1
|
Wang H, Zhao Y, Zhang Z, Zhu Y, Li X, Zhang D. A Density Functional Theory (DFT) Modeling Study of NO Reduction by CO over Graphene-Supported Single-Atom Ni Catalysts in the Presence of CO 2, SO 2, O 2, and H 2O. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:1614-1624. [PMID: 39808707 DOI: 10.1021/acs.langmuir.4c03571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
The mechanisms of NO reduction by CO over nitrogen-doped graphene (N-graphene)-supported single-atom Ni catalysts in the presence of O2, H2O, CO2, and SO2 have been studied via density functional theory (DFT) modeling. The catalyst is represented by a single Ni atom bonded to four N atoms on N-graphene. Several alternative reaction pathways, including adsorption of NO on the Ni site, direct reduction of NO by CO, decomposition of NO to N2O followed by reduction of N2O to N2, formation of active oxygen radical O*, and reduction of O* by CO, were hypothesized and the energy barrier corresponding to each of the reaction steps was calculated using DFT. The most probable pathway was found to be that NO adsorbed on the Ni site decomposes via the Langmuir-Hinshelwood mechanism to form N2O and subsequently N2, leaving an active oxygen radical (O*) on the surface, which is then reduced by CO. The large adsorption energy of NO on the Ni site results in strong resistance to CO2, SO2, O2, and water vapor. The activation energy of N2O reduction to N2 was found to be larger than those of NO decomposition to N2O and active oxygen radical reduction by CO, illustrating that the step of N2O reduced to N2 is the rate-controlling step.
Collapse
Affiliation(s)
- Huanran Wang
- Liaoning Provincial Engineering Research Centre for Advanced Coking and Coal Utilization, University of Science and Technology Liaoning, Anshan 114051, China
- Centre for Energy (M473), The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Yan Zhao
- Liaoning Provincial Engineering Research Centre for Advanced Coking and Coal Utilization, University of Science and Technology Liaoning, Anshan 114051, China
| | - Zhezi Zhang
- Centre for Energy (M473), The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Yaming Zhu
- Liaoning Provincial Engineering Research Centre for Advanced Coking and Coal Utilization, University of Science and Technology Liaoning, Anshan 114051, China
| | - Xianchun Li
- Liaoning Provincial Engineering Research Centre for Advanced Coking and Coal Utilization, University of Science and Technology Liaoning, Anshan 114051, China
| | - Dongke Zhang
- Centre for Energy (M473), The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| |
Collapse
|
2
|
Guan X, Han R, Asakura H, Wang B, Chen L, Yan JHC, Guan S, Keenan L, Hayama S, van Spronsen MA, Held G, Zhang J, Gu H, Ren Y, Zhang L, Yao Z, Zhu Y, Regoutz A, Tanaka T, Guo Y, Wang FR. Subsurface Single-Atom Catalyst Enabled by Mechanochemical Synthesis for Oxidation Chemistry. Angew Chem Int Ed Engl 2024; 63:e202410457. [PMID: 39004608 DOI: 10.1002/anie.202410457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/08/2024] [Accepted: 07/12/2024] [Indexed: 07/16/2024]
Abstract
Single-atom catalysts have garnered significant attention due to their exceptional atom utilization and unique properties. However, the practical application of these catalysts is often impeded by challenges such as sintering-induced instability and poisoning of isolated atoms due to strong gas adsorption. In this study, we employed the mechanochemical method to insert single Cu atoms into the subsurface of Fe2O3 support. By manipulating the location of single atoms at the surface or subsurface, catalysts with distinct adsorption properties and reaction mechanisms can be achieved. It was observed that the subsurface Cu single atoms in Fe2O3 remained isolated under both oxidation and reduction environments, whereas surface Cu single atoms on Fe2O3 experienced sintering under reduction conditions. The unique properties of these subsurface single-atom catalysts call for innovations and new understandings in catalyst design.
