1
|
Xu W, Zhao Y, Gao F, Zheng X, Zhan F, Wang Q. In-situ integrated Ce-MOF-808@CeO 2 as bifunctional matrix for sensitive electrochemical-aptasensing of tetracycline in shrimp. Bioelectrochemistry 2025; 165:108965. [PMID: 40056883 DOI: 10.1016/j.bioelechem.2025.108965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Revised: 02/22/2025] [Accepted: 03/01/2025] [Indexed: 03/10/2025]
Abstract
The integration of aptamer chemistry with innovative functional materials such as nanozymes offers new opportunities for the development of the superior electrochemical biosensors. Herein, we introduce a rod-like nanocomposite of Ce-MOF-808@CeO2 bearing intense nanozymatic activity that prepared through in-situ partial oxidation of Ce-MOF-808 to CeO2. Then, the aptamer for tetracycline (TC-Apt) with 5'-PO43- end was anchored on Ce-MOF-808@CeO2 modified screen-printed electrode, thereby assembling a label-free electrochemical aptasensor. Electrochemical and spectroscopic assays reveal that the derived CeO2 can effectively promote the nanozyme activity of Ce-MOF-808 as a cocatalyst. Electrochemical biosensing shows that, the capture of tetracycline (TC) to the electrode surface by the aptamer chemistry significantly inhibits the catalytic activity of Ce-MOF-808@CeO2. Thus, TC can be analyzed by monitoring the catalytic signal of the biosensor to H2O2. Leveraging the exceptional catalytic activity of Ce-MOF-808@CeO2, coupled with the high specificity of the aptamer, TC can be analyzed in a wide kinetic range from 1 pM to 100 nM, with a low detection limit of 0.21 pM. The aptasensor is also applicable for the accurate detection of TC residues in fresh shrimp samples, showcasing its potential for practical applications in the monitoring of food safety.
Collapse
Affiliation(s)
- Wenjing Xu
- Department of Chemistry and Environment Science, Fujian Provincial Key Laboratory of Modern Analytical Science and Separation Technology, Minnan Normal University, Zhangzhou 363000, PR China
| | - Yanan Zhao
- Department of Chemistry and Environment Science, Fujian Provincial Key Laboratory of Modern Analytical Science and Separation Technology, Minnan Normal University, Zhangzhou 363000, PR China
| | - Feng Gao
- Department of Chemistry and Environment Science, Fujian Provincial Key Laboratory of Modern Analytical Science and Separation Technology, Minnan Normal University, Zhangzhou 363000, PR China.
| | - Xuan Zheng
- Department of Chemistry and Environment Science, Fujian Provincial Key Laboratory of Modern Analytical Science and Separation Technology, Minnan Normal University, Zhangzhou 363000, PR China
| | - Fengping Zhan
- Department of Chemistry and Environment Science, Fujian Provincial Key Laboratory of Modern Analytical Science and Separation Technology, Minnan Normal University, Zhangzhou 363000, PR China
| | - Qingxiang Wang
- Department of Chemistry and Environment Science, Fujian Provincial Key Laboratory of Modern Analytical Science and Separation Technology, Minnan Normal University, Zhangzhou 363000, PR China.
| |
Collapse
|
2
|
Jafari S, Shaghaghi Z. Engineering active sites in ternary CeO 2-CuO-Mn 3O 4 heterointerface embedded in reduced graphene oxide for boosting water splitting activity. Sci Rep 2025; 15:4145. [PMID: 39901003 PMCID: PMC11791208 DOI: 10.1038/s41598-025-87423-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Accepted: 01/20/2025] [Indexed: 02/05/2025] Open
Abstract
The rational design of highly efficient and stable bifunctional catalysts for overall water splitting is vitally important. In this study, to increase the active catalytic sites of CeO2 for electrochemical water splitting, a ternary CeO2-CuO-Mn3O4 heterostructure, synthesized by coprecipitation method, is loaded on reduced graphene oxide (rGO) nanosheets in different amounts to produce CeO2-CuO-Mn3O4@rGO nanocomposites. It is found that CeO2-CuO-Mn3O4@rGO nanocomposites show higher electrocatalytic activity than unsupported samples, and the best activity is observed when the wieght ratio of CeO2-CuO-Mn3O4 is three times that of rGO. The CeO2-CuO-Mn3O4@rGO(3:1) requires low overpotentials of 130 and 270 mV for hydrogen and oxygen evolution reactions (HER and OER) at a current density of 10 mA cm-2. Furthermore, this material demonstrates a large electrochemically active surface area, low charge transfer resistance, suitable kintics, and high long-term stability for both OER and HER. Additionally, when CeO2-CuO-Mn3O4@rGO(3:1) is used as self-supported electrodes for the overall water splitting reaction, a low cell voltage of 1.68 V is obtained. This superior performance is due to: (i) active multi-metal sites that produce strong synergistic effects; (ii) the high conductivity of rGO, which faciliate favorable electron transfer; and (iii) the homogenous anchoring of CeO2-CuO-Mn3O4 on rGO, which increases the number of active sites available on the catalyst surface.
