1
|
Liu Z, Zhang X, Ben T, Li M, Jin Y, Wang T, Song Y. Focal adhesion in the tumour metastasis: from molecular mechanisms to therapeutic targets. Biomark Res 2025; 13:38. [PMID: 40045379 PMCID: PMC11884212 DOI: 10.1186/s40364-025-00745-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 02/11/2025] [Indexed: 03/09/2025] Open
Abstract
The tumour microenvironment is the "hotbed" of tumour cells, providing abundant extracellular support for growth and metastasis. However, the tumour microenvironment is not static and is constantly remodelled by a variety of cellular components, including tumour cells, through mechanical, biological and chemical means to promote metastasis. Focal adhesion plays an important role in cell-extracellular matrix adhesion. An in-depth exploration of the role of focal adhesion in tumour metastasis, especially their contribution at the biomechanical level, is an important direction of current research. In this review, we first summarize the assembly of focal adhesions and explore their kinetics in tumour cells. Then, we describe in detail the role of focal adhesion in various stages of tumour metastasis, especially its key functions in cell migration, invasion, and matrix remodelling. Finally, we describe the anti-tumour strategies targeting focal adhesion and the current progress in the development of some inhibitors against focal adhesion proteins. In this paper, we summarize for the first time that focal adhesion play a positive feedback role in pro-tumour metastatic matrix remodelling by summarizing the five processes of focal adhesion assembly in a multidimensional way. It is beneficial for researchers to have a deeper understanding of the role of focal adhesion in the biological behaviour of tumour metastasis and the potential of focal adhesion as a therapeutic target, providing new ideas for the prevention and treatment of metastases.
Collapse
Affiliation(s)
- Zonghao Liu
- Department of Radiotherapy, Cancer Hospital of China Medical University, No.44 Xiaoheyan Road, Dadong District, Shenyang, Liaoning Province, 110042, P. R. China
- The First Clinical College, China Medical University, Shenyang, Liaoning Province, 110122, P. R. China
| | - Xiaofang Zhang
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, Liaoning, 110001, China
| | - Tianru Ben
- The First Clinical College, China Medical University, Shenyang, Liaoning Province, 110122, P. R. China
| | - Mo Li
- Department of Breast Surgery, Liaoning Cancer Hospital and Institute, No.44 Xiaoheyan Road, Dadong District, Shenyang, Liaoning Province, 110042, P. R. China
| | - Yi Jin
- Department of Breast Surgery, Liaoning Cancer Hospital and Institute, No.44 Xiaoheyan Road, Dadong District, Shenyang, Liaoning Province, 110042, P. R. China
| | - Tianlu Wang
- Department of Radiotherapy, Cancer Hospital of China Medical University, No.44 Xiaoheyan Road, Dadong District, Shenyang, Liaoning Province, 110042, P. R. China.
- Department of Radiotherapy, Cancer Hospital of Dalian University of Technology, Shenyang, Liaoning Province, 110042, People's Republic of China.
- Faculty of Medicine, Dalian University of Technology, Dalian, Liaoning Province, 116024, P. R. China.
| | - Yingqiu Song
- Department of Radiotherapy, Cancer Hospital of China Medical University, No.44 Xiaoheyan Road, Dadong District, Shenyang, Liaoning Province, 110042, P. R. China.
- Department of Radiotherapy, Liaoning Cancer Hospital & Institute, No.44 Xiaoheyan Road, Dadong District, Shenyang, Liaoning Province, 110042, P. R. China.
