1
|
Kaur S, Swayamjyoti S, Taneja V, Padhee SS, Nigam V, Jena KC. Molecular dynamics simulation of salt diffusion in constituting phosphazene-based polymer electrolyte. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2024; 36:445901. [PMID: 39047774 DOI: 10.1088/1361-648x/ad6727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 07/24/2024] [Indexed: 07/27/2024]
Abstract
A growing demand to visualize polymer models in liquid poses a computational challenge in molecular dynamics (MD) simulation, as this requires emerging models under suitable force fields (FFs) to capture the underlying molecular behaviour accurately. In our present study, we have employed TIP3P potential on water and all atomistic optimized potentials for liquid simulations FFs to study the liquid electrolyte behavior of phosphazene-based polymer by considering its potential use in lithium-ion polymer batteries. We have explored the polymer's local structure, chain packing, wettability, and hydrophobic tendencies against the silicon surface using a combination of a pseudocontinuum model in MD simulation, and surface-sensitive sum frequency generation (SFG) vibrational spectroscopy. The finding yields invaluable insights into the molecular architecture of phosphazene. This approach identifies the importance of hydrophobic interactions with air and hydrophilic units with water molecules in understanding the behavior and properties of phosphazene-based polymers at interfaces, contributing to its advancements in materials science. The MD study uniquely captures traces of the polymer-ion linkage, which is observed to become more pronounced with the increase in polymer weight fraction. The theoretical observation of this linkage's influence on lithium-ion diffusion motion offers valuable insights into the fundamental physics governing the behavior of atoms and molecules within phosphazene-based polymer electrolytes in aqueous environments. Further these predictions are corroborated in the molecular-level depiction at the air-aqueous interface, as evidenced from the OH-oscillator strength variation measured by the SFG spectroscopy.The fundamental findings from this study open new avenues for utilizing MD simulation as a versatile methodology to gain profound insights into intermolecular interactions of polymer. It could be useful in the application of biomedical and energy-related research, such as polymer lithium-ion batteries, fuel cells, and organic solar cells.
Collapse
Affiliation(s)
- Sarabjeet Kaur
- Department of Physics, Indian Institute of Technology Ropar, Rupnagar, Punjab 140001, India
| | - S Swayamjyoti
- School of Minerals, Metallurgical and Materials Engineering, Indian Institute of Technology Bhubaneswar, Khordha, Odisha 752050, India
| | - Vibhuti Taneja
- Department of Physics, Indian Institute of Technology Ropar, Rupnagar, Punjab 140001, India
| | - Srikant S Padhee
- Department of Mechanical Engineering, Indian Institute of Technology Ropar, Rupnagar, Punjab 140001, India
| | - Vineeta Nigam
- Defence Materials Stores Research and Development Establishment, Kanpur 208013, India
| | - Kailash C Jena
- Department of Physics, Indian Institute of Technology Ropar, Rupnagar, Punjab 140001, India
| |
Collapse
|
2
|
Kaur H, Garg M, Tomar D, Singh S, Jena KC. Role of tungsten disulfide quantum dots in specific protein-protein interactions at air-water interface. J Chem Phys 2024; 160:084705. [PMID: 38411235 DOI: 10.1063/5.0187563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 02/05/2024] [Indexed: 02/28/2024] Open
Abstract
The intriguing network of antibody-antigen (Ab-Ag) interactions is highly governed by environmental perturbations and the nature of biomolecular interaction. Protein-protein interactions (PPIs) have potential applications in developing protein-adsorption-based sensors and nano-scale materials. Therefore, characterizing PPIs in the presence of a nanomaterial at the molecular level becomes imperative. The present work involves the investigation of antiferritin-ferritin (Ab-Ag) protein interactions under the influence of tungsten disulfide quantum dots (WS2 QDs). Isothermal calorimetry and contact angle measurements validated the strong influence of WS2 QDs on Ab-Ag interactions. The interfacial signatures of nano-bio-interactions were evaluated using sum frequency generation vibration spectroscopy (SFG-VS) at the air-water interface. Our SFG results reveal a variation in the tilt angle of methyl groups by ∼12° ± 2° for the Ab-Ag system in the presence of WS2 QDs. The results illustrated an enhanced ordering of water molecules in the presence of QDs, which underpins the active role of interfacial water molecules during nano-bio-interactions. We have also witnessed a differential impact of QDs on Ab-Ag by raising the concentration of the Ab-Ag combination, which showcased an increased inter-molecular interaction among the Ab and Ag molecules and a minimal influence on the methyl tilt angle. These findings suggest the formation of stronger and ordered Ab-Ag complexes upon introducing WS2 QDs in the aqueous medium and signify the potentiality of WS2 QDs relevant to protein-based sensing assays.
