1
|
An Z, Jian X, Hong W, Zhang X, Ma J, Li M, Zhang B, Guo LH. An ultrasensitive free-of-electronic sacrificial agent photoelectrochemical aptasensor for the detection of dibutyl phthalate based on Z-scheme p-n Bi-doped BiOI/Bi 2S 3 heterojunction. Talanta 2025; 282:126997. [PMID: 39378766 DOI: 10.1016/j.talanta.2024.126997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/08/2024] [Accepted: 10/03/2024] [Indexed: 10/10/2024]
Abstract
Dibutyl phthalate (DBP), a common and outstanding plasticizer, exhibits estrogenic, mutagenic, carcinogenic, and teratogenic properties. It is easily liberated from plastic materials and pollutes aquatic ecosystems, endangering human health. Therefore, highly sensitive and selective DBP detection methods are necessary. In this work, a free-of-electronic sacrificial agent photoelectrochemical (PEC) aptasensor for DBP detection was constructed using a novel Z-scheme Bi-doped BiOI/Bi2S3 (Bi-BIS) p-n heterojunction. The Bi-BIS composites had higher visible-light absorption, charge transfer, and separation efficiency. This is attributed to the synergistic effect of the formation of Z-scheme p-n heterojunction between BiOI and Bi2S3, the plasma resonance effect of metallic Bi and photosensitization of Bi2S3, thus exhibiting large and stable photocurrent response in the absence of electron sacrificial agent, that was 10.4 and 6.4 times higher than that of BiOI and Bi2S3, respectively. Then, a DBP PEC aptasensor was constructed by modifying the DBP aptamer on the surface of the ITO/Bi-BIS electrode. The aptasensor demonstrated a broad linear range (2-500 pM) and a low detection limit (0.184 pM). What's more, because there is no interference from electronic sacrificial agent, the aptasensor exhibited excellent selectivity in real water samples. Therefore, the proposed PEC has considerable potential for DBP monitoring.
Collapse
Affiliation(s)
- Zhiquan An
- College of Energy Environment and Safety Engineering & College of Carbon Metrology, China Jiliang University, Hangzhou, Zhejiang, 310018, PR China; Institute of Environmental and Health Sciences, China Jiliang University, Hangzhou, Zhejiang, 310018, PR China
| | - Xiaoyu Jian
- College of Life Science, China Jiliang University, Hangzhou, Zhejiang, 310018, PR China; Institute of Environmental and Health Sciences, China Jiliang University, Hangzhou, Zhejiang, 310018, PR China
| | - Wenjun Hong
- College of Energy Environment and Safety Engineering & College of Carbon Metrology, China Jiliang University, Hangzhou, Zhejiang, 310018, PR China; Institute of Environmental and Health Sciences, China Jiliang University, Hangzhou, Zhejiang, 310018, PR China
| | - Xilong Zhang
- College of Energy Environment and Safety Engineering & College of Carbon Metrology, China Jiliang University, Hangzhou, Zhejiang, 310018, PR China; Institute of Environmental and Health Sciences, China Jiliang University, Hangzhou, Zhejiang, 310018, PR China
| | - Jiateng Ma
- College of Energy Environment and Safety Engineering & College of Carbon Metrology, China Jiliang University, Hangzhou, Zhejiang, 310018, PR China; Institute of Environmental and Health Sciences, China Jiliang University, Hangzhou, Zhejiang, 310018, PR China
| | - Minjie Li
- College of Energy Environment and Safety Engineering & College of Carbon Metrology, China Jiliang University, Hangzhou, Zhejiang, 310018, PR China; Institute of Environmental and Health Sciences, China Jiliang University, Hangzhou, Zhejiang, 310018, PR China
| | - Bihong Zhang
- College of Energy Environment and Safety Engineering & College of Carbon Metrology, China Jiliang University, Hangzhou, Zhejiang, 310018, PR China; Institute of Environmental and Health Sciences, China Jiliang University, Hangzhou, Zhejiang, 310018, PR China.
