023; 127:9584-9593. [PMID: 37552778 PMCID: PMC10189554 DOI: 10.1021/acs.jpcc.3c00697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/27/2023] [Indexed: 08/10/2023]
Abstract
In this work, we study the electrodes with a periodic matrix of gold particles pattered by titanium dimples and modified by 3-mercaptopropionic acid (MPA) followed by CD147 receptor grafting for specific impedimetric detection of SARS-CoV-2 viral spike proteins. The synergistic DFT and MM/MD modeling revealed that MPA adsorption geometries on the Au-Ti surface have preferential and stronger binding patterns through the carboxyl bond inducing an enhanced surface coverage with CD147. Control of bonding at the surface is essential for oriented receptor assembling and boosted sensitivity. The complex Au-Ti electrode texture along with optimized MPA concentration is a crucial parameter, enabling to reach the detection limit of ca. 3 ng mL-1. Scanning electrochemical microscopy imaging and quantum molecular modeling were performed to understand the electrochemical performance and specific assembly of MPA displaying a free stereo orientation and not disturbed by direct interactions with closely adjacent receptors. This significantly limits nonspecific interceptor reactions, strongly decreasing the detection of receptor-binding domain proteins by saturation of binding groups. This method has been demonstrated for detecting the SARS virus but can generally be applied to a variety of protein-antigen systems. Moreover, the raster of the pattern can be tuned using various anodizing processes at the titania surfaces.
Collapse
Affiliation(s)
- Wiktoria Lipińska
- Centre for Plasma and Laser Engineering, The Szewalski
Institute of Fluid-Flow Machinery, Polish Academy of Sciences,
Fiszera 14, Gdańsk 80-231, Poland
| | - Adrian Olejnik
- Centre for Plasma and Laser Engineering, The Szewalski
Institute of Fluid-Flow Machinery, Polish Academy of Sciences,
Fiszera 14, Gdańsk 80-231, Poland
- Department of Metrology and Optoelectronics, Faculty
of Electronics, Telecommunications and Informatics, Gdańsk University
of Technology, Narutowicza 11/12, Gdańsk 80-233,
Poland
| | - Monika Janik
- Department of Metrology and Optoelectronics, Faculty
of Electronics, Telecommunications and Informatics, Gdańsk University
of Technology, Narutowicza 11/12, Gdańsk 80-233,
Poland
- Institute of Microelectronics and Optoelectronics,
Faculty of Electronics and Information Technology, Warsaw University of
Technology, Koszykowa 75, Warsaw 00-662, Poland
| | - Mateusz Brodowski
- Institute of Nanotechnology and Materials Engineering
and Advanced Materials Center, Gdańsk University of
Technology, Narutowicza 11/12, Gdańsk 80-233,
Poland
| | - Karolina Sapiega
- Institute of Nanotechnology and Materials Engineering
and Advanced Materials Center, Gdańsk University of
Technology, Narutowicza 11/12, Gdańsk 80-233,
Poland
| | - Mattia Pierpaoli
- Department of Metrology and Optoelectronics, Faculty
of Electronics, Telecommunications and Informatics, Gdańsk University
of Technology, Narutowicza 11/12, Gdańsk 80-233,
Poland
| | - Katarzyna Siuzdak
- Centre for Plasma and Laser Engineering, The Szewalski
Institute of Fluid-Flow Machinery, Polish Academy of Sciences,
Fiszera 14, Gdańsk 80-231, Poland
| | - Robert Bogdanowicz
- Department of Metrology and Optoelectronics, Faculty
of Electronics, Telecommunications and Informatics, Gdańsk University
of Technology, Narutowicza 11/12, Gdańsk 80-233,
Poland
| | - Jacek Ryl
- Institute of Nanotechnology and Materials Engineering
and Advanced Materials Center, Gdańsk University of
Technology, Narutowicza 11/12, Gdańsk 80-233,
Poland
| |
Collapse
|