Collapse
Affiliation(s)
- Sahar Jafari
- Coordination Chemistry Research Laboratory, Department of Chemistry, Faculty of Science, Azarbaijan Shahid Madani University, Tabriz, 5375171379, Iran
| | - Zohreh Shaghaghi
- Coordination Chemistry Research Laboratory, Department of Chemistry, Faculty of Science, Azarbaijan Shahid Madani University, Tabriz, 5375171379, Iran.
| |
Collapse
|
3
|
Chueh CC, Yu SE, Wu HC, Hsu CC, Ni IC, Wu CI, Cheng IC, Chen JZ. Enhanced Oxygen Evolution Reaction Performance of NiMoO 4/Carbon Paper Electrocatalysts in Anion Exchange Membrane Water Electrolysis by Atmospheric-Pressure Plasma Jet Treatment. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:24675-24686. [PMID: 39487089 PMCID: PMC11580383 DOI: 10.1021/acs.langmuir.4c03557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/25/2024] [Accepted: 10/28/2024] [Indexed: 11/04/2024]
Abstract
NiMoO4 was grown on carbon paper (CP) by a hydrothermal method. A rapid and high-temperature atmospheric-pressure plasma jet (APPJ) process was used to generate more oxygen-deficient NiMoO4 on the CP surface to serve as an electrode material for the oxygen evolution reaction (OER). After 60 s of APPJ treatment, the overpotential of the electrode at 100 mA/cm2 decreased to 790 mV and that at 10 mA/cm2 decreased to 368 mV. Additionally, the charge transfer resistance decreased from 2.8 to 1.2 Ω, indicating that APPJ treatment effectively reduced the electrode overpotential and impedance. The effect of NiMoO4/CP/APPJ-60 s on the anion exchange membrane water electrolysis (AEMWE) system was also tested. At a system temperature of 70 °C and current density of 100 mA/cm2, the energy efficiency reached 95.1%, and the specific energy consumption decreased from 4.02 to 3.83 kWh/m3. These results demonstrate that the APPJ-treated NiMoO4/CP electrode can effectively enhance the OER performance in water electrolysis and improve the energy efficiency of the AEMWE system. This approach shows promise in replacing precious metal electrodes, thereby potentially reducing the cost and providing an environmentally friendly alternative.
Collapse
Affiliation(s)
- Chen-Chen Chueh
- Graduate
School of Advanced Technology, National
Taiwan University, Taipei
City 106319, Taiwan
| | - Shuo-En Yu
- Graduate
School of Advanced Technology, National
Taiwan University, Taipei
City 106319, Taiwan
| | - Hsing-Chen Wu
- Institute
of Applied Mechanics, National Taiwan University, Taipei City 106319, Taiwan
| | - Cheng-Che Hsu
- Department
of Chemical Engineering, National Taiwan
University, Taipei
City 106319, Taiwan
| | - I-Chih Ni
- Department
of Electrical Engineering and Graduate Institute of Photonics and
Optoelectronics, National Taiwan University, Taipei City 106319, Taiwan
| | - Chih-I Wu
- Graduate
School of Advanced Technology, National
Taiwan University, Taipei
City 106319, Taiwan
- Department
of Electrical Engineering and Graduate Institute of Photonics and
Optoelectronics, National Taiwan University, Taipei City 106319, Taiwan
| | - I-Chun Cheng
- Department
of Electrical Engineering and Graduate Institute of Photonics and
Optoelectronics, National Taiwan University, Taipei City 106319, Taiwan
| | - Jian-Zhang Chen
- Graduate
School of Advanced Technology, National
Taiwan University, Taipei
City 106319, Taiwan
- Institute
of Applied Mechanics, National Taiwan University, Taipei City 106319, Taiwan
- Advanced
Research Center for Green Materials Science and Technology, National Taiwan University, Taipei City 106319, Taiwan
| |
Collapse
|
4
|
