1
|
Town RM, van Leeuwen HP, Duval JFL. Sorption kinetics of metallic and organic contaminants on micro- and nanoplastics: remarkable dependence of the intraparticulate contaminant diffusion coefficient on the particle size and potential role of polymer crystallinity. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2025; 27:634-648. [PMID: 40018903 DOI: 10.1039/d4em00744a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/01/2025]
Abstract
We developed a mechanistic diffusion model to describe the sorption kinetics of metallic and organic contaminants on nano- and micro-plastics. The framework implements bulk depletion processes, transient fluxes, and fully adaptable particle/water boundary conditions, i.e. not only the typically assumed simple linear Henry regime, which is not applicable to many contaminant-particle situations. Thus, our model represents a flexible and comprehensive theory for the analysis of contaminant sorption kinetics, which goes well beyond the traditional empirical pseudo first or second order kinetic equations. We applied the model to the analysis of a large body of literature data on the equilibrium and kinetic features of sorption of a wide range of contaminants by diverse types and sizes of plastic particles. Results establish the paramount importance of sorption boundary conditions (Henry, Langmuir, or Langmuir-Freundlich) and reveal interesting and often overlooked sorption features that depend on the plastic particle size and the extent to which the target compound is depleted in the bulk medium. The greater degree of polymer crystallinity reported for smaller particles may underlie our findings that the intraparticulate contaminant diffusion coefficient decreases with a decreasing particle size. We establish a universal law to predict the sorption kinetics and diffusion of any compound within any plastic phase, which has far reaching importance across many domains relevant to the environment and human health.
Collapse
Affiliation(s)
- Raewyn M Town
- ECOSPHERE, Department of Biology, Universiteit Antwerpen, Groenenborgerlaan 171, 2020 Antwerpen, Belgium.
| | - Herman P van Leeuwen
- ECOSPHERE, Department of Biology, Universiteit Antwerpen, Groenenborgerlaan 171, 2020 Antwerpen, Belgium.
| | | |
Collapse
|
2
|
Lesniewska N, Beaussart A, Duval JFL. Electrostatic interactions between soft nanoparticles beyond the Derjaguin approximation: Effects of finite size of ions and charges, dielectric decrement and ion correlations. J Colloid Interface Sci 2025; 678:808-827. [PMID: 39270383 DOI: 10.1016/j.jcis.2024.08.258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/27/2024] [Accepted: 08/30/2024] [Indexed: 09/15/2024]
Abstract
HYPOTHESIS Electrostatic interactions between colloids are governed by the overlap of their electric double layers (EDLs) and the ionic screening of the structural charges distributed at their core surface and/or in their peripheral ion-permeable shell, relevant to soft particles like polymer colloids and microorganisms. Whereas ion size-mediated effects on the organization of isolated EDLs have been analysed, their contribution to the electrostatic energy of interacting soft particles has received less attention THEORY AND SIMULATIONS: Herein, we elaborate a formalism to evaluate the electrostatic interaction energy profile between spherical core/shell particles, building upon a recent Poisson-Boltzmann theory corrected for the sizes of ions and particle structural charges, for ion correlations and dielectric decrement. Interaction energy is derived from pairwise disjoining pressure and exact Surface Element Integration method, beyond the Derjaguin approximation. The theory is sufficiently flexible to tackle homo- and hetero-interactions that involve weakly to highly charged hard, porous or core/shell nano- to micro-sized particles in asymmetric multivalent electrolytes. FINDINGS Results illustrate how ion steric effects, ion correlations and dielectric decrement impact the sign, magnitude and range of the interactions depending on the particle size, the Debye length, and the geometric and electrostatic properties of the particle core and shell components.
Collapse
Affiliation(s)
- Nicolas Lesniewska
- Université de Lorraine, CNRS, Laboratoire Interdisciplinaire des Environnements Continentaux (LIEC), UMR7360, 54000 Nancy, France.
| | - Audrey Beaussart
- Université de Lorraine, CNRS, Laboratoire Interdisciplinaire des Environnements Continentaux (LIEC), UMR7360, 54000 Nancy, France; Univ. Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, F-33600 Pessac, France
| | - Jérôme F L Duval
- Université de Lorraine, CNRS, Laboratoire Interdisciplinaire des Environnements Continentaux (LIEC), UMR7360, 54000 Nancy, France.
| |
Collapse
|
3
|
Mahapatra P, Pal SK, Ohshima H, Gopmandal PP. Electrohydrodynamics of diffuse porous colloids. SOFT MATTER 2024; 20:2840-2862. [PMID: 38456335 DOI: 10.1039/d3sm01759a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
The present article deals with the electrohydrodynamic motion of diffuse porous particles governed by an applied DC electric field. The spatial distribution of monomers as well as the charge distribution across the particle are considered to follow sigmoidal distribution involving decay length. Such a parameter measures the degree of inhomogeneity of the monomer distribution across the particle. The diffuse porous particles resemble several colloidal entities which are often seen in the environment as well as in biological and pharmaceutical industries. Considering the impact of bulk pH and ion steric effects, we modelled the electrohydrodynamics of such porous particulates based on the modified Boltzmann distribution for the spatial distribution of electrolyte ions and the Poisson equation for electric potential as well as the conservation of mass and momentum principles. We adopt regular perturbation analysis with weak field assumption and the perturbed equations are solved numerically to calculate the electrophoretic mobility and neutralization fraction of the particle charge during its motion as well as fluid collection efficiency. We further deduced the closed form relation between the drag force experienced by the charged porous particle and the fluid collection efficiency. In addition to the numerical results, we further derived the closed form analytical results for all the intrinsic parameters indicated above derived within the Debye-Hückel electrostatic framework and homogeneous distribution of monomers within the particle for which the decay length vanishes. The deduced mathematical results as indicated above will be useful to analyze several electrostatic and hydrodynamic features of a wide class of porous particulate and environmental entities.
