1
|
Fu K, Yang LL, Gao N, Liu P, Xue B, He W, Qiu W, Wen X. Modified five times simulated body fluid for efficient biomimetic mineralization. Heliyon 2024; 10:e32850. [PMID: 38975072 PMCID: PMC11226902 DOI: 10.1016/j.heliyon.2024.e32850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 06/09/2024] [Accepted: 06/11/2024] [Indexed: 07/09/2024] Open
Abstract
Simulated body fluid (SBF) is widely utilized in preclinical research for estimating the mineralization efficacy of biomaterials. Therefore, it is of great significance to construct an efficient and stable SBF mineralization system. The conventional SBF solutions cannot maintain a stable pH value and are prone to precipitate homogeneous calcium salts at the early stages of the biomimetic process because of the release of gaseous CO2. In this study, a simple but efficient five times SBF buffered by 5 % CO2 was developed and demonstrated to achieve excellent mineralized microstructure on a type of polymer-aligned nanofibrous scaffolds, which is strikingly similar to the natural human bone tissue. Scanning electron microscopy and energy-dispersive X-ray examinations indicated the growth of heterogeneous apatite with a high-calcium-to-phosphate ratio on the aligned nanofibers under 5 times SBF buffered by 5 % CO2. Moreover, X-ray diffraction spectroscopy and Fourier transform infrared analyses yielded peaks associated with carbonated hydroxyapatite with less prominent crystallization. In addition, the biomineralized aligned polycaprolactone nanofibers demonstrated excellent cell attachment, alignment, and proliferation characteristics in vitro. Overall, the results of this study showed that 5 × SBFs buffered by 5 % CO2 partial pressure are attractive alternatives for the efficient biomineralization of scaffolds in bone tissue engineering, and could be used as a model for the prediction of the bone-bonding bioactivity of biomaterials.
Collapse
Affiliation(s)
- Kun Fu
- Department of Stomatology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Lei-Lei Yang
- Department of Stomatology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Ning Gao
- Department of Stomatology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Pengbi Liu
- Department of Chemical and Life Science Engineering, School of Engineering, Virginia Commonwealth University, Richmond, VA, 23284, USA
| | - Bo Xue
- Department of Chemical and Life Science Engineering, School of Engineering, Virginia Commonwealth University, Richmond, VA, 23284, USA
| | - Wei He
- Department of Stomatology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Weiliu Qiu
- Department of Oral & Maxillofacial Surgery, Ninth People's Hospital, Shanghai Jiao Tong University, Shanghai, 200011, China
| | - Xuejun Wen
- Department of Chemical and Life Science Engineering, School of Engineering, Virginia Commonwealth University, Richmond, VA, 23284, USA
| |
Collapse
|
2
|
Dewey MJ, Timmer KB, Blystone A, Lu C, Harley BAC. Evaluating osteogenic effects associated with the incorporation of ascorbic acid in mineralized collagen scaffolds. J Biomed Mater Res A 2024; 112:336-347. [PMID: 37861296 PMCID: PMC10841497 DOI: 10.1002/jbm.a.37628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/05/2023] [Accepted: 10/09/2023] [Indexed: 10/21/2023]
Abstract
Current treatments for craniomaxillofacial (CMF) defects motivate the design of instructive biomaterials that can promote osteogenic healing of complex bone defects. We report methods to promote in vitro osteogenesis of human mesenchymal stem cells (hMSCs) within a model mineralized collagen scaffold via the incorporation of ascorbic acid (vitamin C), a key factor in collagen biosynthesis and bone mineralization. An addition of 5 w/v% ascorbic acid into the base mineralized collagen scaffold significantly changes key morphology characteristics including porosity, macrostructure, and microstructure. This modification promotes hMSC metabolic activity, ALP activity, and hMSC-mediated deposition of calcium and phosphorous. Additionally, the incorporation of ascorbic acid influences osteogenic gene expression (BMP-2, RUNX2, COL1A2) and delays the expression of genes associated with osteoclast activity and bone resorption (OPN, CTSK), though it reduces the secretion of OPG. Together, these findings highlight ascorbic acid as a relevant component for mineralized collagen scaffold design to promote osteogenic differentiation and new bone formation for improved CMF outcomes.
Collapse
Affiliation(s)
- Marley J Dewey
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Kyle B Timmer
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Ashley Blystone
- School of Chemical Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Crislyn Lu
- School of Chemical Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Brendan A C Harley
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
3
|
Tzagiollari A, Redmond J, McCarthy HO, Levingstone TJ, Dunne NJ. Multi-objective property optimisation of a phosphoserine-modified calcium phosphate cement for orthopaedic and dental applications using design of experiments methodology. Acta Biomater 2024; 174:447-462. [PMID: 38000527 DOI: 10.1016/j.actbio.2023.11.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 11/10/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023]
Abstract
Phosphoserine is a ubiquitous molecule found in numerous proteins and, when combined with alpha-tricalcium phosphate (α-TCP) powder, demonstrates the ability to generate an adhesive biomaterial capable of stabilising and repairing bone fractures. Design of Experiments (DoE) approach was able to optimise the composition of phosphoserine-modified calcium phosphate cement (PM-CPC) demonstrating that the liquid:powder ratio (LPR) and quantity of phosphoserine (wt%) significantly influenced the handling, mechanical, and adhesion properties. Subsequently, the DoE optimisation process identified the optimal PM-CPC formulation, exhibiting a compressive strength of 29.2 ± 4.9 MPa and bond/shear strength of 3.6 ± 0.9 MPa after a 24 h setting reaction. Moreover, the optimal PM-CPC composition necessitated a mixing time of 20 s and displayed an initial setting time between 3 and 4 min, thus enabling homogenous mixing and precise delivery within a surgical environment. Notably, the PM-CPC demonstrated a bone-to-bone bond strength of 1.05 ± 0.3 MPa under wet conditions, coupled with a slow degradation rate during the first five days. These findings highlight the ability of PM-CPC to effectively support and stabilise bone fragments during the initial stages of natural bone healing. The developed PM-CPC formulations fulfil the clinical requirements for working and setting times, static mechanical, degradation properties, and injectability, enabling surgeons to stabilise complex bone fractures. This innovative bioinspired adhesive represents a significant advancement in the treatment of challenging bone injuries, offering precise delivery within a surgical environment and the potential to enhance patient outcomes. STATEMENT OF SIGNIFICANCE: This manuscript presents a noteworthy contribution to the field of bone fracture healing and fixation by introducing a novel phosphoserine-modified calcium phosphate cement (PM-CPC) adhesive by incorporating phosphoserine and alpha-TCP. This study demonstrates the fabrication and extensive characterisation of this adhesive biomaterial that holds great promise for stabilising and repairing complex bone fractures. Design of Experiment (DoE) software was used to investigate the correlations between process, property, and structure of the adhesive, resulting in a cost-effective formulation with desirable physical and handling properties. The PM-CPC adhesive exhibited excellent adhesion and cohesion properties in wet-field conditions. This research offers significant potential for clinical translation and contributes to the ongoing advancements in bone tissue engineering.