Collapse
Affiliation(s)
- Xuze Guan
- Department of Chemical Engineering, University College London, London, WC1E 7JE, UK
| | - Rong Han
- School of Electrical Engineering and Automation, Wuhan University, Wuhan, 430072, China
| | - Hiroyuki Asakura
- Department of Applied Chemistry, Faculty of Science and Engineering, Kindai University, 3-4-1, Kowakae, Higashi-Osaka, Osaka, 577-8502, Japan
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Kyotodaigaku Katsura, Nishikyo-Ku, Kyoto, 615-8510, Japan
| | - Bolun Wang
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470, Mülheim an der Ruhr, Germany
| | - Lu Chen
- Department of Chemical Engineering, University College London, London, WC1E 7JE, UK
| | - Jay Hon Cheung Yan
- Department of Chemical Engineering, University College London, London, WC1E 7JE, UK
| | - Shaoliang Guan
- Maxwell Centre, Cavendish Laboratory, Cambridge, CB3 0HE, UK
| | - Luke Keenan
- Diamond Light Source Ltd, Harwell Science and Innovation Campus, Didcot, Oxfordshire, OX11 0DE, UK
| | - Shusaku Hayama
- Diamond Light Source Ltd, Harwell Science and Innovation Campus, Didcot, Oxfordshire, OX11 0DE, UK
| | - Matthijs A van Spronsen
- Diamond Light Source Ltd, Harwell Science and Innovation Campus, Didcot, Oxfordshire, OX11 0DE, UK
| | - Georg Held
- Diamond Light Source Ltd, Harwell Science and Innovation Campus, Didcot, Oxfordshire, OX11 0DE, UK
| | - Jie Zhang
- Department of Chemical Engineering, University College London, London, WC1E 7JE, UK
| | - Hao Gu
- Department of Chemical Engineering, University College London, London, WC1E 7JE, UK
| | - Yifei Ren
- Department of Chemical Engineering, University College London, London, WC1E 7JE, UK
| | - Lun Zhang
- Department of Chemical Engineering, University College London, London, WC1E 7JE, UK
| | - Zhangyi Yao
- Department of Chemical Engineering, University College London, London, WC1E 7JE, UK
| | - Yujiang Zhu
- Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, UK
| | - Anna Regoutz
- Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, UK
| | - Tsunehiro Tanaka
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Kyotodaigaku Katsura, Nishikyo-Ku, Kyoto, 615-8510, Japan
| | - Yuzheng Guo
- School of Electrical Engineering and Automation, Wuhan University, Wuhan, 430072, China
| | - Feng Ryan Wang
- Department of Chemical Engineering, University College London, London, WC1E 7JE, UK
| |
Collapse
|
3
|
Park ED. Recent Progress on Low-Temperature Selective Catalytic Reduction of NO x with Ammonia. Molecules 2024; 29:4506. [PMID: 39339501 PMCID: PMC11434452 DOI: 10.3390/molecules29184506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 09/21/2024] [Accepted: 09/21/2024] [Indexed: 09/30/2024] Open
Abstract
Selective catalytic reduction of nitrogen oxides (NOx) with ammonia (NH3-SCR) has been implemented in response to the regulation of NOx emissions from stationary and mobile sources above 300 °C. However, the development of NH3-SCR catalysts active at low temperatures below 200 °C is still needed to improve the energy efficiency and to cope with various fuels. In this review article, recent reports on low-temperature NH3-SCR catalysts are systematically summarized. The redox property as well as the surface acidity are two main factors that affect the catalytic activity. The strong redox property is beneficial for the low-temperature NH3-SCR activity but is responsible for N2O formation. The multiple electron transfer system is more plausible for controlling redox properties. H2O and SOx, which are often found with NOx in flue gas, have a detrimental effect on NH3-SCR activity, especially at low temperatures. The competitive adsorption of H2O can be minimized by enhancing the hydrophobic property of the catalyst. Various strategies to improve the resistance to SOx poisoning are also discussed.