| |
Collapse
|
2
|
Chytła A, Rattay S, Akgül B, Sztacho M. Plasma membrane and nuclear phosphatidylinositol 4,5-bisphosphate signalling in cancer. Lipids Health Dis 2025; 24:39. [PMID: 39915829 PMCID: PMC11800418 DOI: 10.1186/s12944-025-02452-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 01/27/2025] [Indexed: 02/11/2025] Open
Abstract
The development of metastasis is a leading cause of cancer-related death that involves specific changes in the plasma membrane (PM) and nucleus of cancer cells. Elevated levels of membrane lipids, including sphingomyelin, cholesterol, and phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2), in the PM, contribute to changes in membrane rigidity, lipid raft formation, and actin polymerisation dynamics, processes that drive cell invasion. This review discusses the relationship between well-studied cytoplasmic phosphoinositides and their lesser-known nuclear counterparts, highlighting their functional role in metastatic progression. Nuclear phosphoinositides, particularly PI(4,5)P2, are essential for regulating transcription factors and chromatin organisation, thereby shaping gene expression patterns. We also explore the role of PI(4,5)P2 and its metabolism in cancer cell invasiveness and metastasis, proposing a model in which the dysregulation of cytosolic and/or nuclear PI(4,5)P2 pool triggers malignant transformation. Understanding the PI(4,5)P2-related mechanisms underlying metastasis may provide insights into potential therapeutic targets, paving the way for more effective therapies and improved patient outcomes.
Collapse
Affiliation(s)
- Agnieszka Chytła
- Laboratory of Cancer Cell Architecture, Institute of Biochemistry and Experimental Oncology, First Faculty of Medicine, Charles University, Prague, 128 00, Czech Republic
| | - Stephanie Rattay
- Institute of Virology, Medical Faculty, University of Cologne, University Hospital Cologne, 50935, Cologne, Germany
| | - Baki Akgül
- Institute of Virology, Medical Faculty, University of Cologne, University Hospital Cologne, 50935, Cologne, Germany
- National Reference Center for Papilloma- and Polyomaviruses, Institute of Virology, Faculty of Medicine, University Hospital Cologne, University of Cologne, 50935, Cologne, Germany
| | - Martin Sztacho
- Laboratory of Cancer Cell Architecture, Institute of Biochemistry and Experimental Oncology, First Faculty of Medicine, Charles University, Prague, 128 00, Czech Republic.
| |
Collapse
|
3
|
Wang X, Xiong Y, Tang X, Zhang T, Ma W, Wang Y, Li C. Genome-Wide Identification of the PIP5K Gene Family in Camellia sinensis and Their Roles in Metabolic Regulation. Genes (Basel) 2024; 15:932. [PMID: 39062711 PMCID: PMC11275303 DOI: 10.3390/genes15070932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/03/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
Spider mite infestation has a severe impact on tea growth and quality. In this study, we conducted a deep exploration of the functions and regulations of the CsPIP5K gene family using chromosomal localization and collinearity analysis. Additionally, we carefully examined the cis elements within these genes. To fully understand the metabolic response of CsPIP5K under spider mite infection, we integrated previously published metabolomic and transcriptomic data. Our analysis revealed that multiple CsPIP5K genes are associated with phospholipid metabolism, with CsPIP5K06 showing the strongest correlation. Therefore, we employed qPCR and subcellular localization techniques to determine the expression pattern of this gene and its functional location within the cell. Overall, this study not only comprehensively elucidated the characteristics, structure, and evolution of the CsPIP5K gene family but also identified several candidate CsPIP5K genes related to phospholipid biosynthesis and associated with spider mites based on previously published data. This research makes a significant contribution to enhancing the resistance of tea to spider mite and maintaining optimal tea quality.
Collapse
Affiliation(s)
- Xiaoping Wang
- Tea Refining and Innovation Key Laboratory of Sichuan Province, Tea Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China; (Y.X.); (X.T.); (T.Z.); (W.M.); (Y.W.); (C.L.)