Collapse
Affiliation(s)
- Paramita Mahapatra
- Department of Mathematics, National Institute of Technology Durgapur, Durgapur-713209, India.
| | - S K Pal
- Department of Mathematics, Jadavpur University, Kolkata 700032, India
| | - H Ohshima
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba, Japan
| | - Partha P Gopmandal
- Department of Mathematics, National Institute of Technology Durgapur, Durgapur-713209, India.
| |
Collapse
|
4
|
Lesniewska N, Duval JFL, Caillet C, Razafitianamaharavo A, Pinheiro JP, Bihannic I, Gley R, Le Cordier H, Vyas V, Pagnout C, Sohm B, Beaussart A. Physicochemical surface properties of Chlorella vulgaris: a multiscale assessment, from electrokinetic and proton uptake descriptors to intermolecular adhesion forces. NANOSCALE 2024; 16:5149-5163. [PMID: 38265106 DOI: 10.1039/d3nr04740g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
Given the growing scientific and industrial interests in green microalgae, a comprehensive understanding of the forces controlling the colloidal stability of these bioparticles and their interactions with surrounding aqueous microenvironment is required. Accordingly, we addressed here the electrostatic and hydrophobic surface properties of Chlorella vulgaris from the population down to the individual cell levels. We first investigated the organisation of the electrical double layer at microalgae surfaces on the basis of electrophoresis measurements. Interpretation of the results beyond zeta-potential framework underlined the need to account for both the hydrodynamic softness of the algae cells and the heterogeneity of their interface formed with the outer electrolyte solution. We further explored the nature of the structural charge carriers at microalgae interfaces through potentiometric proton titrations. Extraction of the electrostatic descriptors of interest from such data was obscured by cell physiology processes and dependence thereof on prevailing measurement conditions, which includes light, temperature and medium salinity. As an alternative, cell electrostatics was successfully evaluated at the cellular level upon mapping the molecular interactions at stake between (positively and negatively) charged atomic force microscopy tips and algal surface via chemical force microscopy. A thorough comparison between charge-dependent tip-to-algae surface adhesion and hydrophobicity level of microalgae surface evidenced that the contribution of electrostatics to the overall interaction pattern is largest, and that the electrostatic/hydrophobic balance can be largely modulated by pH. Overall, the combination of multiscale physicochemical approaches allowed a drawing of some of the key biosurface properties that govern microalgae cell-cell and cell-surface interactions.
Collapse
Affiliation(s)
| | | | - Céline Caillet
- Université de Lorraine, CNRS, LIEC, F-54000 Nancy, France.
| | | | | | | | - Renaud Gley
- Université de Lorraine, CNRS, LIEC, F-54000 Nancy, France.
| | | | - Varun Vyas
- Université de Lorraine, CNRS, LIEC, F-54000 Nancy, France.
| | | | - Bénédicte Sohm
- Université de Lorraine, CNRS, LIEC, F-57000, Metz, France
| | | |
Collapse
|
5
|
Chakraborty S, Halat DM, Im J, Hickson DT, Reimer JA, Balsara NP. Lithium transference in electrolytes with star-shaped multivalent anions measured by electrophoretic NMR. Phys Chem Chem Phys 2023; 25:21065-21073. [PMID: 37525889 DOI: 10.1039/d3cp00923h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
One approach for improving lithium transference in electrolytes is through the use of bulky multivalent anions. We have studied a multivalent salt containing a bulky star-shaped anion with a polyhedral oligomeric silsesquioxane (POSS) center and lithium counterions dissolved in a solvent. The charge on each anion, z-, is equal to -20. The self-diffusion coefficients of all species were measured by pulsed field gradient NMR (PFG-NMR). As expected, anion diffusion was significantly slower than cation diffusion. An approximate transference number, also referred to as the current fraction (measured by Bruce, Vincent and Watanabe method), was higher than those expected from PFG-NMR. However, the rigorously defined cation transference number with respect to the solvent velocity measured by electrophoretic NMR was negative at all salt concentrations. In contrast, the approximate transference numbers based on PFG-NMR and current fractions are always positive, as expected. The discrepancy between these three independent approaches for characterizing lithium transference suggests the presence of complex cation-anion interactions in solution. It is evident that the slow self-diffusion of bulky multivalent anions does not necessarily lead to an improvement of lithium transference.
Collapse
Affiliation(s)
- Saheli Chakraborty
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA.
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, California 94720, USA
- Joint Center for Energy Storage Research (JCESR), Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - David M Halat
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA.
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, California 94720, USA
- Joint Center for Energy Storage Research (JCESR), Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Julia Im
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, California 94720, USA
| | - Darby T Hickson
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA.