| | - Liang-Hong Guo
- College of Energy Environment and Safety Engineering & College of Carbon Metrology, China Jiliang University, Hangzhou, Zhejiang, 310018, PR China; Institute of Environmental and Health Sciences, China Jiliang University, Hangzhou, Zhejiang, 310018, PR China.
| |
Collapse
|
2
|
Wang H, Zhao G, Yang Y, Wei Y, Liu C, Li X, Li J, Wang T, Shi G, Wang G. Efficient Preparation of S-Scheme Ag/AgBr/BiOBr Heterojunction Photocatalysts and Implications for Degradation of Carbendazim: Mechanism, Pathway, and Toxicology. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:25303-25318. [PMID: 39528421 DOI: 10.1021/acs.langmuir.4c03650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Carbendazim (CBZ), as a highly effective benzimidazole fungicide, has a good control effect on various crops caused by fungi. However, excessive use of CBZ in water, atmosphere, soil, and crops has serious effects. The efficient degradation of CBZ is an effective way to reduce its toxic effect. In this work, the type of S-scheme Ag/AgBr/BiOBr heterojunction photocatalyst was effectively prepared by a simple one-step solvothermal in situ method and first applied to the mineralization and degradation of CBZ. The effects of the molar ratio of AgBr to BiOBr, catalyst dosage, CBZ concentration, pH value of the original solution, and inorganic salt ions on the photocatalytic degradation performance of CBZ were comprehensively studied. The results showed that, under visible light irradiation, 0.9-Ag/AgBr/BiOBr (0.9-AAB) exhibited the best photocatalytic degradation performance (88.9%) against the concentration at 10 mg/L of CBZ in original solutions with pH of 10. However, the degradation effect was also good at pH 7. After 90 min, the degradation efficiency reached 86.0%, corresponding to a TOC removal efficiency of 84.0%. The results indicate that the main active species are 1O2 and •O2- free radicals according to the free radical quenching experiments and electron spin resonance spectra. Combined with the XPS characterization results, the electron transfer mechanism of the S-scheme heterojunction was deeply revealed. Additionally, the degradation pathway of CBZ was proposed through both the intermediate identification and the theoretical calculation derived from the DFT Fukui index. Finally, the toxicity of CBZ and the degradation intermediates were predicted based on the T.E.S.T.
Collapse
Affiliation(s)
- Hongyu Wang
- College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou 730050, China
- School of Petrochemical Engineering, Lanzhou Petrochemical University of Vocational Technology, Lanzhou, Gansu 730060, China
| | - Guanghong Zhao
- College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou 730050, China
| | - Yang Yang
- College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou 730050, China
| | - Yuan Wei
- College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou 730050, China
| | - Chao Liu
- College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou 730050, China
| | - Xin Li
- College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou 730050, China
| | - Jiaxian Li
- College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou 730050, China
| | - Tiantian Wang
- College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou 730050, China
| | - Gaofeng Shi
- College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou 730050, China
| | - Guoying Wang
- College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou 730050, China
- He Xi University, Zhangye 734000, PR China
| |
Collapse
|
3
|
Zhou Q, Ji Z, Yu H, Lu S, Guo J, Wu C. Photocatalytic Degradation of Tetracycline Hydrochloride Based on the Structure-Property Exploration of BiOCl. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:7078-7086. [PMID: 38514080 DOI: 10.1021/acs.langmuir.4c00203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
The correlation between structure and properties in the photodegradation reaction of bismuth oxychloride (BiOCl) was explored in this work. Three BiOCl samples with different sizes, morphological structures, and defects were prepared through a hydrothermal method with experimental manipulation. Their structural properties were comprehensively characterized using X-ray diffraction, scanning electron microscopy, transmission electron microscopy, electron spin resonance, X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, ultraviolet-visible diffuse reflectance spectroscopy, and photoluminescence. Taking the photodegradation of tetracycline hydrochloride (TC-HCl) as the probe reaction, we found that high activity could be achieved by decreasing their crystal size and thickness, introducing proper defects in the structure, and assembling the nanosheets to get microball structure. Combined with radical-scavenge experiments and electron spin resonance (ESR) spin-trap spectra, we conclude that ̇O2- was the dominant reactive oxygen species for the degradation reaction. The degradation detailed pathway of TC-HCl was further analyzed using liquid chromatography-mass spectrometry. This work explores the structure-property correlation of BiOCl and provides strategies for the rational design of active photocatalysts for water remediation.