Collapse
Affiliation(s)
- Eun Duck Park
- Department of Energy Systems Research, Ajou University, Suwon 16499, Republic of Korea
- Department of Chemical Engineering, Ajou University, Suwon 16499, Republic of Korea
| |
Collapse
|
4
|
Chen Y, Liu X, Wang P, Mansoor M, Zhang J, Peng D, Han L, Zhang D. Challenges and Perspectives of Environmental Catalysis for NO x Reduction. JACS AU 2024; 4:2767-2791. [PMID: 39211630 PMCID: PMC11350593 DOI: 10.1021/jacsau.4c00572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 07/27/2024] [Accepted: 08/02/2024] [Indexed: 09/04/2024]
Abstract
Environmental catalysis has attracted great interest in air and water purification. Selective catalytic reduction with ammonia (NH3-SCR) as a representative technology of environmental catalysis is of significance to the elimination of nitrogen oxides (NO x ) emitting from stationary and mobile sources. However, the evolving energy landscape in the nonelectric sector and the changing nature of fuel in motor vehicles present new challenges for NO x catalytic purification over the traditional NH3-SCR catalysts. These challenges primarily revolve around the application limitations of conventional industrial NH3-SCR catalysts, such as V2O5-WO3(MoO3)/TiO2 and chabazite (CHA) structured zeolites, in meeting both the severe requirements of high activity at ultralow temperatures and robust resistance to the wide array of poisons (SO2, HCl, phosphorus, alkali metals, and heavy metals, etc.) existing in more complex operating conditions of new application scenarios. Additionally, volatile organic compounds (VOCs) coexisting with NO x in exhaust gas has emerged as a critical factor further impeding the highly efficient reduction of NO x . Therefore, confronting the challenges inherent in current NH3-SCR technology and drawing from the established NH3-SCR reaction mechanisms, we discern that the strategic manipulation of the properties of surface acidity and redox over NH3-SCR catalysts constitutes an important pathway for increasing the catalytic efficiency at low temperatures. Concurrently, the establishment of protective sites and confined structures combined with the strategies for triggering antagonistic effects emerge as imperative items for strengthening the antipoisoning potentials of NH3-SCR catalysts. Finally, we contemplate the essential status of selective synergistic catalytic elimination technology for abating NO x and VOCs. By virtue of these discussions, we aim to offer a series of innovative guiding perspectives for the further advancement of environmental catalysis technology for the highly efficient NO x catalytic purification from nonelectric industries and motor vehicles.
Collapse
Affiliation(s)
- Yanqi Chen
- International Joint Laboratory
of Catalytic Chemistry, Innovation Institute of Carbon Neutrality,
Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, People’s
Republic of China
| | - Xiangyu Liu
- International Joint Laboratory
of Catalytic Chemistry, Innovation Institute of Carbon Neutrality,
Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, People’s
Republic of China
| | - Penglu Wang
- International Joint Laboratory
of Catalytic Chemistry, Innovation Institute of Carbon Neutrality,
Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, People’s
Republic of China
| | - Maryam Mansoor
- International Joint Laboratory
of Catalytic Chemistry, Innovation Institute of Carbon Neutrality,
Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, People’s
Republic of China
| | - Jin Zhang
- International Joint Laboratory
of Catalytic Chemistry, Innovation Institute of Carbon Neutrality,
Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, People’s
Republic of China
| | - Dengchao Peng
- International Joint Laboratory
of Catalytic Chemistry, Innovation Institute of Carbon Neutrality,
Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, People’s
Republic of China
| | - Lupeng Han
- International Joint Laboratory
of Catalytic Chemistry, Innovation Institute of Carbon Neutrality,
Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, People’s
Republic of China
| | - Dengsong Zhang
- International Joint Laboratory