Collapse
Affiliation(s)
- Harsharan Kaur
- Department of Biomedical Engineering, Indian Institute of Technology Ropar, Rupnagar, Punjab 140001, India
| | - Mayank Garg
- CSIR-Central Scientific Instruments Organisation (CSIR-CSIO), Chandigarh 160030, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Deepak Tomar
- Department of Physics, Indian Institute of Technology Ropar, Rupnagar, Punjab 140001, India
| | - Suman Singh
- CSIR-Central Scientific Instruments Organisation (CSIR-CSIO), Chandigarh 160030, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Kailash C Jena
- Department of Biomedical Engineering, Indian Institute of Technology Ropar, Rupnagar, Punjab 140001, India
- Department of Physics, Indian Institute of Technology Ropar, Rupnagar, Punjab 140001, India
| |
Collapse
|
3
|
Li J, Lin Y, Liu B, Zhou X, Chen W, Shen G. Alkylated Sulfonium Modification of Low Molecular Weight Polyethylenimine to Form Lipopolymers as Gene Vectors. ACS OMEGA 2024; 9:2339-2349. [PMID: 38250374 PMCID: PMC10795143 DOI: 10.1021/acsomega.3c06255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 12/14/2023] [Accepted: 12/18/2023] [Indexed: 01/23/2024]
Abstract
Hydrophobic modification of low molecular weight polyethylenimine (PEI) is an efficient method to form ideal gene-transfer carriers. Sulfonium-a combination of three different functional groups, was conjugated onto PEI 1.8k at a conjugation ratio of 1:0.1 to form a series of sulfonium PEI (SPs). These SPs were hydrophobically modified and characterized by Fourier transform infrared and HNMR. DNA-condensing abilities of SPs were tested with gel retardation experiment, and their cytotoxicity was evaluated via the MTT assay. The particle size and zeta potential of SP/DNA nanoparticles were measured and evaluated for cellular uptake and transfection ability on HepG2 cell line. The results showed that the sulfonium moiety was attached to PEI 1.8k with a high yield at a conjugation ratio of 1:0.1. SPs containing longer alkyl chains condensed DNA completely at an SP/DNA weight ratio of 2:1. The formed nanoparticle size was in the range of 168-265 nm, and the zeta potential was +16-45 mV. The IC50 values of SPs were 6.5-43.2 μg/mL. The cytotoxicity of SPs increased as the hydrophobic chain got longer. SP/DNA showed much stronger cellular uptakes than PEI 25k; however, pure SPs presented almost no gene transfection on cells. Heparin release experiment showed that SP's strong binding of DNA resulted in low release of DNA and thus hindered the gene transfection process. By mixing SP with PEI 1.8k, the mixture presented adjustable DNA binding and releasing. The mixture formed by 67% SP and 33% PEI 1.8k showed strong gene transfection. In conclusion, sulfonium is an effective linkage to carry hydrophobic groups to adjust cell compatibilities and gene transfection capabilities of PEI.