Collapse
Affiliation(s)
- Antzela Tzagiollari
- School of Mechanical and Manufacturing Engineering, Dublin City University, Dublin 9, Ireland; Centre for Medical Engineering Research, Dublin City University, Dublin 9, Ireland
| | - John Redmond
- School of Mechanical and Manufacturing Engineering, Dublin City University, Dublin 9, Ireland; Centre for Medical Engineering Research, Dublin City University, Dublin 9, Ireland
| | - Helen O McCarthy
- School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, United Kingdom
| | - Tanya J Levingstone
- School of Mechanical and Manufacturing Engineering, Dublin City University, Dublin 9, Ireland; Centre for Medical Engineering Research, Dublin City University, Dublin 9, Ireland; Biodesign Europe, Dublin City University, Dublin 9, Ireland; Tissue, Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, Dublin 2, Ireland; Advanced Manufacturing Research Centre (I-Form), School of Mechanical and Manufacturing Engineering, Dublin City University, Dublin 9, Ireland; Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland; Advanced Processing Technology Research Centre, Dublin City University, Dublin 9, Ireland
| | - Nicholas J Dunne
- School of Mechanical and Manufacturing Engineering, Dublin City University, Dublin 9, Ireland; Centre for Medical Engineering Research, Dublin City University, Dublin 9, Ireland; School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, United Kingdom; Biodesign Europe, Dublin City University, Dublin 9, Ireland; Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, Dublin 2, Ireland; Advanced Manufacturing Research Centre (I-Form), School of Mechanical and Manufacturing Engineering, Dublin City University, Dublin 9, Ireland; Advanced Materials and Bioengineering Research Centre (AMBER), Trinity College Dublin, Dublin 2, Ireland; Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland; Advanced Processing Technology Research Centre, Dublin City University, Dublin 9, Ireland.
| |
Collapse
|
4
|
Sung TC, Wang T, Liu Q, Ling QD, Subbiah SK, Renuka RR, Hsu ST, Umezawa A, Higuchi A. Cell-binding peptides on the material surface guide stem cell fate of adhesion, proliferation and differentiation. J Mater Chem B 2023; 11:1389-1415. [PMID: 36727243 DOI: 10.1039/d2tb02601e] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Human cells, especially stem cells, need to communicate and interact with extracellular matrix (ECM) proteins, which not only serve as structural components but also guide and support cell fate and properties such as cell adhesion, proliferation, survival and differentiation. The binding of the cells with ECM proteins or ECM-derived peptides via cell adhesion receptors such as integrins activates several signaling pathways that determine the cell fate, morphological change, proliferation and differentiation. The development of synthetic ECM protein-derived peptides that mimic the biological and biochemical functions of natural ECM proteins will benefit academic and clinical application. Peptides derived from or inspired by specific ECM proteins can act as agonists of each ECM protein receptor. Given that most ECM proteins function in cell adhesion via integrin receptors, many peptides have been developed that bind to specific integrin receptors. In this review, we discuss the peptide sequence, immobilization design, reaction method, and functions of several ECM protein-derived peptides. Various peptide sequences derived from mainly ECM proteins, which are used for coating or grafting on dishes, scaffolds, hydrogels, implants or nanofibers, have been developed to improve the adhesion, proliferation or differentiation of stem cells and to culture differentiated cells. This review article will help to inform the optimal choice of ECM protein-derived peptides for the development of scaffolds, implants, hydrogels, nanofibers and 2D cell culture dishes to regulate the proliferation and direct the differentiation of stem cells into specific lineages.
Collapse
Affiliation(s)
- Tzu-Cheng Sung
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, No. 270, Xueyuan Road, Wenzhou, Zhejiang, 325027, China.
| | - Ting Wang
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, No. 270, Xueyuan Road, Wenzhou, Zhejiang, 325027, China.
| | - Qian Liu
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, No. 270, Xueyuan Road, Wenzhou, Zhejiang, 325027, China.
| | - Qing-Dong Ling
- Cathay Medical Research Institute, Cathay General Hospital, No. 32, Ln 160, Jian-Cheng Road, Hsi-Chi City, Taipei 221, Taiwan
| | - Suresh Kumar Subbiah
- Centre for Materials Engineering and Regenerative Medicine, Bharath Institute of Higher Education and Research, 173, Agaram Road, Tambaram East, Chennai-73, 600078, India
| | - Remya Rajan Renuka
- Centre for Materials Engineering and Regenerative Medicine, Bharath Institute of Higher Education and Research, 173, Agaram Road, Tambaram East, Chennai-73, 600078, India
| | - Shih-Tien Hsu
- Department of Internal Medicine, Taiwan Landseed Hospital, 77 Kuangtai Road, Pingjen City, Tao-Yuan County 32405, Taiwan
| | - Akihiro Umezawa
- Department of Reproduction, National Center for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo, 157-8535, Japan
| | - Akon Higuchi
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, No. 270, Xueyuan Road, Wenzhou, Zhejiang, 325027, China. .,Department of Chemical and Materials Engineering, National Central University, No. 300, Jhongda RD., Jhongli, Taoyuan, 32001, Taiwan. .,R & D Center for Membrane Technology, Chung Yuan Christian University, 200 Chung-Bei Rd., Jhongli, Taoyuan 320, Taiwan
| |
Collapse
|
5
|
Luby A, Alves-Guerra MC. UCP2 as a Cancer Target through Energy Metabolism and Oxidative Stress Control. Int J Mol Sci 2022; 23:ijms232315077. [PMID: 36499405 PMCID: PMC9735768 DOI: 10.3390/ijms232315077] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/25/2022] [Accepted: 11/27/2022] [Indexed: 12/02/2022] Open
Abstract
Despite numerous therapies, cancer remains one of the leading causes of death worldwide due to the lack of markers for early detection and response to treatment in many patients. Technological advances in tumor screening and renewed interest in energy metabolism have allowed us to identify new cellular players in order to develop personalized treatments. Among the metabolic actors, the mitochondrial transporter uncoupling protein 2 (UCP2), whose expression is increased in many cancers, has been identified as an interesting target in tumor metabolic reprogramming. Over the past decade, a better understanding of its biochemical and physiological functions has established a role for UCP2 in (1) protecting cells from oxidative stress, (2) regulating tumor progression through changes in glycolytic, oxidative and calcium metabolism, and (3) increasing antitumor immunity in the tumor microenvironment to limit cancer development. With these pleiotropic roles, UCP2 can be considered as a potential tumor biomarker that may be interesting to target positively or negatively, depending on the type, metabolic status and stage of tumors, in combination with conventional chemotherapy or immunotherapy to control tumor development and increase response to treatment. This review provides an overview of the latest published science linking mitochondrial UCP2 activity to the tumor context.