Mishra AK, Willoughby J, Estes SL, Kohler KC, Brinkman KS. Impact of morphology and oxygen vacancy content in Ni, Fe co-doped ceria for efficient electrocatalyst based water splitting. NANOSCALE ADVANCES 2024; 6:4672-4682. [PMID: 39263402 PMCID: PMC11385549 DOI: 10.1039/d4na00500g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 07/22/2024] [Indexed: 09/13/2024]
Abstract
Designing a highly efficient, low-cost, sustainable electrocatalyst for the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) through water splitting is a current challenge for renewable energy technologies. This work presents a modified sol-gel route to prepare metal-ion(s) doped cerium oxide nanostructures as an efficient electrocatalyst for overall water splitting. Nickle (Ni) and iron (Fe) co-doping impacts the morphology in cerium oxide resulting in 5 nm nanoparticles with a mesoporous-like microstructure. The high level 20 mol% (1 : 1 ratio) of Ni + Fe bimetal-ion(s) doped CeO2 shows excellent HER and OER activities compared to the monodoped Fe/Ni and pristine CeO2. The co-doped catalysts required a low overpotential of 104 mV and 380 mV for HER and OER, respectively, in 1 M KOH, at a current density of 10 mA cm-2. The Tafel slopes of 95 mV dec-1 and 65 mV dec-1 were measured for HER and OER with the same representative samples which demonstrated excellent stability even after continuous operation for 20 hours in the alkaline medium. The unique morphology, enhanced oxygen vacancy (Ov) content and the synergistic effects of dopants in CeO2 play essential roles in enhancing the activities of Ni + Fe doped samples.
Collapse
Affiliation(s)
- Abhaya Kumar Mishra
- Department of Materials Science and Engineering, Clemson University Clemson SC 29634 USA
| | - Joshua Willoughby
- Department of Materials Science and Engineering, Clemson University Clemson SC 29634 USA
| | - Shanna L Estes
- Department of Environmental Engineering and Earth Sciences, Clemson University Anderson SC 29625 USA
| | - Keliann Cleary Kohler
- Advanced Materials Research Laboratory (AMRL), Clemson University Anderson SC 29625 USA
| | - Kyle S Brinkman
- Department of Materials Science and Engineering, Clemson University Clemson SC 29634 USA
| |
Collapse
|
5
|
Zhan T, Lu J, Chen L, Ma C, Zhao Y, Wang X, Wang J, Ling Q, Xiao Z, Wu P. Ir Nanoparticles Supported on Oxygen-Deficient Vanadium Oxides Prepared by a Polyoxovanadate Precursor for Enhanced Electrocatalytic Hydrogen Evolution. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:13496-13504. [PMID: 38875122 DOI: 10.1021/acs.langmuir.4c00891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2024]
Abstract
Developing highly active electrocatalysts is crucial for the application of electrocatalytic water splitting. In this study, we prepared vanadium oxide-graphene carbon nanocomposites (VxOy/C) with abundant defects using a carbon- and oxygen-rich hexavanadate derivative Na2[V6O7{(OCH2)3CCH3}4] as a precursor without the addition of an extra carbon source. Subsequently, the VxOy/C was used as a catalyst support to load a small amount of Ir, forming the Ir/VxOy/C nanoelectrocatalyst. This catalyst exhibited low hydrogen evolution overpotentials of only 18.90 and 13.46 mV at a working current density of 10 mA cm-2 in 1.0 M KOH and 0.5 M H2SO4 electrolyte systems, outperforming the commercial Pt/C catalysts. Additionally, the catalyst showed excellent chemical stability and long-term durability. This work provides a new strategy for the design and synthesis of highly active electrocatalysts for water splitting.