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, California 94720, USA
| | - Jeffrey A Reimer
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA.
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, California 94720, USA
- Joint Center for Energy Storage Research (JCESR), Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Nitash P Balsara
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA.
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, California 94720, USA
- Joint Center for Energy Storage Research (JCESR), Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| |
Collapse
|
6
|
Muhren HJ, van der Schoot P. Electrostatic Theory of the Acidity of the Solution in the Lumina of Viruses and Virus-Like Particles. J Phys Chem B 2023; 127:2160-2168. [PMID: 36881522 PMCID: PMC10026070 DOI: 10.1021/acs.jpcb.2c08604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Abstract
Recently, Maassen et al. measured an appreciable pH difference between the bulk solution and the solution in the lumen of virus-like particles, self-assembled in an aqueous buffer solution containing the coat proteins of a simple plant virus and polyanions (Maassen, S. J.; et al. Small 2018, 14, 1802081). They attribute this to the Donnan effect, caused by an imbalance between the number of negative charges on the encapsulated polyelectrolyte molecules and the number of positive charges on the RNA binding domains of the coat proteins that make up the virus shell or capsid. By applying Poisson-Boltzmann theory, we confirm this conclusion and show that simple Donnan theory is accurate even for the smallest of viruses and virus-like particles. This, in part, is due to the additional screening caused by the presence of a large number of immobile charges in the cavity of the shell. The presence of a net charge on the outer surface of the capsid we find in practice to not have a large effect on the pH shift. Hence, Donnan theory can indeed be applied to connect the local pH and the amount of encapsulated material. The large shifts up to a full pH unit that we predict must have consequences for applications of virus capsids as nanocontainers in bionanotechnology and artificial cell organelles.
Collapse
Affiliation(s)
- H J Muhren
- Soft Matter and Biological Physics, Department of Applied Physics and Science Education, Eindhoven University of Technology, Postbus 513, 5600 MB Eindhoven, The Netherlands
| | - Paul van der Schoot
- Soft Matter and Biological Physics, Department of Applied Physics and Science Education, Eindhoven University of Technology, Postbus 513, 5600 MB Eindhoven, The Netherlands
| |
Collapse
|
7
|
Lesniewska N, Beaussart A, Duval JF. Electrostatics of soft (bio)interfaces: Corrections of mean-field Poisson-Boltzmann theory for ion size, dielectric decrement and ion-ion correlation. J Colloid Interface Sci 2023; 642:154-168. [PMID: 37003010 DOI: 10.1016/j.jcis.2023.03.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/24/2023] [Accepted: 03/02/2023] [Indexed: 03/28/2023]
Abstract
HYPOTHESIS Electrostatics of soft (ion-permeable) (bio)particles (e.g. microorganisms, core/shell colloids) in aqueous electrolytes is commonly formulated by the mean-field Poisson-Boltzmann theory and integration of the charge contributions from electrolyte ions and soft material. However, the effects connected to the size of the electrolyte ions and that of the structural charges carried by the particle, to dielectric decrement and ion-ion correlations on soft interface electrostatics have been so far considered at the margin, despite the limits of the Gouy theory for condensed and/or multivalent electrolytes. EXPERIMENTS Accordingly, we modify herein the Poisson-Boltzmann theory for core/shell (bio)interfaces to include the aforementioned molecular effects considered separately or concomitantly. The formalism is applicable for poorly to highly charged particles in the thin electric double layer regime and to unsymmetrical multivalent electrolytes. FINDINGS Computational examples of practical interests are discussed with emphasis on how each considered molecular effect or combination thereof affects the interfacial potential distribution depending on size and valence of cations and anions, size of particle charges, length scale of ionic correlations and shell-to-Debye layer thickness ratio. The origins of here-evidenced pseudo-harmonic potential profile and ion size-dependent screening of core/shell particle charges are detailed. In addition, the existence and magnitude of the Donnan potential when reached in the shell layer are shown to depend on the excluded volumes of the electrolyte ions.
Collapse
|
8
|
Feng JR, Deng QX, Han SK, Ni HG. Use of nanoparticle-coated bacteria for the bioremediation of organic pollution: A mini review. CHEMOSPHERE 2023; 313:137391. [PMID: 36457267 DOI: 10.1016/j.chemosphere.2022.137391] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/17/2022] [Accepted: 11/23/2022] [Indexed: 06/17/2023]
Abstract
Nanoparticle (NP)-coated (immobilized) bacteria are an effective method for treating environmental pollution due to their multifarious benefits. This review collates a vast amount of existing literature on organic pollution treatment using NP-coated bacteria. We discuss the features of bacteria, NPs, and decoration techniques of NP-bacteria assemblies, with special attention given to the surface modification of NPs and connection mechanisms between NPs and cells. Furthermore, the performance of NP-coated bacteria was examined. We summarize the factors that affect bioremediation efficiency using coated bacteria, including pH, temperature, and agitation, and the possible mechanisms involving them are proposed. From future perspectives, suitable surface modification of NPs and wide application in real practice will make the NP-coated bacterial technology a viable treatment strategy.