Collapse
|
6
|
Jin W, Jin Y, Duan P, Wu H, Zhang L, Du Q, Pan H, Tang R, Shao C. Promotion of collagen mineralization and dentin repair by succinates. J Mater Chem B 2022; 10:5826-5834. [PMID: 35876157 DOI: 10.1039/d2tb01005d] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Biomineralization of collagen fibers is regulated by non-collagenous proteins and small biomolecules, which are essential in bone and teeth formation. In particular, small biomolecules such as succinic acid (SA) exist at a high level in hard tissues, but their role is yet unclear. Here, our work demonstrated that SA could significantly promote intrafibrillar mineralization in two- and three-dimensional collagen models, where the relative mineralization rate was 16 times faster than the control group. Furthermore, the FTIR spectra and isothermal experimental results showed that collagen molecules could interact with SA via a hydrogen bond and that the interaction energy was about 4.35 kJ mol-1. As expected, the SA-pretreated demineralized dentin obtained full remineralization within two days, whereas it took more than four days in the control group, and their mechanical properties were considerably enhanced compared with those of the demineralized one. The possible mechanism of the promotion effect of SA was ultimately illustrated, with SA modification strengthening the capacity of the collagen matrix to attract more calcium ions, which might create a higher local concentration that could accelerate the mineralization of collagen fibers. These findings not only advance the understanding of the vital role of small biomolecules in collagen biomineralization but also facilitate the development of an effective strategy to repair hard tissues.
Collapse
Affiliation(s)
- Wenjing Jin
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310006, China. .,Department of Chemistry, Zhejiang University, Hangzhou 310027, China.
| | - Yeli Jin
- Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou 310027, China
| | | | - Haiyan Wu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310006, China.
| | - Leiqing Zhang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310006, China.
| | - Qiaolin Du
- First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Haihua Pan
- Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou 310027, China
| | - Ruikang Tang
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China.
| | - Changyu Shao
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310006, China. .,Department of Chemistry, Zhejiang University, Hangzhou 310027, China.
| |
Collapse
|
7
|
Jun YS, Zhu Y, Wang Y, Ghim D, Wu X, Kim D, Jung H. Classical and Nonclassical Nucleation and Growth Mechanisms for Nanoparticle Formation. Annu Rev Phys Chem 2022; 73:453-477. [PMID: 35113740 DOI: 10.1146/annurev-physchem-082720-100947] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
All solid materials are created via nucleation. In this evolutionary process, nuclei form in solution or at interfaces and expand by monomeric growth, oriented attachment, and phase transformation. Nucleation determines the location and size of nuclei, whereas growth controls the size, shape, and aggregation of newly formed nanoparticles. These physical properties of nanoparticles can determine their functionalities, reactivities, and porosities, as well as their fate and transport. Recent advances in nanoscale analytical technologies allow in situ real-time observations, enabling us to uncover the molecular nature of nuclei and the critical controlling factors for nucleation and growth. Although a single theory cannot yet fully explain such evolving processes, we have started to better understand how both classical and nonclassical theories can work together, and we have begun to recognize the importance of connecting these theories. This review discusses the recent convergence of knowledge about the nucleation and the growth of nanoparticles. Expected final online publication date for the Annual Review of Physical Chemistry, Volume 73 is April 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Young-Shin Jun
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri; , , , ,
| | - Yaguang Zhu
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri; , , , ,
| | - Ying Wang
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri; , , , ,
| | - Deoukchen Ghim
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri; , , , ,
| | - Xuanhao Wu
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut;
| | - Doyoon Kim
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri; , , , ,
| | - Haesung Jung
- School of Civil, Environmental and Chemical Engineering, Changwon National University, Changwon, South Korea;
| |
Collapse
|
8
|
Camacho P, Behre A, Fainor M, Seims KB, Chow LW. Spatial organization of biochemical cues in 3D-printed scaffolds to guide osteochondral tissue engineering. Biomater Sci 2021; 9:6813-6829. [PMID: 34473149 DOI: 10.1039/d1bm00859e] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Functional repair of osteochondral (OC) tissue remains challenging because the transition from bone to cartilage presents gradients in biochemical and physical properties necessary for joint function. Osteochondral regeneration requires strategies that restore the spatial composition and organization found in the native tissue. Several biomaterial approaches have been developed to guide chondrogenic and osteogenic differentiation of human mesenchymal stem cells (hMSCs). These strategies can be combined with 3D printing, which has emerged as a useful tool to produce tunable, continuous scaffolds functionalized with bioactive cues. However, functionalization often includes one or more post-fabrication processing steps, which can lead to unwanted side effects and often produce biomaterials with homogeneously distributed chemistries. To address these challenges, surface functionalization can be achieved in a single step by solvent-cast 3D printing peptide-functionalized polymers. Peptide-poly(caprolactone) (PCL) conjugates were synthesized bearing hyaluronic acid (HA)-binding (HAbind-PCL) or mineralizing (E3-PCL) peptides, which have been shown to promote hMSC chondrogenesis or osteogenesis, respectively. This 3D printing strategy enables unprecedented control of surface peptide presentation and spatial organization within a continuous construct. Scaffolds presenting both cartilage-promoting and bone-promoting peptides had a synergistic effect that enhanced hMSC chondrogenic and osteogenic differentiation in the absence of differentiation factors compared to scaffolds without peptides or only one peptide. Furthermore, multi-peptide organization significantly influenced hMSC response. Scaffolds presenting HAbind and E3 peptides in discrete opposing zones promoted hMSC osteogenic behavior. In contrast, presenting both peptides homogeneously throughout the scaffolds drove hMSC differentiation towards a mixed population of articular and hypertrophic chondrocytes. These significant results indicated that hMSC behavior was driven by dual-peptide presentation and organization. The downstream potential of this platform is the ability to fabricate biomaterials with spatially controlled biochemical cues to guide functional tissue regeneration without the need for differentiation factors.
Collapse
Affiliation(s)
- Paula Camacho
- Department of Bioengineering, Lehigh University, Bethlehem, PA, USA
| | - Anne Behre
- Department of Bioengineering, Lehigh University, Bethlehem, PA, USA
| | - Matthew Fainor
- Integrated Degree in Engineering, Arts, and Sciences Program, Lehigh University, Bethlehem, PA, USA
| | - Kelly B Seims
- Department of Materials Science and Engineering, Lehigh University, Bethlehem, PA, USA.
| | - Lesley W Chow
- Department of Bioengineering, Lehigh University, Bethlehem, PA, USA.,Department of Materials Science and Engineering, Lehigh University, Bethlehem, PA, USA.
| |
Collapse
|
9
|
Barati D, Watkins K, Wang Z, Yang F. Injectable and Crosslinkable PLGA-Based Microribbons as 3D Macroporous Stem Cell Niche. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1905820. [PMID: 32338432 DOI: 10.1002/smll.201905820] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 02/03/2020] [Accepted: 02/18/2020] [Indexed: 06/11/2023]
Abstract
Poly(lactide-co-glycolide) (PLGA) has been widely used as a tissue engineering scaffold. However, conventional PLGA scaffolds are not injectable, and do not support direct cell encapsulation, leading to poor cell distribution in 3D. Here, a method for fabricating injectable and intercrosslinkable PLGA microribbon-based macroporous scaffolds as 3D stem cell niche is reported. PLGA is first fabricated into microribbon-shape building blocks with tunable width using microcontact printing, then coated with fibrinogen to enhance solubility and injectability using aqueous solution. Upon mixing with thrombin, firbornogen-coated PLGA microribbons can intercrosslink into 3D scaffolds. When subject to cyclic compression, PLGA microribbon scaffolds exhibit great shock-absorbing capacity and return to their original shape, while conventional PLGA scaffolds exhibit permanent deformation after one cycle. Using human mesenchymal stem cells (hMSCs) as a model cell type, it is demonstrated that PLGA μRB scaffolds support homogeneous cell encapsulation, and robust cell spreading and proliferation in 3D. After 28 days of culture in osteogenic medium, hMSC-seeded PLGA μRB scaffolds exhibit an increase in compressive modulus and robust bone formation as shown by staining of alkaline phosphatase, mineralization, and collagen. Together, the results validate PLGA μRBs as a promising injectable, macroporous, non-hydrogel-based scaffold for cell delivery and tissue regeneration applications.