Collapse
Affiliation(s)
- Jing Li
- College
of Life Science and Biotechnology, Heilongjiang
Bayi Agricultural University, Daqing, Heilongjiang 163319, China
- Heilongjiang
Provincial Key Laboratory of Environmental Microbiology and Recycling
of Argo-Waste in Cold Region, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, China
- Key
Laboratory of Low-carbon Green Agriculture in Northeastern China,
Ministry of Agriculture and Rural Affairs P. R. China, College of
Life Science and Biotechnology, Heilongjiang
Bayi Agricultural University, Daqing 163319, China
| | - Yue Lin
- College
of Life Science and Biotechnology, Heilongjiang
Bayi Agricultural University, Daqing, Heilongjiang 163319, China
| | - Bingling Liu
- College
of Life Science and Biotechnology, Heilongjiang
Bayi Agricultural University, Daqing, Heilongjiang 163319, China
| | - Xiaodong Zhou
- College
of Life Science and Biotechnology, Heilongjiang
Bayi Agricultural University, Daqing, Heilongjiang 163319, China
| | - Wenyang Chen
- College
of Life Science and Biotechnology, Heilongjiang
Bayi Agricultural University, Daqing, Heilongjiang 163319, China
| | - Guinan Shen
- College
of Life Science and Biotechnology, Heilongjiang
Bayi Agricultural University, Daqing, Heilongjiang 163319, China
- Heilongjiang
Provincial Key Laboratory of Environmental Microbiology and Recycling
of Argo-Waste in Cold Region, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, China
- Key
Laboratory of Low-carbon Green Agriculture in Northeastern China,
Ministry of Agriculture and Rural Affairs P. R. China, College of
Life Science and Biotechnology, Heilongjiang
Bayi Agricultural University, Daqing 163319, China
| |
Collapse
|
4
|
Kaur S, Tomar D, Chaudhary M, Rana B, Kaur H, Nigam V, Jena KC. Interfacial molecular structure of phosphazene-based polymer electrolyte at the air-aqueous interface using sum frequency generation vibrational spectroscopy. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2023; 36:105001. [PMID: 37988750 DOI: 10.1088/1361-648x/ad0e94] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 11/21/2023] [Indexed: 11/23/2023]
Abstract
The change induced in the physicochemical properties of polymer while hosting ions provides a platform for studying its potential applications in electrochemical devices, water treatment plants, and materials engineering science. The ability to host ions is limited in very few polymers, which lack a detailed molecular-level understanding for showcasing the polymer-ion linkage behavior at the interfacial region. In the present manuscript, we have employed sum frequency generation (SFG) vibrational spectroscopy to investigate the interfacial structure of a new class phosphazene-based methoxyethoxyethoxyphosphazene (MEEP) polymer in the presence of lithium chloride salt at the air-aqueous interface. The interfacial aspects of the molecular system collected through SFG spectral signatures reveal enhanced water ordering and relative hydrogen bonding strength at the air-aqueous interface. The careful observation of the study finds a synchronous contribution of van der Waals and electrostatic forces in facilitating changes in the interfacial water structure that are susceptible to MEEP concentration in the presence of ions. The observation indicates that dilute MEEP concentrations support the role of electrostatic interaction, leading to an ordered water structure in proximity to diffused ions at the interfacial region. Conversely, higher MEEP concentrations promote the dominance of van der Waals interactions at the air-aqueous interface. Our study highlights the establishment of polymer electrolyte (PE) characteristics mediated by intermolecular interactions, as observed through the spectral signatures witnessed at the air-aqueous interface. The investigation illustrates the polymer-ion linkage adsorption effects at the interfacial region, which explains the macroscopic changes observed from the cyclic voltammetry studies. The fundamental findings from our studies can be helpful in the design and fine-tuning of better PE systems that can offer improved hydrophobic membranes and interface stability for use in electrochemical-based power sources.
Collapse
Affiliation(s)
- Sarabjeet Kaur
- Department of Physics, Indian Institute of Technology Ropar, Rupnagar 140001, Punjab, India
| | - Deepak Tomar
- Department of Physics, Indian Institute of Technology Ropar, Rupnagar 140001, Punjab, India
| | - Monika Chaudhary
- Department of Biomedical Engineering, Indian Institute of Technology Ropar, Rupnagar 140001, Punjab, India
| | - Bhawna Rana
- Department of Physics, Indian Institute of Technology Ropar, Rupnagar 140001, Punjab, India
| | - Harsharan Kaur
- Department of Biomedical Engineering, Indian Institute of Technology Ropar, Rupnagar 140001, Punjab, India
| | - Vineeta Nigam
- Defence Materials Stores Research and Development Establishment, Kanpur 208013, India
| | - Kailash C Jena
- Department of Physics, Indian Institute of Technology Ropar, Rupnagar 140001, Punjab, India
- Department of Biomedical Engineering, Indian Institute of Technology Ropar, Rupnagar 140001, Punjab, India
| |
Collapse
|