Collapse
Affiliation(s)
- Jin-Ru Feng
- School of Urban Planning and Design, Shenzhen Graduate School, Peking University, Shenzhen, 518055, China
| | - Qing-Xin Deng
- School of Urban Planning and Design, Shenzhen Graduate School, Peking University, Shenzhen, 518055, China
| | - Shang-Kun Han
- School of Urban Planning and Design, Shenzhen Graduate School, Peking University, Shenzhen, 518055, China
| | - Hong-Gang Ni
- School of Urban Planning and Design, Shenzhen Graduate School, Peking University, Shenzhen, 518055, China.
| |
Collapse
|
9
|
Sin JS. Structural and electrostatic properties between pH-responsive polyelectrolyte brushes studied by augmented strong stretching theory. J Chem Phys 2022; 157:084902. [DOI: 10.1063/5.0097783] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In this paper, we study electrostatic and structural properties between pH-responsive polyelectrolyte brushes by using a strong stretching theory accounting for excluded volume interactions, the density of polyelectrolyte chargeable sites and the Born energy difference between the inside and outside of the brush layer.In a free energy framework, we obtain self-consistent field equations to determine electrostatic properties between two pH-responsive polyelectrolyte brushes. We elucidate that in the region between two pH-responsive polyelectrolyte brushes, electrostatic potential at the centerline and osmotic pressure increase not only with excluded volume interaction, but also with density of chargeable sites on a polyelectrolyte molecule. Importantly, we clarify that when two pH-responsive polyelectrolyte brushes approach each other, the brush thickness becomes short and that a large excluded volume interaction and a large density of chargeable sites yield the enhanced contract of polyelectrolyte brushes. In addition, we also demonstrate how the influence of such quantities as pH, the number of Kuhn monomers, the density of charged sites, the lateral separation between adjacent polyelectrolyte brushes, Kuhn length on the electrostatic and structural properties between the two polyelectrolyte brushes is affected by the exclusion volume interaction. Finally, we investigate the influence of Born energy difference on the thickness of polyelectrolyte brushes and the osmotic pressure between two pH-responsive polyelectrolyte brushes.
Collapse
Affiliation(s)
- Jun-Sik Sin
- Natural Science Center, Kim Il Sung University, Korea, Democratic People's Republic of (North Korea)
| |
Collapse
|
10
|
Gopmandal PP, Duval JF. Electrostatics and electrophoresis of engineered nanoparticles and particulate environmental contaminants: beyond zeta potential-based formulation. Curr Opin Colloid Interface Sci 2022. [DOI: 10.1016/j.cocis.2022.101605] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
11
|
Ion partitioning effect on the electrostatic interaction between two charged soft surfaces. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127296] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
12
|
Optimizing the synthesis and purification of MS2 virus like particles. Sci Rep 2021; 11:19851. [PMID: 34615923 PMCID: PMC8494748 DOI: 10.1038/s41598-021-98706-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 09/14/2021] [Indexed: 02/08/2023] Open
Abstract
Introducing bacteriophage MS2 virus-like particles (VLPs) as gene and drug delivery tools increases the demand for optimizing their production and purification procedure. PEG precipitation method is used efficiently to purify VLPs, while the effects of pH and different electrolytes on the stability, size, and homogeneity of purified MS2 VLPs, and the encapsulated RNA sequences remained to be elucidated. In this regard, a vector, capable of producing VLP with an shRNA packed inside was prepared. The resulting VLPs in different buffers/solutions were assessed for their size, polydispersity index, and ability to protect the enclosed shRNA. We report that among Tris, HEPES, and PBS, with or without NaNO3, and also NaNO3 alone in different pH and ionic concentrations, the 100 mM NaNO3-Tris buffer with pH:8 can be used as a new and optimal MS2 VLP production buffer, capable of inhibiting the VLPs aggregation. These VLPs show a size range of 27-30 nm and suitable homogeneity with minimum 12-month stability at 4 °C. Moreover, the resulting MS2 VLPs were highly efficient and stable for at least 48 h in conditions similar to in vivo. These features of MS2 VLPs produced in the newly introduced buffer make them an appropriate candidate for therapeutic agents' delivery.
Collapse
|
13
|
Mahapatra P, Ohshima H, Gopmandal PP. Electrophoresis of Liquid-Layer Coated Particles: Impact of Ion Partitioning and Ion Steric Effects. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:11316-11329. [PMID: 34529445 DOI: 10.1021/acs.langmuir.1c01875] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The biomimetic core-shell nanoparticles coated with membranes of various biological cells have attracted significant research interest, because of their extensive applications in targeted drug delivery systems. The cell membrane consists of a lipid bilayer, which can be regarded as a two-dimensional oriented viscous liquid with low dielectric permittivity, compared to a bulk aqueous medium. Such a liquid layer comprised of cell membrane may bear additional mobile charges, because of the presence of free lipid molecules or charged surfactant molecules, which further results in nonzero charge along the surface of the peripheral layer. In this article, we present an analytical theory for electrophoresis of such cell membrane coated functionalized nanoparticles in the extent of electrolyte solution, considering the combined effects of finite ion size and of ion partitioning. Going beyond the Debye-Huckel approximations, we propose an analytical theory for Donnan potential and electrophoretic mobility. The derived expressions are applicable for moderate to highly charged undertaken core-shell particles when the thickness of the peripheral liquid layer greatly exceeds the electric double layer thickness. The impact of pertinent parameters on the electrophoretic response of such a particle is further discussed.