Collapse
Affiliation(s)
- Danial Barati
- Department of Orthopedic Surgery, Stanford School of Medicine, Stanford, CA, 94305, USA
| | - Kira Watkins
- Department of Chemical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Zhibin Wang
- Department of Orthopedic Surgery, Stanford School of Medicine, Stanford, CA, 94305, USA
| | - Fan Yang
- Department of Orthopedic Surgery, Stanford School of Medicine, Stanford, CA, 94305, USA
- Department of Bioengineering, Stanford School of Medicine, Stanford, CA, 94305, USA
| |
Collapse
|
10
|
Yilmaz B, Pazarceviren AE, Tezcaner A, Evis Z. Historical development of simulated body fluids used in biomedical applications: A review. Microchem J 2020. [DOI: 10.1016/j.microc.2020.104713] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
11
|
Bystrom JL, Pujari-Palmer M. Phosphoserine Functionalized Cements Preserve Metastable Phases, and Reprecipitate Octacalcium Phosphate, Hydroxyapatite, Dicalcium Phosphate, and Amorphous Calcium Phosphate, during Degradation, In Vitro. J Funct Biomater 2019; 10:E54. [PMID: 31783637 PMCID: PMC6963472 DOI: 10.3390/jfb10040054] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 11/19/2019] [Accepted: 11/20/2019] [Indexed: 01/15/2023] Open
Abstract
Phosphoserine modified cements (PMC) exhibit unique properties, including strong adhesion to tissues and biomaterials. While TTCP-PMCs remodel into bone in vivo, little is known regarding the bioactivity and physiochemical changes that occur during resorption. In the present study, changes in the mechanical strength and composition were evaluated for 28 days, for three formulations of αTCP based PMCs. PMCs were significantly stronger than unmodified cement (38-49 MPa vs. 10 MPa). Inclusion of wollastonite in PMCs appeared to accelerate the conversion to hydroxyapatite, coincident with slight decrease in strength. In non-wollastonite PMCs the initial compressive strength did not change after 28 days in PBS (p > 0.99). Dissolution/degradation of PMC was evaluated in acidic (pH 2.7, pH 4.0), and supersaturated fluids (simulated body fluid (SBF)). PMCs exhibited comparable mass loss (<15%) after 14 days, regardless of pH and ionic concentration. Electron microscopy, infrared spectroscopy, and X-ray analysis revealed that significant amounts of brushite, octacalcium phosphate, and hydroxyapatite reprecipitated, following dissolution in acidic conditions (pH 2.7), while amorphous calcium phosphate formed in SBF. In conclusion, PMC surfaces remodel into metastable precursors to hydroxyapatite, in both acidic and neutral environments. By tuning the composition of PMCs, durable strength in fluids, and rapid transformation can be obtained.
Collapse
Affiliation(s)
| | - Michael Pujari-Palmer
- Applied Material Science, Department of Engineering, Uppsala University, 75121 Uppsala, Sweden;
| |
Collapse
|
12
|
Onak G, Karaman O. Accelerated mineralization on nanofibers via non-thermal atmospheric plasma assisted glutamic acid templated peptide conjugation. Regen Biomater 2019; 6:231-240. [PMID: 31404337 PMCID: PMC6683955 DOI: 10.1093/rb/rbz014] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 02/14/2019] [Accepted: 03/11/2019] [Indexed: 12/25/2022] Open
Abstract
Surface modification by non-thermal atmospheric plasma (NTAP) treatment can produce significantly higher carboxylic groups on the nanofibers (NF) surface, which potentially can increase biomineralization of NF via promoting glutamic acid (GLU) templated peptide conjugation. Herein, electrospun poly(lactide-co-glycolide) (PLGA) scaffolds were treated with NTAP and conjugated with GLU peptide followed by incubation in simulated body fluids for mineralization. The effect of NTAP treatment and GLU peptide conjugation on mineralization, surface wettability and roughness were investigated. The results showed that NTAP treatment significantly increased GLU peptide conjugation which consequently enhanced mineralization and mechanical properties of NTAP treated and peptide conjugated NF (GLU-pNF) compared to neat PLGA NF, NTAP treated NF (pNF) and GLU peptide conjugated NF (GLU-NF). The effect of surface modification on human bone marrow derived mesenchymal stem cells adhesion, proliferation and morphology was evaluated by cell proliferation assay and fluorescent microscopy. Results demonstrated that cellular adhesion and proliferation were significantly higher on GLU-pNF compared to NF, pNF and GLU-NF. In summary, NTAP treatment could be a promising modification technique to induce biomimetic peptide conjugation and biomineralization for bone tissue engineering applications.
Collapse
Affiliation(s)
- Günnur Onak
- Tissue Engineering and Regenerative Medicine Laboratory, Department of Biomedical Engineering, İzmir Katip Çelebi University, İzmir, Turkey
| | - Ozan Karaman
- Tissue Engineering and Regenerative Medicine Laboratory, Department of Biomedical Engineering, İzmir Katip Çelebi University, İzmir, Turkey
- Bonegraft Biomaterials Co., Ege University Technopolis, Bornova, İzmir, Turkey
| |
Collapse
|
13
|
Kader S, Monavarian M, Barati D, Moeinzadeh S, Makris TM, Jabbari E. Plasmin-Cleavable Nanoparticles for On-Demand Release of Morphogens in Vascularized Osteogenesis. Biomacromolecules 2019; 20:2973-2988. [DOI: 10.1021/acs.biomac.9b00532] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Safaa Kader
- Department of Pathology, University of Al-Nahrain, Baghdad 10006, Iraq
| | | | | | | | | | | |
Collapse
|
14
|
Barati D, Karaman O, Moeinzadeh S, Kader S, Jabbari E. Material and regenerative properties of an osteon-mimetic cortical bone-like scaffold. Regen Biomater 2019; 6:89-98. [PMID: 30967963 PMCID: PMC6446997 DOI: 10.1093/rb/rbz008] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 01/16/2019] [Accepted: 01/29/2019] [Indexed: 11/17/2022] Open
Abstract
The objective of this work was to fabricate a rigid, resorbable and osteoconductive scaffold by mimicking the hierarchical structure of the cortical bone. Aligned peptide-functionalize nanofiber microsheets were generated with calcium phosphate (CaP) content similar to that of the natural cortical bone. Next, the CaP-rich fibrous microsheets were wrapped around a microneedle to form a laminated microtube mimicking the structure of an osteon. Then, a set of the osteon-mimetic microtubes were assembled around a solid rod and the assembly was annealed to fuse the microtubes and form a shell. Next, an array of circular microholes were drilled on the outer surface of the shell to generate a cortical bone-like scaffold with an interconnected network of Haversian- and Volkmann-like microcanals. The CaP content, porosity and density of the bone-mimetic microsheets were 240 wt%, 8% and 1.9 g/ml, respectively, which were close to that of natural cortical bone. The interconnected network of microcanals in the fused microtubes increased permeability of a model protein in the scaffold. The cortical scaffold induced osteogenesis and vasculogenesis in the absence of bone morphogenetic proteins upon seeding with human mesenchymal stem cells and endothelial colony-forming cells. The localized and timed-release of morphogenetic factors significantly increased the extent of osteogenic and vasculogenic differentiation of human mesenchymal stem cells and endothelial colony-forming cells in the cortical scaffold. The cortical bone-mimetic nature of the cellular construct provided balanced rigidity, resorption rate, osteoconductivity and nutrient diffusivity to support vascularization and osteogenesis.