Collapse
Affiliation(s)
- Quan Zhou
- Zhejiang Provincial Key Laboratory of Chemical Utilization of Forestry Biomass, College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China
| | - Zhefeng Ji
- Zhejiang Provincial Key Laboratory of Chemical Utilization of Forestry Biomass, College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China
| | - Hongbo Yu
- Institute of Materials, Ningbo University of Technology, Ningbo 315016, China
| | - Shun Lu
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
| | - Jianzhong Guo
- Zhejiang Provincial Key Laboratory of Chemical Utilization of Forestry Biomass, College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China
| | - Chunzheng Wu
- Zhejiang Provincial Key Laboratory of Chemical Utilization of Forestry Biomass, College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China
| |
Collapse
|
4
|
Tao Y, Luo Q, Shen L, Hong F, Pun EYB, Lin H. Swallowed Embedding of Nanopetal-Rich Microflowers in Flexible Photocatalytic and Thermoresponsive Functional Composite Fibers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:1825-1839. [PMID: 38180481 DOI: 10.1021/acs.langmuir.3c03164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
Developing efficient catalysts to degrade pollutants in water is a very important way to alleviate water pollution. However, it is crucial but challenging to broaden the functions of conventional photocatalysts and improve their environmental adaptability. In this paper, Bi(Er3+/Yb3+)OBr/polyacrylonitrile (BOB-EY/PAN) composite fibers with a swallowed-embedded structure assembled with nanopetal-rich microflowers were designed and fabricated, integrating photocatalytic and temperature-monitoring functions simultaneously. Their unique structure brings a large specific surface area, and the doping of rare earth ions improves the separation efficiency of electron-hole pairs, which enhances the photocatalytic efficiency and endows the fibers with a temperature-monitoring function at the same time. Under simulated sunlight irradiation, the nanofibers show a maximum degradation efficiency of 99.2% for tetracycline hydrochloride (TC) with a degradation constant of K as high as 0.078 min-1. Based on the fluorescence intensity ratio (FIR), the two thermally coupled levels of Er3+ in the nanofibers, 2H11/2 and 4S3/2, provide real-time temperature feedback, displaying a maximum relative sensitivity as high as 0.0215 K-1 at 303 K. Dual-functional BOB-EY/PAN composite nanofibers show great potential for industrial wastewater disposition, providing solutions for wastewater purification in special scenarios.
Collapse
Affiliation(s)
- Yahui Tao
- School of Textile and Material Engineering, Dalian Polytechnic University, Dalian 116034, P. R. China
| | - Qian Luo
- School of Textile and Material Engineering, Dalian Polytechnic University, Dalian 116034, P. R. China
| | - Lifan Shen
- School of Textile and Material Engineering, Dalian Polytechnic University, Dalian 116034, P. R. China
- College of Microelectronics and Key Laboratory of Optoelectronics Technology, Faculty of Information Technology, Beijing University of Technology, Beijing 100124, P. R. China
| | - Feng Hong
- School of Textile and Material Engineering, Dalian Polytechnic University, Dalian 116034, P. R. China
| | - Edwin Yue Bun Pun
- Department of Electrical Engineering and State Key Laboratory of Terahertz and Millimeter Waves, City University of Hong Kong, Kowloon 999077, Hong Kong Special Administrative Region, P. R. China
| | - Hai Lin
- School of Textile and Material Engineering, Dalian Polytechnic University, Dalian 116034, P. R. China
- Department of Electrical Engineering and State Key Laboratory of Terahertz and Millimeter Waves, City University of Hong Kong, Kowloon 999077, Hong Kong Special Administrative Region, P. R. China
| |
Collapse
|
5
|
Zhao C, Zhao Z, Liang Y, Fu J. Bi/BiOI/carbon quantum dots nano-sheets with superior photocatalysis. RSC Adv 2023; 13:30520-30527. [PMID: 37854493 PMCID: PMC10580261 DOI: 10.1039/d3ra05145e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 10/07/2023] [Indexed: 10/20/2023] Open
Abstract
A new photocatalyst of Bi/BiOI/Carbon quantum dots (CQDs) was synthesized via a simple method. Photocatalytic performance of Bi/BiOI/CQDs was evaluated by photodegradation of RhB. Experiment indicated that the introduction of CQDs could improve the photocatalysis activity of BiOI obviously. Moreover, there is a optimum percentage of CQDs. In this photocatalytic system, the enhanced photoactivity was mainly attributed to the heterojunction interface between CQDs and BiOI, as well as the enhanced light harvesting for the appropriate CQDs introduction. The radicals trapping experiments revealed that O2˙-, ˙OH and h+ were the main active species during the photocatalysis process.