of Catalytic Chemistry, Innovation Institute of Carbon Neutrality,
Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, People’s
Republic of China
| |
Collapse
|
5
|
An C, Hong W, Jiang X, Sun Y, Li X, Shen F, Zhu T. Catalytic Ozonation of Low Concentration Toluene over MnFeO x-USY Catalyst: Effects of Interactions between Catalytic Components and Introduction of Gas Phase NO x. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024. [PMID: 39088742 DOI: 10.1021/acs.est.4c02050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/03/2024]
Abstract
A series of Mn and Fe metal oxide catalysts loaded onto USY, as well as single metal oxides, were prepared and characterized. The effects of interactions between the catalytic components and the introduction of gas phase NO on the catalytic ozonation of toluene were investigated. Characterization showed that there existed strong interactions between MnOx, FeOx, and USY, which enhanced the content of oxygen vacancies and acid sites of the catalysts and thus boosted the generation of reactive oxygen species and the adsorption of toluene. The MnFeOx-USY catalyst with MnOx and FeOx dimetallic oxides exhibited the most excellent performance of catalytic ozonation of toluene. On the other hand, the presence of NOx in reaction gas mixtures significantly promoted both toluene conversion and mineralization, which was attributed to the formation of nitrate species on the catalysts surface and thus the increase of both acid sites and toluene oxidation sites. Meanwhile, the reaction mechanism between O3 and C7H8 was modified in which the strong interactions between MnOx, FeOx, and USY accelerated the reaction progress based on the L-H route. In addition, the formation of the surface nitrate species not only promoted reaction progress following the L-H route but also resulted in the occurrence of the reaction via the E-R route.
Collapse
Affiliation(s)
- Chenguang An
- School of Materials Science and Engineering, Beihang University, Beijing 100191, China
| | - Wei Hong
- School of Materials Science and Engineering, Beihang University, Beijing 100191, China
| | - Xinxin Jiang
- School of Materials Science and Engineering, Beihang University, Beijing 100191, China
| | - Ye Sun
- School of Energy and Power Engineering, Beihang University, Beijing 100191, China
| | - Xiang Li
- School of Energy and Power Engineering, Beihang University, Beijing 100191, China
| | - Fangxia Shen
- School of Energy and Power Engineering, Beihang University, Beijing 100191, China
| | - Tianle Zhu
- School of Materials Science and Engineering, Beihang University, Beijing 100191, China
| |
Collapse
|
6
|
Li S, Zhang B, Yang Y, Zhu F, Zhao D, Shi S, Wang S, Ding S, Chen C. Insights into the Acidic Site in Manganese Oxide in Terms of the Sulfur and Water Tolerance of Low-Temperature NH 3 Selective Catalytic Reduction. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:14504-14514. [PMID: 38951117 DOI: 10.1021/acs.langmuir.4c01289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
A critical constraint impeding the utilization of Mn-based oxide catalysts in NH3 selective catalytic reduction (NH3-SCR) is their inadequate resistance to water and sulfur. This vulnerability primarily arises from the propensity of SO2 to bind to the acidic site in manganese oxide, resulting in the formation of metal sulfate and leading to the irreversible deactivation of the catalyst. Therefore, gaining a comprehensive understanding of the detrimental impact of SO2 on the acidic sites and elucidating the underlying mechanism of this toxicity are of paramount importance for the effective application of Mn-based catalysts in NH3-SCR. Herein, we strategically modulate the acidity of the manganese oxide catalyst surface through the incorporation of Ce and Nb. Comprehensive analyses, including thermogravimetry, NH3 temperature-programmed desorption, in situ diffused reflectance infrared Fourier transform spectroscopy, and density functional theory calculations, reveal that SO2 exhibits a propensity for adsorption at strongly acidic sites. This mechanistic understanding underscores the pivotal role of surface acidity in governing the sulfur resistance of manganese oxide.