Collapse
Affiliation(s)
- Danial Barati
- Biomimetic Materials and Tissue Engineering Laboratory, Department of Chemical Engineering, University of South Carolina, Columbia, SC, USA
| | - Ozan Karaman
- Biomimetic Materials and Tissue Engineering Laboratory, Department of Chemical Engineering, University of South Carolina, Columbia, SC, USA
| | - Seyedsina Moeinzadeh
- Biomimetic Materials and Tissue Engineering Laboratory, Department of Chemical Engineering, University of South Carolina, Columbia, SC, USA
| | - Safaa Kader
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, USA
| | - Esmaiel Jabbari
- Biomimetic Materials and Tissue Engineering Laboratory, Department of Chemical Engineering, University of South Carolina, Columbia, SC, USA
| |
Collapse
|
15
|
Onak G, Şen M, Horzum N, Ercan UK, Yaralı ZB, Garipcan B, Karaman O. Aspartic and Glutamic Acid Templated Peptides Conjugation on Plasma Modified Nanofibers for Osteogenic Differentiation of Human Mesenchymal Stem Cells: A Comparative Study. Sci Rep 2018; 8:17620. [PMID: 30514892 PMCID: PMC6279782 DOI: 10.1038/s41598-018-36109-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 11/14/2018] [Indexed: 11/21/2022] Open
Abstract
Optimization of nanofiber (NF) surface properties is critical to achieve an adequate cellular response. Here, the impact of conjugation of biomimetic aspartic acid (ASP) and glutamic acid (GLU) templated peptides with poly(lactic-co-glycolic acid) (PLGA) electrospun NF on osteogenic differentiation of human bone marrow-derived mesenchymal stem cells (hMSCs) was evaluated. Cold atmospheric plasma (CAP) was used to functionalize the NF surface and thus to mediate the conjugation. The influence of the CAP treatment following with peptide conjugation to the NF surface was assessed using water contact angle measurements, Fourier-Transform Infrared Spectroscopy (FTIR) and X-ray Photoelectron Spectroscopy (XPS). The effect of CAP treatment on morphology of NF was also checked using Scanning Electron Microscopy (SEM). Both the hydrophilicity of NF and the number of the carboxyl (-COOH) groups on the surface increased with respect to CAP treatment. Results demonstrated that CAP treatment significantly enhanced peptide conjugation on the surface of NF. Osteogenic differentiation results indicated that conjugating of biomimetic ASP templated peptides sharply increased alkaline phosphatase (ALP) activity, calcium content, and expression of key osteogenic markers of collagen type I (Col-I), osteocalcin (OC), and osteopontin (OP) compared to GLU conjugated (GLU-pNF) and CAP treated NF (pNF). It was further depicted that ASP sequences are the major fragments that influence the mineralization and osteogenic differentiation in non-collagenous proteins of bone extracellular matrix.
Collapse
Affiliation(s)
- Günnur Onak
- Department of Biomedical Engineering, İzmir Katip Çelebi University, İzmir, 35620, Turkey
| | - Mustafa Şen
- Department of Biomedical Engineering, İzmir Katip Çelebi University, İzmir, 35620, Turkey
| | - Nesrin Horzum
- Department of Engineering Sciences, İzmir Katip Çelebi University, İzmir, 35620, Turkey
| | - Utku Kürşat Ercan
- Department of Biomedical Engineering, İzmir Katip Çelebi University, İzmir, 35620, Turkey
| | - Ziyşan Buse Yaralı
- Department of Biomedical Engineering, İzmir Katip Çelebi University, İzmir, 35620, Turkey
| | - Bora Garipcan
- Institute of Biomedical Engineering, Bogazici University, 34684, İstanbul, Turkey
| | - Ozan Karaman
- Department of Biomedical Engineering, İzmir Katip Çelebi University, İzmir, 35620, Turkey.
- Bonegraft Biomaterials Co., Ege University Technopolis, 35100, Bornova, İzmir, Turkey.
| |
Collapse
|
16
|
Wang S, Hu F, Li J, Zhang S, Shen M, Huang M, Shi X. Design of electrospun nanofibrous mats for osteogenic differentiation of mesenchymal stem cells. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2018; 14:2505-2520. [PMID: 28554595 DOI: 10.1016/j.nano.2016.12.024] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 12/20/2016] [Accepted: 12/30/2016] [Indexed: 01/09/2023]
Abstract
The clinical translation potential of mesenchymal stem cells (MSCs) in regenerative medicine has been greatly exploited. With the merits of high surface area to volume ratio, facile control of components, well retained topography, and the capacity to mimic the native extracellular matrix (ECM), nanofibers have received a great deal of attention as bone tissue engineering scaffolds. Electrospinning has been considered as an efficient approach for scale-up fabrication of nanofibrous materials. Electrospun nanofibers are capable of stimulating cell-matrix interaction to form a cell niche, directing cellular behavior, and promoting the MSCs adhesion and proliferation. In this review, we give a comprehensive literature survey on the mechanisms of electrospun nanofibers in supporting the MSCs differentiation. Specifically, the influences of biological and physical osteogenic inductive cues on the MSCs osteogenic differentiation are reviewed. Along with the significant advances in the field, current research challenges and future perspectives are also discussed.