| | | | | | | | | | | | | |
Collapse
|
4
|
Jaikishan S, Lavainne M, Ravald HK, Scobbie K, Dusa F, Maheswari R, Turpeinen J, Eikemans I, Chen R, Rantala J, Aseyev V, Maier NN, Wiedmer SK. Fragment-based approach to study fungicide-biomimetic membrane interactions. SOFT MATTER 2024. [PMID: 39012330 DOI: 10.1039/d4sm00648h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
In this study, the molecular interactions of the allylamine-type fungicide butenafine and a set of substructures ("fragments") with liposomes mimicking biological membranes were studied to gain a better understanding of the structural factors governing membrane affinity and perturbation. Specifically, drug/fragment-membrane interactions were investigated using an interdisciplinary approach involving micro differential scanning calorimetry, open-tubular capillary electrochromatography, nanoplasmonic sensing, and quartz crystal microbalance. By incubating the drug and the fragment compounds with liposomes with varying lipid composition or by externally adding the compounds to preformed liposomes, a detailed mechanistic picture on the underlying drug/fragment-membrane interactions was obtained. The nature and the degree of ionisation of polar head groups of the lipids had a major influence on the nature of drug-membrane interactions, and so had the presence and relative concentration of cholesterol within the membranes. The in-depth understanding of drug/fragment-membranes interactions established by the presented interdisciplinary fragment-based approach may be useful in guiding the design and early-stage evaluation of prospective antifungal drug candidates, and the discovery of agents with improved membrane penetrating characteristics in general.
Collapse
Affiliation(s)
- Shishir Jaikishan
- Department of Chemistry, A.I. Virtasen aukio 1, POB 55, 00014 University of Helsinki, Finland.
| | - Marine Lavainne
- Department of Chemistry, A.I. Virtasen aukio 1, POB 55, 00014 University of Helsinki, Finland.
| | - Henri K Ravald
- Department of Chemistry, A.I. Virtasen aukio 1, POB 55, 00014 University of Helsinki, Finland.
| | - Kieran Scobbie
- Department of Chemistry, A.I. Virtasen aukio 1, POB 55, 00014 University of Helsinki, Finland.
| | - Filip Dusa
- Institute of Analytical Chemistry, Czech Academy of Sciences, Veveří 97, Brno 60200, Czech Republic
| | - Rekha Maheswari
- Department of Chemistry, A.I. Virtasen aukio 1, POB 55, 00014 University of Helsinki, Finland.
| | - Jenni Turpeinen
- Department of Chemistry, A.I. Virtasen aukio 1, POB 55, 00014 University of Helsinki, Finland.
| | - Ian Eikemans
- Department of Chemistry, A.I. Virtasen aukio 1, POB 55, 00014 University of Helsinki, Finland.
| | - Rui Chen
- Department of Chemistry, A.I. Virtasen aukio 1, POB 55, 00014 University of Helsinki, Finland.
| | - Julia Rantala
- Department of Chemistry, A.I. Virtasen aukio 1, POB 55, 00014 University of Helsinki, Finland.
| | - Vladimir Aseyev
- Department of Chemistry, A.I. Virtasen aukio 1, POB 55, 00014 University of Helsinki, Finland.
| | - Norbert N Maier
- Department of Chemistry, A.I. Virtasen aukio 1, POB 55, 00014 University of Helsinki, Finland.
| | - Susanne K Wiedmer
- Department of Chemistry, A.I. Virtasen aukio 1, POB 55, 00014 University of Helsinki, Finland.
| |
Collapse
|
5
|
Lingwood C. Is cholesterol both the lock and key to abnormal transmembrane signals in Autism Spectrum Disorder? Lipids Health Dis 2024; 23:114. [PMID: 38643132 PMCID: PMC11032007 DOI: 10.1186/s12944-024-02075-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 03/08/2024] [Indexed: 04/22/2024] Open
Abstract
Disturbances in cholesterol homeostasis have been associated with ASD. Lipid rafts are central in many transmembrane signaling pathways (including mTOR) and changes in raft cholesterol content affect their order function. Cholesterol levels are controlled by several mechanisms, including endoplasmic reticulum associated degradation (ERAD) of the rate limiting HMGCoA reductase. A new approach to increase cholesterol via temporary ERAD blockade using a benign bacterial toxin-derived competitor for the ERAD translocon is suggested.A new lock and key model for cholesterol/lipid raft dependent signaling is proposed in which the rafts provide both the afferent and efferent 'tumblers' across the membrane to allow 'lock and key' receptor transmembrane signals.
Collapse
Affiliation(s)
- Clifford Lingwood
- Division of Molecular Medicine, Research Institute, Peter Gilgan Centre for Research and Learning, Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada.