Collapse
Affiliation(s)
- Taozhu Zhan
- Institute of POM-based Materials, New Materials and Green Manufacturing Talent Introduction and Innovation Demonstration Base, School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan, Hubei 430068, P. R. China
| | - Jiaqiang Lu
- Institute of POM-based Materials, New Materials and Green Manufacturing Talent Introduction and Innovation Demonstration Base, School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan, Hubei 430068, P. R. China
| | - Lihong Chen
- Institute of POM-based Materials, New Materials and Green Manufacturing Talent Introduction and Innovation Demonstration Base, School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan, Hubei 430068, P. R. China
| | - Chunhui Ma
- Institute of POM-based Materials, New Materials and Green Manufacturing Talent Introduction and Innovation Demonstration Base, School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan, Hubei 430068, P. R. China
| | - Yanchao Zhao
- Institute of POM-based Materials, New Materials and Green Manufacturing Talent Introduction and Innovation Demonstration Base, School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan, Hubei 430068, P. R. China
| | - Xingyue Wang
- Institute of POM-based Materials, New Materials and Green Manufacturing Talent Introduction and Innovation Demonstration Base, School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan, Hubei 430068, P. R. China
| | - Jiani Wang
- Institute of POM-based Materials, New Materials and Green Manufacturing Talent Introduction and Innovation Demonstration Base, School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan, Hubei 430068, P. R. China
| | - Qian Ling
- Institute of POM-based Materials, New Materials and Green Manufacturing Talent Introduction and Innovation Demonstration Base, School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan, Hubei 430068, P. R. China
| | - Zicheng Xiao
- Institute of POM-based Materials, New Materials and Green Manufacturing Talent Introduction and Innovation Demonstration Base, School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan, Hubei 430068, P. R. China
| | - Pingfan Wu
- Institute of POM-based Materials, New Materials and Green Manufacturing Talent Introduction and Innovation Demonstration Base, School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan, Hubei 430068, P. R. China
| |
Collapse
|
6
|
Jiang Y, Fu H, Liang Z, Zhang Q, Du Y. Rare earth oxide based electrocatalysts: synthesis, properties and applications. Chem Soc Rev 2024; 53:714-763. [PMID: 38105711 DOI: 10.1039/d3cs00708a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
As an important strategic resource, rare earths (REs) constitute 17 elements in the periodic table, namely 15 lanthanides (Ln) (La-Lu, atomic numbers from 57 to 71), scandium (Sc, atomic number 21) and yttrium (Y, atomic number 39). In the field of catalysis, the localization and incomplete filling of 4f electrons endow REs with unique physical and chemical properties, including rich electronic energy level structures, variable coordination numbers, etc., making them have great potential in electrocatalysis. Among various RE catalytic materials, rare earth oxide (REO)-based electrocatalysts exhibit excellent performances in electrocatalytic reactions due to their simple preparation process and strong structural variability. At the same time, the electronic orbital structure of REs exhibits excellent electron transfer ability, which can reduce the band gap and energy barrier values of rate-determining steps, further accelerating the electron transfer in the electrocatalytic reaction process; however, there is a lack of systematic review of recent advances in REO-based electrocatalysis. This review systematically summarizes the synthesis, properties and applications of REO-based nanocatalysts and discusses their applications in electrocatalysis in detail. It includes the hydrogen evolution reaction (HER), oxygen evolution reaction (OER), hydrogen oxidation reaction (HOR), oxygen reduction reaction (ORR), carbon dioxide reduction reaction (CO2RR), methanol oxidation reaction (MOR), nitrogen reduction reaction (NRR) and other electrocatalytic reactions and further discusses the catalytic mechanism of REs in the above reactions. This review provides a timely and comprehensive summary of the current progress in the application of RE-based nanomaterials in electrocatalytic reactions and provides reasonable prospects for future electrocatalytic applications of REO-based materials.
Collapse
Affiliation(s)
- Yong Jiang
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, School of Materials Science and Engineering & National Institute for Advanced Materials, Nankai University, Tianjin, 300350, China.
| | - Hao Fu
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, School of Materials Science and Engineering & National Institute for Advanced Materials, Nankai University, Tianjin, 300350, China.
- College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Zhong Liang
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, School of Materials Science and Engineering & National Institute for Advanced Materials, Nankai University, Tianjin, 300350, China.
| | - Qian Zhang
- Department of Applied Chemistry, Xi'an University of Technology, Xi'an, 710048, China
| | - Yaping Du
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, School of Materials Science and Engineering & National Institute for Advanced Materials, Nankai University, Tianjin, 300350, China.