Collapse
Affiliation(s)
- Paramita Mahapatra
- Department of Mathematics, National Institute of Technology Durgapur Durgapur-713209, India
| | - H Ohshima
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Partha P Gopmandal
- Department of Mathematics, National Institute of Technology Durgapur Durgapur-713209, India
| |
Collapse
|
14
|
Maurya SK, Sarkar S, Mondal HK, Ohshima H, Gopmandal PP. Electrophoresis of soft particles with hydrophobic inner core grafted with pH-regulated and highly charged polyelectrolyte layer. Electrophoresis 2021; 43:757-766. [PMID: 34398491 DOI: 10.1002/elps.202100147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 07/17/2021] [Accepted: 08/10/2021] [Indexed: 11/05/2022]
Abstract
Electrophoresis of core-shell composite soft particles possessing hydrophobic inner core grafted with highly charged polyelectrolyte layer (PEL) has been studied analytically. The PEL bears pH-dependent charge properties due to the presence of zwitterionic functional groups. The dielectric permittivity of the PEL and bulk aqueous medium were taken to be different, which resulted in the ion-partitioning effect. Objective of this study was to provide a simple expression for the mobility of such core-shell soft particles under Donnan limit where the thickness of the PEL well exceeds the electric double layer thickness. Going beyond the widely used Debye-Hückel linearization, the nonlinear Poisson-Boltzmann equation coupled with Stokes-Darcy-Brinkman equations was solved to determine the electrophoretic mobility. The derived expression further recovers all the existing results for the electrophoretic mobility under various simplified cases. The graphical presentation of the results illustrated the impact of pertinent parameters on the electrophoretic mobility of such a soft particle.
Collapse
Affiliation(s)
- Saurabh Kumar Maurya
- Department of Mathematics, Sikkim Manipal Institute of Technology, Sikkim Manipal University, Majitar, Rangpo, East Sikkim, India
| | - Sankar Sarkar
- Physics and Applied Mathematics Unit, Indian Statistical Institute, Kolkata, West Bengal, India
| | - Hemanta Kumar Mondal
- Department of Electronics and Communication Engineering, National Institute of Technology Durgapur, Durgapur, West Bengal, India
| | - Hiroyuki Ohshima
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba, Japan
| | - Partha P Gopmandal
- Department of Mathematics, National Institute of Technology Durgapur, Durgapur, West Bengal, India
| |
Collapse
|
15
|
Duval JFL, van Leeuwen HP, Norde W, Town RM. Chemodynamic features of nanoparticles: Application to understanding the dynamic life cycle of SARS-CoV-2 in aerosols and aqueous biointerfacial zones. Adv Colloid Interface Sci 2021; 290:102400. [PMID: 33713994 PMCID: PMC7931671 DOI: 10.1016/j.cis.2021.102400] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/27/2021] [Accepted: 03/01/2021] [Indexed: 12/23/2022]
Abstract
We review concepts involved in describing the chemodynamic features of nanoparticles and apply the framework to gain physicochemical insights into interactions between SARS-CoV-2 virions and airborne particulate matter (PM). Our analysis is highly pertinent given that the World Health Organisation acknowledges that SARS-CoV-2 may be transmitted by respiratory droplets, and the US Center for Disease Control and Prevention recognises that airborne transmission of SARS-CoV-2 can occur. In our theoretical treatment, the virion is assimilated to a core-shell nanoparticle, and contributions of various interaction energies to the virion-PM association (electrostatic, hydrophobic, London-van der Waals, etc.) are generically included. We review the limited available literature on the physicochemical features of the SARS-CoV-2 virion and identify knowledge gaps. Despite the lack of quantitative data, our conceptual framework qualitatively predicts that virion-PM entities are largely able to maintain equilibrium on the timescale of their diffusion towards the host cell surface. Comparison of the relevant mass transport coefficients reveals that virion biointernalization demand by alveolar host cells may be greater than the diffusive supply. Under such conditions both the free and PM-sorbed virions may contribute to the transmitted dose. This result points to the potential for PM to serve as a shuttle for delivery of virions to host cell targets. Thus, our critical review reveals that the chemodynamics of virion-PM interactions may play a crucial role in the transmission of COVID-19, and provides a sound basis for explaining reported correlations between episodes of air pollution and outbreaks of COVID-19.
Collapse
Affiliation(s)
| | - Herman P van Leeuwen
- Physical Chemistry and Soft Matter, Wageningen University & Research, Stippeneng 4, 6708, WE, Wageningen, the Netherlands
| | - Willem Norde
- Physical Chemistry and Soft Matter, Wageningen University & Research, Stippeneng 4, 6708, WE, Wageningen, the Netherlands
| | - Raewyn M Town
- Physical Chemistry and Soft Matter, Wageningen University & Research, Stippeneng 4, 6708, WE, Wageningen, the Netherlands; Systemic Physiological and Ecotoxicological Research (SPHERE), Department of Biology, Universiteit Antwerpen, Groenenborgerlaan 171, 2020 Antwerpen, Belgium..