Collapse
Affiliation(s)
- Shengchen Li
- Key Laboratory of Jiangxi Province for Environment and Energy, School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi 330031, P. R. China
| | - Bingzhen Zhang
- Key Laboratory of Jiangxi Province for Environment and Energy, School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi 330031, P. R. China
| | - Yanping Yang
- Key Laboratory of Jiangxi Province for Environment and Energy, School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi 330031, P. R. China
| | - Fangyu Zhu
- Key Laboratory of Jiangxi Province for Environment and Energy, School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi 330031, P. R. China
| | - Dan Zhao
- Key Laboratory of Jiangxi Province for Environment and Energy, School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi 330031, P. R. China
| | - Shunli Shi
- Key Laboratory of Jiangxi Province for Environment and Energy, School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi 330031, P. R. China
| | - Shuhua Wang
- Key Laboratory of Jiangxi Province for Environment and Energy, School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi 330031, P. R. China
| | - Shunmin Ding
- Key Laboratory of Jiangxi Province for Environment and Energy, School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi 330031, P. R. China
| | - Chao Chen
- Key Laboratory of Jiangxi Province for Environment and Energy, School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi 330031, P. R. China
| |
Collapse
|
7
|
Wang F, Chen A, Lan T, Chen X, Wang M, Hu X, Wang P, Cheng D, Zhang D. Synergistic catalytic removal of NO x and chlorinated organics through the cooperation of different active sites. JOURNAL OF HAZARDOUS MATERIALS 2024; 468:133722. [PMID: 38367433 DOI: 10.1016/j.jhazmat.2024.133722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/26/2024] [Accepted: 02/03/2024] [Indexed: 02/19/2024]
Abstract
The synergistic removal of NOx and chlorinated volatile organic compounds (CVOCs) has become the hot topic in the field of environmental catalysis. However, due to the trade-off effects between catalytic reduction of NOx and catalytic oxidation of CVOCs, it is indispensable to achieve well-matched redox property and acidity. Herein, synergistic catalytic removal of NOx and chlorobenzene (CB, as the model of CVOCs) has been originally demonstrated over a Co-doped SmMn2O5 mullite catalyst. Two kinds of Mn-Mn sites existed in Mn-O-Mn-Mn and Co-O-Mn-Mn sites were constructed, which owned gradient redox ability. It has been demonstrated that the cooperation of different active sites can achieve the balanced redox and acidic property of the SmMn2O5 catalyst. It is interesting that the d band center of Mn-Mn sites in two different sites was decreased by the introduction of Co, which inhibited the nitrate species deposition and significantly improved the N2 selectivity. The Co-O-Mn-Mn sites were beneficial to the oxidation of CB and it cooperates with Mn-O-Mn-Mn to promote the synergistic catalytic performance. This work paves the way for synergistic removal of NOx and CVOCs over cooperative active sites in catalysts.
Collapse
Affiliation(s)
- Fuli Wang
- School of Environmental and Chemical Engineering, State Key Laboratory of Advanced Special Steel, Innovation Institute of Carbon Neutrality, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Aling Chen
- School of Environmental and Chemical Engineering, State Key Laboratory of Advanced Special Steel, Innovation Institute of Carbon Neutrality, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Tianwei Lan
- School of Environmental and Chemical Engineering, State Key Laboratory of Advanced Special Steel, Innovation Institute of Carbon Neutrality, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Xin Chen
- School of Environmental and Chemical Engineering, State Key Laboratory of Advanced Special Steel, Innovation Institute of Carbon Neutrality, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Mengxue Wang
- School of Environmental and Chemical Engineering, State Key Laboratory of Advanced Special Steel, Innovation Institute of Carbon Neutrality, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Xiaonan Hu
- School of Environmental and Chemical Engineering, State Key Laboratory of Advanced Special Steel, Innovation Institute of Carbon Neutrality, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Penglu Wang
- School of Environmental and Chemical Engineering, State Key Laboratory of Advanced Special Steel, Innovation Institute of Carbon Neutrality, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Danhong Cheng
- School of Environmental and Chemical Engineering, State Key Laboratory of Advanced Special Steel, Innovation Institute of Carbon Neutrality, College of Sciences, Shanghai University, Shanghai 200444, China.
| | - Dengsong Zhang
- School of Environmental and Chemical Engineering, State Key Laboratory of Advanced Special Steel, Innovation Institute of Carbon Neutrality, College of Sciences, Shanghai University, Shanghai 200444, China.
| |
Collapse
|