Collapse
Affiliation(s)
- Shige Wang
- College of Science, University of Shanghai for Science & Technology, Shanghai, PR China; State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, PR China; State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, People's Republic of China
| | - Fei Hu
- College of Science, University of Shanghai for Science & Technology, Shanghai, PR China
| | - Jingchao Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, PR China
| | - Shuping Zhang
- College of Science, University of Shanghai for Science & Technology, Shanghai, PR China
| | - Mingwu Shen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, PR China
| | - Mingxian Huang
- College of Science, University of Shanghai for Science & Technology, Shanghai, PR China.
| | - Xiangyang Shi
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, PR China; CQM-Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, Funchal, Portugal.
| |
Collapse
|
17
|
Moaddab M, Nourmohammadi J, Rezayan AH. Bioactive composite scaffolds of carboxymethyl chitosan-silk fibroin containing chitosan nanoparticles for sustained release of ascorbic acid. Eur Polym J 2018. [DOI: 10.1016/j.eurpolymj.2018.03.032] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
18
|
Ge M, Ge K, Gao F, Yan W, Liu H, Xue L, Jin Y, Ma H, Zhang J. Biomimetic mineralized strontium-doped hydroxyapatite on porous poly(l-lactic acid) scaffolds for bone defect repair. Int J Nanomedicine 2018; 13:1707-1721. [PMID: 29599615 PMCID: PMC5866725 DOI: 10.2147/ijn.s154605] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Introduction poly(l-lactic acid) (PLLA) has been approved for clinical use by the US Food and Drug Administration (FDA); however, their stronger hydrophobicity and relatively fast degradation rate restricted their widespread application. In consideration of the composition of bone, the inorganic–organic composite has a great application prospect in bone tissue engineering. Many inorganic–organic composite scaffolds were prepared by directly mixing the active ingredient, but this method is uncontrolled and will lead to lack of homogeneity in the polymer matrix. Strontium (Sr) is an admirable addition to improve the bioactivity and bone induction of hydroxyapatite (HA). To our knowledge, the application of biomimetic mineralized strontium-doped hydroxyapatite on porous poly(l-lactic acid) (Sr-HA/PLLA) scaffolds for bone defect repair has never been reported till date. Biomimetic mineralized Sr-HA/PLLA porous scaffold was developed in this study. The results indicated that the Sr-HA/PLLA porous scaffold could improve the surface hydrophobicity, reduce the acidic environment of the degradation, and enhance the osteoinductivity; moreover, the ability of protein adsorption and the modulus of compression were increased. The results also clearly showed the effectiveness of the Sr-HA/PLLA porous scaffold in promoting cell adhesion, proliferation, and alkaline phosphatase (ALP) activity. The micro computed tomography (micro-CT) results showed that more new bones were formed by Sr-HA/PLLA porous scaffold treatment. The histological results confirmed the osteoinductivity of the Sr-HA/PLLA porous scaffold. The results suggested that the Sr-HA/PLLA porous scaffold has a good application prospect in bone tissue engineering in the future. Purpose The purpose of this study was to promote the bone repair. Materials and methods Surgical operation of rabbits was carried out in this study. Results The results showed that formation of a large number of new bones by the Sr-HA/PLLA porous scaffold treatment is possible. Conclusion Biomimetic mineralized Sr-HA/PLLA porous scaffold could effectively promote the restoration of bone defects in vivo.
Collapse
Affiliation(s)
- Min Ge
- Department of Chemistry, College of Chemistry and Environmental Science, Hebei University, Baoding, People's Republic of China.,Key Laboratory of Chemical Biology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Hebei University, Baoding, People's Republic of China
| | - Kun Ge
- Department of Chemistry, College of Chemistry and Environmental Science, Hebei University, Baoding, People's Republic of China.,Department of Science and Technology, Affiliated Hospital of Hebei University, Baoding, People's Republic of China
| | - Fei Gao
- Department of Orthopedics, Affiliated Hospital of Hebei University, Baoding, People's Republic of China
| | - Weixiao Yan
- Department of Chemistry, College of Chemistry and Environmental Science, Hebei University, Baoding, People's Republic of China.,Key Laboratory of Chemical Biology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Hebei University, Baoding, People's Republic of China
| | - Huifang Liu
- Key Laboratory of Chemical Biology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Hebei University, Baoding, People's Republic of China
| | - Li Xue
- Department of Chemistry, College of Chemistry and Environmental Science, Hebei University, Baoding, People's Republic of China
| | - Yi Jin
- Department of Chemistry, College of Chemistry and Environmental Science, Hebei University, Baoding, People's Republic of China.,Key Laboratory of Chemical Biology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Hebei University, Baoding, People's Republic of China
| | - Haiyun Ma
- Department of Chemistry, College of Chemistry and Environmental Science, Hebei University, Baoding, People's Republic of China
| | - Jinchao Zhang
- Department of Chemistry, College of Chemistry and Environmental Science, Hebei University, Baoding, People's Republic of China.,Key Laboratory of Chemical Biology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Hebei University, Baoding, People's Republic of China
| |
Collapse
|
19
|
Mohammadi M, Mousavi Shaegh SA, Alibolandi M, Ebrahimzadeh MH, Tamayol A, Jaafari MR, Ramezani M. Micro and nanotechnologies for bone regeneration: Recent advances and emerging designs. J Control Release 2018; 274:35-55. [PMID: 29410062 DOI: 10.1016/j.jconrel.2018.01.032] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 01/29/2018] [Accepted: 01/30/2018] [Indexed: 02/08/2023]
Abstract
Treatment of critical-size bone defects is a major medical challenge since neither the bone tissue can regenerate nor current regenerative approaches are effective. Emerging progresses in the field of nanotechnology have resulted in the development of new materials, scaffolds and drug delivery strategies to improve or restore the damaged tissues. The current article reviews promising nanomaterials and emerging micro/nano fabrication techniques for targeted delivery of biomolecules for bone tissue regeneration. In addition, recent advances in fabrication of bone graft substitutes with similar properties to normal tissue along with a brief summary of current commercialized bone grafts have been discussed.
Collapse
Affiliation(s)
- Marzieh Mohammadi
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Ali Mousavi Shaegh
- Orthopedic Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Clinical Research Unit, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mona Alibolandi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Ali Tamayol
- Department of Mechanical and Materials Engineering, University of Nebraska, Lincoln, Lincoln, NE 68588, USA; Biomaterials Innovation Research Center, Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02139, USA
| | - Mahmoud Reza Jaafari
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Mohammad Ramezani
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
20
|
Moeinzadeh S, Shariati SRP, Kader S, Melero-Martin JM, Jabbari E. Devitalized Stem Cell Microsheets for Sustainable Release of Osteogenic and Vasculogenic Growth Factors and Regulation of Anti-Inflammatory Immune Response. ACTA ACUST UNITED AC 2017; 1. [PMID: 30221188 DOI: 10.1002/adbi.201600011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The objective of this work was to investigate the effect of devitalized human mesenchymal stem cells (hMSCs) and endothelial colony-forming cells (ECFCs) seeded on mineralized nanofiber microsheets on protein release, osteogenesis, vasculogenesis, and macrophage polarization. Calcium phosphate nanocrystals were grown on the surface of aligned, functionalized nanofiber microsheets. The microsheets were seeded with hMSCs, ECFCs, or a mixture of hMSCs+ECFCs, cultured for cell attachment, differentiated to the osteogenic or vasculogenic lineage, and devitalized by lyophilization. The release kinetic of total protein, bone morphogenetic protein-2 (BMP2), and vascular endothelial growth factor (VEGF) from the devitalized microsheets was measured. Next, hMSCs and/or ECFCs were seeded on the devitalized cell microsheets and cultured in the absence of osteo-/vasculo-inductive factors to determine the effect of devitalized cell microsheets on hMSC/ECFC differentiation. Human macrophages were seeded on the microsheets to determine the effect of devitalized cells on macrophage polarization. Based on the results, devitalized undifferentiated hMSC and vasculogenic-differentiated ECFC microsheets had highest sustained release of BMP2 and VEGF, respectively. The devitalized hMSC microsheets did not affect M2 macrophage polarization while vascular-differentiated, devitalized ECFC microsheets did not affect M1 polarization. Both groups stimulated higher M2 macrophage polarization compared to M1.