Collapse
Affiliation(s)
- Chenhui Zhao
- School of Power and Energy, Northwestern Polytechnical University Xi'an 710072 China
| | - Zhijie Zhao
- School of Power and Energy, Northwestern Polytechnical University Xi'an 710072 China
| | - Ying Liang
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University Xi'an 710072 China
| | - Jiangfeng Fu
- School of Power and Energy, Northwestern Polytechnical University Xi'an 710072 China
| |
Collapse
|
6
|
Zhang X, Li Y, Jiang S, Pun EYB, Lin H. Heterojunction Photocatalyst Loaded on Electrospun Nanofibers for Synergistic Enhanced Photocatalysis and Real-Time Temperature Monitoring. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:14344-14356. [PMID: 37755730 DOI: 10.1021/acs.langmuir.3c01671] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
Bi2WO6:Ho3+, Yb3+/g-C3N4 (BHY/CN) photocatalysts are successfully loaded on polyacrylonitrile (PAN) nanofibers by electrospinning technology, which combines an upconversion effect and heterojunctions to achieve dual-functional characteristics. Polymer-modified photocatalytic materials offer a large specific surface area of 24.1 m2/g and a pore volume of 0.1 cm3/g, promoting the utility of solar energy. The introduction of rare earth ions and g-C3N4 optimizes the structural band gap, which broadens the light absorption range and promotes electron transfer. Moreover, the heterojunction between Bi2WO6 and g-C3N4 has suppressed the complexation of photoinduced carriers, further improving catalytic performance. The optimized photocatalysts have higher photocatalytic activity with degrading 92.6% tetracycline-hydrochloride (120 min) under simulated sunlight irradiation. The optical thermometry has also been achieved based on the fluorescence intensity ratio technique, where the maximum absolute and relative sensitivity values of BHY/CN-1:6@PAN are 3.322% K-1 and 0.842% K-1, respectively. This dual-functional nanofibers with excellent mechanical properties provide noncontact temperature feedback and efficient catalytic performance for better wastewater treatment and ecological restoration in extreme harsh environments.
Collapse
Affiliation(s)
- Xiaolin Zhang
- School of Textile and Material Engineering, Dalian Polytechnic University, Dalian 116034, P. R. China
| | - Yue Li
- Department of Electrical Engineering and State Key Laboratory of Terahertz and Millimeter Waves, City University of Hong Kong, Hong Kong Special Administrative Region 999077, P. R. China
| | - Shuwen Jiang
- School of Textile and Material Engineering, Dalian Polytechnic University, Dalian 116034, P. R. China
| | - Edwin Yue Bun Pun
- Department of Electrical Engineering and State Key Laboratory of Terahertz and Millimeter Waves, City University of Hong Kong, Hong Kong Special Administrative Region 999077, P. R. China
| | - Hai Lin
- School of Textile and Material Engineering, Dalian Polytechnic University, Dalian 116034, P. R. China
- Department of Electrical Engineering and State Key Laboratory of Terahertz and Millimeter Waves, City University of Hong Kong, Hong Kong Special Administrative Region 999077, P. R. China
| |
Collapse
|