| |
Collapse
|
16
|
Bharti, Gopmandal PP, Sinha RK, Ohshima H. Effect of core hydrophobicity on the electrophoresis of pH-regulated soft particles. SOFT MATTER 2021; 17:3074-3084. [PMID: 33596298 DOI: 10.1039/d0sm02278k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
We propose a theoretical study on the electrophoresis of core-shell composite soft particles considering the effect of hydrodynamic slip length of the hydrophobic inner core. The surface of the inner core as well as the soft polymeric shell bear zwitterionic functional groups and the charged conditions depend on the nearby micro-environment. Within a low potential and weak electric field framework, the mathematical equations of the generalized electrokinetic theory for soft surfaces are solved analytically subject to appropriate boundary conditions, and a general electrophoretic mobility expression in an integral form involving the pH-dependent electrostatic potential is derived. With the help of suitable numerical schemes, electrophoretic mobility can easily be obtained. The effect of hydrophobicity of the inner core on the electrophoretic mobility of pH-regulated soft particles is illustrated for a wide range of pertinent parameters.
Collapse
Affiliation(s)
- Bharti
- Department of Mathematics, National Institute of Technology Patna, Patna-800005, India
| | - Partha P Gopmandal
- Department of Mathematics, National Institute of Technology Durgapur, Durgapur-713209, India.
| | - R K Sinha
- Department of Mathematics, National Institute of Technology Patna, Patna-800005, India
| | - H Ohshima
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba, Japan
| |
Collapse
|
17
|
Maurya SK, Gopmandal PP, De S, Ohshima H, Sarkar S. Electrokinetics of Concentrated Suspension of Soft Particles with pH-Regulated Volumetric Charges. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:703-712. [PMID: 33412002 DOI: 10.1021/acs.langmuir.0c02805] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
This article presents a theoretical study on the electrokinetics of concentrated suspension of charge-regulated soft particles under a weak electric field and low potential assumptions. The inner core of the undertaken particle is "semisoft" in nature, which allows ion penetration while the fluid cannot flow within it, and the outer soft polymeric shell allows the flow of the ionized fluid. In addition, the inner core and the outer polyelectrolyte layer (PEL) bear pH-regulated basic and acidic functional groups, respectively. The Poisson-Boltzmann equation-based mathematical model was adopted here for electric potential. The fluid flow across the electrolyte medium and PEL is governed by the Stokes equation and the Darcy-Brinkman equation, respectively. The Kuwabara's unit cell model (J. Phys. Soc. Japan, 1959, 14, 522-527) was invoked to observe the effect of the interaction between the neighboring particles in a concentrated suspension. A first order perturbation technique was used to determine the mean electrophoretic mobility of the undertaken soft particles in a concentrated suspension. The effect of pH and concentration of bulk electrolyte, electrohydrodynamic properties of both the inner core and PEL, on the mean electrophoretic mobility has been studied extensively. In addition, the results have been presented for the neutralization factor that measures the fraction of fixed charges neutralized by the mobile counterions.
Collapse
Affiliation(s)
- Saurabh Kumar Maurya
- Physics and Applied Mathematics Unit, Indian Statistical Institute, Kolkata 700108, India
| | - Partha P Gopmandal
- Department of Mathematics, National Institute of Technology Durgapur, Durgapur 713209, India
| | - Simanta De
- Department of Mathematics, University of Gour Banga, Malda 732103, India
| | - H Ohshima
- Faculty of Pharmaceutical Sciences, Tokyo University of Science Noda, Chiba 278-8510, Japan
| | - Sankar Sarkar
- Physics and Applied Mathematics Unit, Indian Statistical Institute, Kolkata 700108, India
| |
Collapse
|
18
|
Barman SS, Bhattacharyya S, Gopmandal PP, Ohshima H. Impact of charged polarizable core on mobility of a soft particle embedded in a hydrogel medium. Colloid Polym Sci 2020. [DOI: 10.1007/s00396-020-04751-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
19
|
Pinheiro JP, Rotureau E, Duval JFL. Addressing the electrostatic component of protons binding to aquatic nanoparticles beyond the Non-Ideal Competitive Adsorption (NICA)-Donnan level: Theory and application to analysis of proton titration data for humic matter. J Colloid Interface Sci 2020; 583:642-651. [PMID: 33039861 DOI: 10.1016/j.jcis.2020.09.059] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 09/14/2020] [Accepted: 09/15/2020] [Indexed: 11/19/2022]
Abstract
HYPOTHESIS Charge descriptors of aquatic nanoparticles (NPs) are evaluated from proton titration curves measured at different salt concentrations and routinely analysed by the Non-Ideal Competitive Adsorption-Donnan (NICAD) model. This model, however, suffers from approximations regarding particle electrostatics, which may bias particle charge estimation. Implementation of Poisson-Boltzmann (PB) theory within consistent treatment of NPs protolytic data is expected to address NICAD shortcomings. EXPERIMENTS An alternative to NICAD is elaborated on the basis of nonlinearized PB equation for soft particle electrostatics to properly unravel the electrostatic and chemical components of proton binding to NPs. A numerical package is developed for automated analysis of proton titration curves and proton affinity spectra at different salt concentrations. The performance of the method is illustrated for humic matter nanoparticles with different charge and size, and compared to that of NICAD. FINDINGS Unlike NICAD, PB-based treatment successfully reproduces particle charge dependence on pH for practical salt concentrations from the thin to thick electric double layer limit. Donnan representation in NICAD leads to moderate to dramatic misestimations of proton affinity and binding heterogeneity depending on particle size to Debye layer thickness ratio. Interpretation of NPs protolytic properties with PB theory further avoids adjustment of the 'particle Donnan volume' empirically introduced in NICAD.