Collapse
Affiliation(s)
- Seyedsina Moeinzadeh
- Biomimetic Materials and Tissue Engineering Laboratory, Department of Chemical Engineering, University of South Carolina, Columbia, SC 29208, USA
| | - Seyed Ramin Pajoum Shariati
- Biomimetic Materials and Tissue Engineering Laboratory, Department of Chemical Engineering, University of South Carolina, Columbia, SC 29208, USA
| | - Safaa Kader
- Biomimetic Materials and Tissue Engineering Laboratory, Department of Chemical Engineering, University of South Carolina, Columbia, SC 29208, USA.,Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA
| | - Juan M Melero-Martin
- Department of Cardiac Surgery, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Esmaiel Jabbari
- Biomimetic Materials and Tissue Engineering Laboratory, Department of Chemical Engineering, University of South Carolina, Columbia, SC 29208, USA
| |
Collapse
|
21
|
Barati D, Kader S, Pajoum Shariati SR, Moeinzadeh S, Sawyer RH, Jabbari E. Synthesis and Characterization of Photo-Cross-Linkable Keratin Hydrogels for Stem Cell Encapsulation. Biomacromolecules 2017; 18:398-412. [DOI: 10.1021/acs.biomac.6b01493] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Danial Barati
- Biomimetic Materials and Tissue Engineering Laboratory, Department
of Chemical Engineering, ‡Department of Chemistry and Biochemistry, and §Department of Biological
Sciences, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Safaa Kader
- Biomimetic Materials and Tissue Engineering Laboratory, Department
of Chemical Engineering, ‡Department of Chemistry and Biochemistry, and §Department of Biological
Sciences, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Seyed Ramin Pajoum Shariati
- Biomimetic Materials and Tissue Engineering Laboratory, Department
of Chemical Engineering, ‡Department of Chemistry and Biochemistry, and §Department of Biological
Sciences, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Seyedsina Moeinzadeh
- Biomimetic Materials and Tissue Engineering Laboratory, Department
of Chemical Engineering, ‡Department of Chemistry and Biochemistry, and §Department of Biological
Sciences, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Roger H. Sawyer
- Biomimetic Materials and Tissue Engineering Laboratory, Department
of Chemical Engineering, ‡Department of Chemistry and Biochemistry, and §Department of Biological
Sciences, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Esmaiel Jabbari
- Biomimetic Materials and Tissue Engineering Laboratory, Department
of Chemical Engineering, ‡Department of Chemistry and Biochemistry, and §Department of Biological
Sciences, University of South Carolina, Columbia, South Carolina 29208, United States
| |
Collapse
|
22
|
Moeinzadeh S, Jabbari E. Nanoparticles and Their Applications. SPRINGER HANDBOOK OF NANOTECHNOLOGY 2017. [DOI: 10.1007/978-3-662-54357-3_11] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
23
|
Antioxidant activity and protective role on protein glycation of synthetic aminocoumarins. ELECTRON J BIOTECHN 2016. [DOI: 10.1016/j.ejbt.2016.08.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
24
|
Naghavi Sheikholeslami S, Rafizadeh M, Afshar Taromi F, Shirali H. Crystallization and photo-curing kinetics of biodegradable poly(butylene succinate-co-butylene fumarate) short-segmented block copolyester. POLYM INT 2016. [DOI: 10.1002/pi.5264] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Sogol Naghavi Sheikholeslami
- Department of Polymer Engineering and Color Technology; Amirkabir University of Technology; PO Box 15875-4413 Tehran Iran
| | - Mehdi Rafizadeh
- Department of Polymer Engineering and Color Technology; Amirkabir University of Technology; PO Box 15875-4413 Tehran Iran
| | - Faramarz Afshar Taromi
- Department of Polymer Engineering and Color Technology; Amirkabir University of Technology; PO Box 15875-4413 Tehran Iran
| | - Hadi Shirali
- Department of Polymer Engineering and Color Technology; Amirkabir University of Technology; PO Box 15875-4413 Tehran Iran
| |
Collapse
|
25
|
Sheikholeslami SN, Rafizadeh M, Taromi FA, Shirali H, Jabbari E. Material properties of degradable Poly(butylene succinate-co-fumarate) copolymer networks synthesized by polycondensation of pre-homopolyesters. POLYMER 2016. [DOI: 10.1016/j.polymer.2016.06.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
26
|
UCPs, at the interface between bioenergetics and metabolism. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:2443-56. [PMID: 27091404 DOI: 10.1016/j.bbamcr.2016.04.013] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Revised: 04/11/2016] [Accepted: 04/12/2016] [Indexed: 01/25/2023]
Abstract
The first member of the uncoupling protein (UCP) family, brown adipose tissue uncoupling protein 1 (UCP1), was identified in 1976. Twenty years later, two closely related proteins, UCP2 and UCP3, were described in mammals. Homologs of these proteins exist in other organisms, including plants. Uncoupling refers to a deterioration of energy conservation between substrate oxidation and ADP phosphorylation. Complete energy conservation loss would be fatal but fine-tuning can be beneficial for processes such as thermogenesis, redox control, and prevention of mitochondrial ROS release. The coupled/uncoupled state of mitochondria is related to the permeability of the inner membrane and the proton transport mediated by activated UCPs underlies the uncoupling activity of these proteins. Proton transport by UCP1 is activated by fatty acids and this ensures thermogenesis. In vivo in absence of this activation UCP1 remains inhibited with no transport activity. A similar situation now seems unlikely for UCP2 and UCP3 and while activation of their proton transport has been described its physiological relevance remains uncertain and their influence can be envisaged as a result of another transport pathway that takes place in the absence of activation. This article is part of a Special Issue entitled: Mitochondrial Channels edited by Pierre Sonveaux, Pierre Maechler and Jean-Claude Martinou.
Collapse
|
27
|
Li G, Hu Y, Sui J, Song A, Hao J. Hydrogelation and Crystallization of Sodium Deoxycholate Controlled by Organic Acids. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:1502-1509. [PMID: 26783993 DOI: 10.1021/acs.langmuir.6b00019] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The gelation and crystallization behavior of a biological surfactant, sodium deoxycholate (NaDC), mixed with l-taric acid (L-TA) in water is described in detail. With the variation of molar ratio of L-TA to NaDC (r = n(L-TA)/n(NaDC)) and total concentration of the mixtures, the transition from sol to gel was observed. SEM images showed that the density of nanofibers gradually increases over the sol-gel transition. The microstructures of the hydrogels are three-dimensional networks of densely packed nanofibers with lengths extending to several micrometers. One week after preparation, regular crystallized nanospheres formed along the length of the nanofibers, and it was typical among the transparent hydrogels induced by organic acids with pKa1 value <3.4. Small-angle X-ray diffraction demonstrated differences in the molecular packing between transparent and turbid gels, indicating a variable hydrogen bond mode between NaDC molecules.