| |
Collapse
|
7
|
Ma C, Zhu S, Zhao Y, Wang X, Zhan T, Chen L, Wang J, Ling Q, Xiao Z, Wu X, Cai J, Wu P. CoS 2-MoS 2 Nanoflower Arrays for Efficient Hydrogen Evolution Reaction in the Universal pH Range. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:744-750. [PMID: 38103033 DOI: 10.1021/acs.langmuir.3c02960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
To explore, highly active electrocatalysts are essential for water splitting materials. Polyoxometalates (POMs) have drawn interesting attention in recent years due to their abundant structure and unique electrocatalytic properties. In this study, by using a POM-based precursor Co2Mo10, novel bimetallic sulfide (CoS2-MoS2) nanocomposites are rationally designed and synthesized under hydrothermal conditions. The incorporation of Co2+ to the host electrocatalyst could effectively increase the exposure of active sites of MoS2. Compared to pure MoS2, the CoS2-MoS2 nanocomposite exhibited a perfect hydrogen evolution reaction (HER) ability, for it merely requires overpotentials of 120 and 153 mV for 10 mA cm-2 working current density toward the HER in 1 M KOH and 0.5 M H2SO4 electrolyte systems, respectively. Additionally, the nanocomposite exhibited outstanding chemical stability and long-term durability. This study presents a novel strategy that utilizes POMs to enrich the exposed edge sites of MoS2, resulting in the preparation of efficient electrocatalysts.
Collapse
Affiliation(s)
- Chunhui Ma
- Institute of POM-based Materials, New Materials and Green Manufacturing Talent Introduction and Innovation Demonstration Base, School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan 430068, Hubei, P. R. China
| | - Shanshan Zhu
- Institute of POM-based Materials, New Materials and Green Manufacturing Talent Introduction and Innovation Demonstration Base, School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan 430068, Hubei, P. R. China
| | - Yanchao Zhao
- Institute of POM-based Materials, New Materials and Green Manufacturing Talent Introduction and Innovation Demonstration Base, School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan 430068, Hubei, P. R. China
| | - Xingyue Wang
- Institute of POM-based Materials, New Materials and Green Manufacturing Talent Introduction and Innovation Demonstration Base, School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan 430068, Hubei, P. R. China
| | - Taozhu Zhan
- Institute of POM-based Materials, New Materials and Green Manufacturing Talent Introduction and Innovation Demonstration Base, School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan 430068, Hubei, P. R. China
| | - Lihong Chen
- Institute of POM-based Materials, New Materials and Green Manufacturing Talent Introduction and Innovation Demonstration Base, School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan 430068, Hubei, P. R. China
| | - Jiani Wang
- Institute of POM-based Materials, New Materials and Green Manufacturing Talent Introduction and Innovation Demonstration Base, School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan 430068, Hubei, P. R. China
| | - Qian Ling
- Institute of POM-based Materials, New Materials and Green Manufacturing Talent Introduction and Innovation Demonstration Base, School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan 430068, Hubei, P. R. China
| | - Zicheng Xiao
- Institute of POM-based Materials, New Materials and Green Manufacturing Talent Introduction and Innovation Demonstration Base, School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan 430068, Hubei, P. R. China
| | - Xuefei Wu
- SINOPEC Dalian Research Institute of Petroleum and Petrochemicals Co, Ltd., Dalian 116045, Liaoning, P. R. China
| | - Jinlong Cai
- Department of Electronic Science and Technology, School of Science, Hubei University of Technology, Wuhan 430068, Hubei, P. R. China
| | - Pingfan Wu
- Institute of POM-based Materials, New Materials and Green Manufacturing Talent Introduction and Innovation Demonstration Base, School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan 430068, Hubei, P. R. China
| |
Collapse
|
8
|
Miera GG, Heinz O, Hong W, Walker GC. Virtual Issue: Electrode Interfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:18171-18174. [PMID: 38111359 DOI: 10.1021/acs.langmuir.3c03655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
|
9
|
Maurya P, Ansari T, Indra A. 4f-2p-3d orbital overlap in a metal-organic framework-derived CeO 2/CeCo-LDH heterostructure promotes water oxidation. Chem Commun (Camb) 2023; 59:13359-13362. [PMID: 37873625 DOI: 10.1039/d3cc03988a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Herein, we have demonstrated a facile method for the synthesis of CeO2/Ce-Co-LDH heterostructures using zeolitic imidazolate framework-67 as the precursor. The Ce-incorporation in Co-LDH results in 4f-2p-3d orbital overlap to tune the electronic structure whereas the oxygen-deficient CeO2 controls the interface charge transfer. This results in excellent water oxidation activity to attain 500 mA cm-2 current density at 320 overpotential.