Collapse
Affiliation(s)
- José Paulo Pinheiro
- Université de Lorraine, CNRS, Laboratoire Interdisciplinaire des Environnements Continentaux (LIEC), UMR 7360, Vandoeuvre-lès-Nancy F-54000, France
| | - Elise Rotureau
- Université de Lorraine, CNRS, Laboratoire Interdisciplinaire des Environnements Continentaux (LIEC), UMR 7360, Vandoeuvre-lès-Nancy F-54000, France
| | - Jérôme F L Duval
- Université de Lorraine, CNRS, Laboratoire Interdisciplinaire des Environnements Continentaux (LIEC), UMR 7360, Vandoeuvre-lès-Nancy F-54000, France.
| |
Collapse
|
20
|
Mahapatra P, Gopmandal PP, Duval JFL. Effects of dielectric gradients‐mediated ions partitioning on the electrophoresis of composite soft particles: An analytical theory. Electrophoresis 2020. [DOI: 10.1002/elps.202000123] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Paramita Mahapatra
- Department of Mathematics National Institute of Technology Durgapur Durgapur India
| | - Partha P. Gopmandal
- Department of Mathematics National Institute of Technology Durgapur Durgapur India
| | - Jérôme F. L. Duval
- Laboratoire Interdisciplinaire des Environnements Continentaux (LIEC) Université de Lorraine, CNRS Nancy France
| |
Collapse
|
21
|
Kundu D, Bhattacharyya S. Influence of slip velocity at the core of a diffuse soft particle and ion partition effects on mobility. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2020; 43:27. [PMID: 32447590 DOI: 10.1140/epje/i2020-11957-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 05/04/2020] [Indexed: 06/11/2023]
Abstract
Nonlinear effects on the electrophoresis of a soft particle, consisting of a rigid hydrophobic core coated with a diffuse polymer layer (PEL) suspended in an electrolyte medium, are studied. The impact of the ion partitioning effect arising due to the Born energy difference between the PEL and the electrolyte is approximated based on the equilibrium Boltzmann equation, with which the ion distribution and hence, the charge density is modified. The equations describing the electrokinetic transport comprising the Darcy-Brinkman extended Navier-Stokes equations which includes the ion partitioning effect coupled with the modified Nernst-Planck equations and Poisson equations for electric field are solved numerically. The present numerical model for the soft particle compares well with the existing theoretical solutions and experimental results in the limiting cases. A deviation from existing simplified models based on the Boltzmann distribution of ions occurs when the Debye layer polarization, relaxation and the electroosmosis induced by the PEL immobile charge become significant. The hydrophobicity of the inner core strongly influences the nonlinear electrokinetic effects by modifying the Debye layer, electroosmotic flow in the PEL and surface conduction. The results indicate that the ion partitioning can significantly increase the electrophoretic mobility of the soft particle by attenuating the shielding effect. When the Debye layer is in the order of the particle size the hydrophobicity of the core surface and the ion partitioning effect manifest the surface conduction, which implies that the Boltzmann distribution of ions is no longer valid. The core hydrophobicity and ion partitioning effect have influence on the condensation of the PEL immobile charge, which creates a significant impact on the mobility.
Collapse
Affiliation(s)
- Dipankar Kundu
- Department of Mathematics, Indian Institute of Technology Kharagpur, 721302, Kharagpur, India
| | - Somnath Bhattacharyya
- Department of Mathematics, Indian Institute of Technology Kharagpur, 721302, Kharagpur, India.
| |
Collapse
|
22
|
Electrophoresis of composite soft particles with differentiated core and shell permeabilities to ions and fluid flow. J Colloid Interface Sci 2019; 558:280-290. [PMID: 31593861 DOI: 10.1016/j.jcis.2019.09.118] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 09/27/2019] [Accepted: 09/28/2019] [Indexed: 11/20/2022]
Abstract
Within the framework of analytical theories for soft surface electrophoresis, soft particles are classically defined by a hard impermeable core of given surface charge density surrounded by a polyelectrolyte shell layer permeable to both electroosmotic flow and ions from background electrolyte. This definition excludes practical core-shell particles, e.g. dendrimers, viruses or multi-layered polymeric particles, defined by a polyelectrolytic core where structural charges are distributed and where counter-ions concentration and electroosmotic flow velocity can be significant. Whereas a number of important approximate expressions has been derived for the electrophoretic mobility of hard and soft particles, none of them is applicable to such generic composite core-shell particles with differentiated ions- and fluid flow-permeabilities of their core and shell components. In this work, we elaborate an original closed-form electrophoretic mobility expression for this generic composite particle type within the Debye-Hückel electrostatic framework and thin double layer approximation. The expression explicitly involves the screening Debye layer thickness and the Brinkman core and shell hydrodynamic length scales, which favors so-far missing analysis of the respective core and shell contributions to overall particle mobility. Limits of this expression successfully reproduce results from Ohshima's electrophoresis theory solely applicable to soft particles with or without hard core.