- Departments of Biochemistry and Laboratory Medicine & Pathobiology, University of Toronto, Ontario, M5S 1A8, Canada.
| |
Collapse
|
6
|
Mlinac-Jerkovic K, Kalanj-Bognar S, Heffer M, Blažetić S. Methodological Pitfalls of Investigating Lipid Rafts in the Brain: What Are We Still Missing? Biomolecules 2024; 14:156. [PMID: 38397393 PMCID: PMC10886647 DOI: 10.3390/biom14020156] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 01/21/2024] [Accepted: 01/26/2024] [Indexed: 02/25/2024] Open
Abstract
The purpose of this review is to succinctly examine the methodologies used in lipid raft research in the brain and to highlight the drawbacks of some investigative approaches. Lipid rafts are biochemically and biophysically different from the bulk membrane. A specific lipid environment within membrane domains provides a harbor for distinct raftophilic proteins, all of which in concert create a specialized platform orchestrating various cellular processes. Studying lipid rafts has proved to be arduous due to their elusive nature, mobility, and constant dynamic reorganization to meet the cellular needs. Studying neuronal lipid rafts is particularly cumbersome due to the immensely complex regional molecular architecture of the central nervous system. Biochemical fractionation, performed with or without detergents, is still the most widely used method to isolate lipid rafts. However, the differences in solubilization when various detergents are used has exposed a dire need to find more reliable methods to study particular rafts. Biochemical methods need to be complemented with other approaches such as live-cell microscopy, imaging mass spectrometry, and the development of specific non-invasive fluorescent probes to obtain a more complete image of raft dynamics and to study the spatio-temporal expression of rafts in live cells.
Collapse
Affiliation(s)
| | | | - Marija Heffer
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Senka Blažetić
- Department of Biology, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| |
Collapse
|
7
|
Tachibana H, Minoura K, Omachi T, Nagao K, Ichikawa T, Kimura Y, Kono N, Shimanaka Y, Arai H, Ueda K, Kioka N. The plasma membrane of focal adhesions has a high content of cholesterol and phosphatidylcholine with saturated acyl chains. J Cell Sci 2023; 136:jcs260763. [PMID: 37470177 DOI: 10.1242/jcs.260763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 07/12/2023] [Indexed: 07/21/2023] Open
Abstract
Cellular functions, such as differentiation and migration, are regulated by the extracellular microenvironment, including the extracellular matrix (ECM). Cells adhere to ECM through focal adhesions (FAs) and sense the surrounding microenvironments. Although FA proteins have been actively investigated, little is known about the lipids in the plasma membrane at FAs. In this study, we examine the lipid composition at FAs with imaging and biochemical approaches. Using the cholesterol-specific probe D4 with total internal reflection fluorescence microscopy and super-resolution microscopy, we show an enrichment of cholesterol at FAs simultaneously with FA assembly. Furthermore, we establish a method to isolate the lipid from FA-rich fractions, and biochemical quantification of the lipids reveals that there is a higher content of cholesterol and phosphatidylcholine with saturated fatty acid chains in the lipids of the FA-rich fraction than in either the plasma membrane fraction or the whole-cell membrane. These results demonstrate that plasma membrane at FAs has a locally distinct lipid composition compared to the bulk plasma membrane.
Collapse
Affiliation(s)
- Hiroshi Tachibana
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Kodai Minoura
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Tomohiro Omachi
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Kohjiro Nagao
- Department of Biophysical Chemistry, Kyoto Pharmaceutical University, Yamashina, Kyoto 607-8414, Japan
| | - Takafumi Ichikawa
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Yasuhisa Kimura
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Nozomu Kono
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - Yuta Shimanaka
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - Hiroyuki Arai
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - Kazumitsu Ueda
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo, Kyoto 606-8502, Japan
- Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, Sakyo, Kyoto 606-8507, Japan
| | - Noriyuki Kioka
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo, Kyoto 606-8502, Japan
- Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, Sakyo, Kyoto 606-8507, Japan
| |
Collapse
|