Collapse
Affiliation(s)
- Priyanka Maurya
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi, UP 221005, India.
| | - Toufik Ansari
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi, UP 221005, India.
| | - Arindam Indra
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi, UP 221005, India.
| |
Collapse
|
10
|
Fu W, Li N, Shi M, Wu M, Sun G, Shen W, Li Q, Ma J. RuSe 2-CoTe Heterogeneous Surfaces Coated with NC Layer for Excellent HER Performance under Alkaline Condition. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:13189-13196. [PMID: 37674321 DOI: 10.1021/acs.langmuir.3c01613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
Electrocatalytic hydrogen production has been a promising high-purity hydrogen production technology, attracting a large number of researchers' research interest. Ru has a hydrogen binding capacity similar to Pt, but its price is far lower than Pt, making it a promising alternative to Pt. However, a single Se electronic structure modulation is not sufficient to enable RuSe2 to be used for practical applications on a large scale due to the lack of electrons. Therefore, choosing a suitable way to electronically modulate the Ru atoms in RuSe2 can effectively improve the activity of the catalyst. Cobalt telluride (CoTe) can significantly enhance electrocatalytic performance due to tellurium's low electronegativity and excellent metal properties. In this work, the NC layer possesses excellent electrical conductivity and CoTe acts as an electron donor to optimize the electronic structure locally and trigger electron transfer efficiently. The RuSe2-CoTe/NC electrode requires an overpotential of only 25.4 mV (10 mA cm-2), which is superior to that of RuSe2/NF (65 mV) and CoTe/NC (115 mV). Meanwhile, the Tafel slope of RuSe2-CoTe/NC (67.8 mV dec-1) was better than that of RuSe2/NF (113.6 mV dec-1) and CoTe/NC (209.5 mV dec-1), showing that the build-up of the superior heterojunction makes the RuSe2-CoTe/NC with better hydrogen evolution reaction (HER) reaction kinetics. In addition, after 30 h of long-term stability testing, no significant decrease in catalytic activity was observed, proving the good stability of the RuSe2-CoTe/NC catalyst.
Collapse
Affiliation(s)
- Wenhua Fu
- Jiangsu Province Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Nan Li
- Jiangsu Province Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Minghao Shi
- Jiangsu Province Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Mianmian Wu
- Jiangsu Province Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Guifang Sun
- Jiangsu Province Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Wenjing Shen
- Jiangsu Province Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Qingfei Li
- Jiangsu Province Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Jiangquan Ma
- Jiangsu Province Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, Jiangsu 213164, China
| |
Collapse
|
11
|
Singh D, Joshi B, Poddar P. Ferroelectric Polarization and Iron Substitution Synergistically Boost Electrocatalytic Oxygen Evolution Reaction in Bismuth Oxychloride Nanosheets. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:11414-11425. [PMID: 37527487 DOI: 10.1021/acs.langmuir.3c01272] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
Ferroelectric materials have gained significant interest in various kinds of water splitting, but the study of ferroelectric materials for electrocatalytic water splitting is in its infancy. Ferroelectric materials have spontaneous polarization below their Curie temperature due to dipolar alignment, which results in surface charges. In 2D ferroelectric materials, spontaneous polarization depends on thickness. Herein, we report that thickness-dependent ferroelectric polarization in 2D nanosheets can also accelerate the oxygen evolution reaction (OER) along with the tailored active surface area of exposed crystalline facets, which improves the electrocatalytic activity relatively. Iron-substituted BiOCl nanosheets of varying thickness are fabricated by varying the pH using a facile coprecipitation method. The substituted iron enhances polarization and electrochemical active sites on the surface. The findings in this study show that the exposed (001) facet and higher thickness of the nanosheets have high ferroelectric polarization and, in turn, superior electrocatalytic activity and remarkable stability, requiring low overpotentials (348 mV and 270 mV at 100 mA/cm2 and 10 mA/cm2) in alkaline (1.0 M KOH) electrolyte. As the thickness of the nanosheets is decreased from 140 to 34 nm, the electrocatalytic performance of iron-substituted BiOCl nanosheets starts to reduce due to the lower Coulomb-Coulomb interaction and the increasing depolarization.
Collapse
Affiliation(s)
| | - Bhavana Joshi
- Physical & Materials Chemistry Division, CSIR-National Chemical Laboratory, Pune 411008, India
| | - Pankaj Poddar
- Physical & Materials Chemistry Division, CSIR-National Chemical Laboratory, Pune 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Sector 19, Kamla Nehru Nagar, Ghaziabad 201002, Uttar Pradesh, India
| |
Collapse
|