Collapse
Affiliation(s)
- Guihua Li
- Key Laboratory of Colloid and Interface Chemistry & Key Laboratory of Special Aggregated Materials, Ministry of Education, Shandong University , Jinan 250100, China
| | - Yuanyuan Hu
- Key Laboratory of Colloid and Interface Chemistry & Key Laboratory of Special Aggregated Materials, Ministry of Education, Shandong University , Jinan 250100, China
| | - Jianfei Sui
- Key Laboratory of Colloid and Interface Chemistry & Key Laboratory of Special Aggregated Materials, Ministry of Education, Shandong University , Jinan 250100, China
| | - Aixin Song
- Key Laboratory of Colloid and Interface Chemistry & Key Laboratory of Special Aggregated Materials, Ministry of Education, Shandong University , Jinan 250100, China
| | - Jingcheng Hao
- Key Laboratory of Colloid and Interface Chemistry & Key Laboratory of Special Aggregated Materials, Ministry of Education, Shandong University , Jinan 250100, China
| |
Collapse
|
28
|
Li W, Cai Y, Zhong Q, Yang Y, Kundu SC, Yao J. Silk sericin microcapsules with hydroxyapatite shells: protection and modification of organic microcapsules by biomimetic mineralization. J Mater Chem B 2016; 4:340-347. [DOI: 10.1039/c5tb02328a] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Silk protein sericin based organic–inorganic hybrid microcapsules are fabricated by incubating sericin microcapsules with a supersaturated calcium phosphate solution containing citric acid.
Collapse
Affiliation(s)
- Wenhua Li
- The Key Laboratory of Advanced Textile Materials and Manufacturing Technology of Ministry of Education
- National Engineering Lab for Textile Fiber Materials and Processing Technology
- College of Materials and Textiles
- Zhejiang Sci-Tech University
- Hangzhou
| | - Yurong Cai
- The Key Laboratory of Advanced Textile Materials and Manufacturing Technology of Ministry of Education
- National Engineering Lab for Textile Fiber Materials and Processing Technology
- College of Materials and Textiles
- Zhejiang Sci-Tech University
- Hangzhou
| | - Qiwei Zhong
- The Key Laboratory of Advanced Textile Materials and Manufacturing Technology of Ministry of Education
- National Engineering Lab for Textile Fiber Materials and Processing Technology
- College of Materials and Textiles
- Zhejiang Sci-Tech University
- Hangzhou
| | - Ying Yang
- The Key Laboratory of Advanced Textile Materials and Manufacturing Technology of Ministry of Education
- National Engineering Lab for Textile Fiber Materials and Processing Technology
- College of Materials and Textiles
- Zhejiang Sci-Tech University
- Hangzhou
| | - Subhas C. Kundu
- Department of Biotechnology
- Indian Institute of Technology (IIT)
- Kharagpur 721302
- India
| | - Juming Yao
- The Key Laboratory of Advanced Textile Materials and Manufacturing Technology of Ministry of Education
- National Engineering Lab for Textile Fiber Materials and Processing Technology
- College of Materials and Textiles
- Zhejiang Sci-Tech University
- Hangzhou
| |
Collapse
|
29
|
Sciancalepore AG, Moffa M, Carluccio S, Romano L, Netti GS, Prattichizzo C, Pisignano D. Bioactive Nanofiber Matrices Functionalized with Fibronectin-Mimetic Peptides Driving the Alignment and Tubular Commitment of Adult Renal Stem Cells. MACROMOL CHEM PHYS 2015. [DOI: 10.1002/macp.201500370] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Anna G. Sciancalepore
- Istituto Nanoscienze-CNR; Euromediterranean Center for Nanomaterial Modelling and Technology (ECMT); Via Arnesano I-73100 Lecce Italy
| | - Maria Moffa
- Istituto Nanoscienze-CNR; Euromediterranean Center for Nanomaterial Modelling and Technology (ECMT); Via Arnesano I-73100 Lecce Italy
| | - Simonetta Carluccio
- Dipartimento di Scienze e Tecnologie Biologiche e Ambientali; Università del Salento; Via provinciale per Monteroni I-73100 Lecce Italy
| | - Luigi Romano
- Dipartimento di Matematica e Fisica “Ennio De Giorgi”; Università del Salentoand Istituto Nanoscienze-CNR; Euromediterranean Center for Nanomaterial Modelling and Technology (ECMT); Via Arnesano I-73100 Lecce Italy
| | - Giuseppe S. Netti
- Clinical Pathology Unit; Department of Medical and Surgical Sciences; University of Foggia; Hospital University “Ospedali Riuniti”; viale Luigi Pinto I-71122 Foggia Italy
| | - Clelia Prattichizzo
- Clinical Pathology Unit; Department of Medical and Surgical Sciences; University of Foggia; Hospital University “Ospedali Riuniti”; viale Luigi Pinto I-71122 Foggia Italy
| | - Dario Pisignano
- Dipartimento di Matematica e Fisica “Ennio De Giorgi”; Università del Salentoand Istituto Nanoscienze-CNR; Euromediterranean Center for Nanomaterial Modelling and Technology (ECMT); Via Arnesano I-73100 Lecce Italy
| |
Collapse
|
30
|
Guo R, Lu S, Page JM, Merkel AR, Basu S, Sterling JA, Guelcher SA. Fabrication of 3D Scaffolds with Precisely Controlled Substrate Modulus and Pore Size by Templated-Fused Deposition Modeling to Direct Osteogenic Differentiation. Adv Healthc Mater 2015; 4:1826-32. [PMID: 26121662 PMCID: PMC4558627 DOI: 10.1002/adhm.201500099] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 05/13/2015] [Indexed: 12/17/2022]
Abstract
Scaffolds with tunable mechanical and topological properties fabricated by templated-fused deposition modeling promote increased osteogenic differentiation of bone marrow stem cells with increasing substrate modulus and decreasing pore size. These findings guide the rational design of cell-responsive scaffolds that recapitulate the bone microenvironment for repair of bone damaged by trauma or disease.
Collapse
Affiliation(s)
- Ruijing Guo
- Department of Chemical and Biomolecular Engineering and Center for Bone Biology, Vanderbilt University, Nashville, TN, USA
| | - Sichang Lu
- Department of Chemical and Biomolecular Engineering and Center for Bone Biology, Vanderbilt University, Nashville, TN, USA
| | - Jonathan M. Page
- Department of Chemical and Biomolecular Engineering and Center for Bone Biology, Vanderbilt University, Nashville, TN, USA
| | - Alyssa R. Merkel
- Department of Veterans Affairs: Tennessee Valley Healthcare System, Nashville, TN, USA. Center for Bone Biology, Division of Clinical Pharmacology, and Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, TN USA
| | | | - Julie A. Sterling
- Department of Veterans Affairs: Tennessee Valley Healthcare System, Nashville, TN, USA. Center for Bone Biology, Division of Clinical Pharmacology, and Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, TN USA
| | - Scott A. Guelcher
- Department of Chemical and Biomolecular Engineering and Center for Bone Biology, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|