Collapse
|
23
|
Town RM, van Leeuwen HP, Duval JFL. Rigorous Physicochemical Framework for Metal Ion Binding by Aqueous Nanoparticulate Humic Substances: Implications for Speciation Modeling by the NICA-Donnan and WHAM Codes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:8516-8532. [PMID: 31291104 DOI: 10.1021/acs.est.9b00624] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Latest knowledge on the reactivity of charged nanoparticulate complexants toward aqueous metal ions is discussed in mechanistic detail. We present a rigorous generic description of electrostatic and chemical contributions to metal ion binding by nanoparticulate complexants, and their dependence on particle size, particle type (i.e., reactive sites distributed within the particle body or confined to the surface), ionic strength of the aqueous medium, and the nature of the metal ion. For the example case of soft environmental particles such as fulvic and humic acids, practical strategies are delineated for determining intraparticulate metal ion speciation, and for evaluating intrinsic chemical binding affinities and heterogeneity. The results are compared with those obtained by popular codes for equilibrium speciation modeling (namely NICA-Donnan and WHAM). Physicochemical analysis of the discrepancies generated by these codes reveals the a priori hypotheses adopted therein and the inappropriateness of some of their key parameters. The significance of the characteristic time scales governing the formation and dissociation rates of metal-nanoparticle complexes in defining the relaxation properties and the complete equilibration of the metal-nanoparticulate complex dispersion is described. The dynamic features of nanoparticulate complexes are also discussed in the context of predictions of the labilities and bioavailabilities of the metal species.
Collapse
Affiliation(s)
- Raewyn M Town
- Systemic Physiological and Ecotoxicological Research (SPHERE), Department of Biology , University of Antwerp , Groenenborgerlaan 171 , 2020 Antwerp , Belgium
- Physical Chemistry and Soft Matter , Wageningen University & Research , Stippeneng 4 , 6708 WE Wageningen , The Netherlands
| | - Herman P van Leeuwen
- Physical Chemistry and Soft Matter , Wageningen University & Research , Stippeneng 4 , 6708 WE Wageningen , The Netherlands
| | - Jérôme F L Duval
- CNRS - Université de Lorraine , Laboratoire Interdisciplinaire des Environnements Continentaux (LIEC), UMR 7360 CNRS , 15 avenue du Charmois , 54500 Vandoeuvre-les-Nancy , France
| |
Collapse
|
24
|
Town RM, Duval JFL, van Leeuwen HP. The Intrinsic Stability of Metal Ion Complexes with Nanoparticulate Fulvic Acids. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:11682-11690. [PMID: 30226375 DOI: 10.1021/acs.est.8b02896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The electrostatic contributions to metal ion binding by fulvic acids (FAs) are characterized in light of recent theoretical developments on description of the net charge density of soft nanoparticles. Under practical electrolyte concentrations, the radius of the small, highly charged soft nanoparticulate FAs is comparable to the electrostatic screening length and their electric potential profile has a bell shape that extends into the surrounding aqueous medium. Consequently, accumulation of counterions in the extraparticulate zone can be significant. By comparison of experimentally derived Boltzmann partitioning coefficients with those computed on the basis of (i) the structural FA particle charge and (ii) the potential profile for a nanoparticulate FA entity equilibrated with indifferent electrolyte, we identify the thickness of the extraparticulate counter charge accumulation shell in 1-1 and 2-1 electrolytes. The results point to the involvement of counterion condensation phenomena and call into question the approaches for modeling electrostatic contributions to ion binding that are invoked by popular equilibrium speciation codes. Overall, the electrostatic contributions to Cdaq2+ and Cuaq2+ association with FA are weaker than those previously found for much larger humic acids (HA). The intrinsic chemical binding strength of CdFA is comparable to that of CdHA, whereas CuFA complexes are weaker than CuHA ones.
Collapse
Affiliation(s)
- Raewyn M Town
- Systemic Physiological and Ecotoxicological Research (SPHERE), Department of Biology , University of Antwerp , Groenenborgerlaan 171 , 2020 Antwerp , Belgium
- Physical Chemistry and Soft Matter , Wageningen University & Research , Stippeneng 4 , 6708 WE Wageningen , The Netherlands
| | - Jérôme F L Duval
- CNRS , Laboratoire Interdisciplinaire des Environnements Continenteaux (LIEC) , UMR 7360, Vandoeuvre-lès-Nancy , F-54501 Nancy , France
- Université de Lorraine , LIEC, UMR 7360, Vandoeuvre-lès-Nancy , F-54501 Nancy , France
| | - Herman P van Leeuwen
- Physical Chemistry and Soft Matter , Wageningen University & Research , Stippeneng 4 , 6708 WE Wageningen , The Netherlands
| |
Collapse
|
25
|
Beaussart A, Beloin C, Ghigo JM, Chapot-Chartier MP, Kulakauskas S, Duval JFL. Probing the influence of cell surface polysaccharides on nanodendrimer binding to Gram-negative and Gram-positive bacteria using single-nanoparticle force spectroscopy. NANOSCALE 2018; 10:12743-12753. [PMID: 29946619 DOI: 10.1039/c8nr01766b] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The safe use and design of nanoparticles (NPs) ask for a comprehensive interpretation of their potentially adverse effects on (micro)organisms. In this respect, the prior assessment of the interactions experienced by NPs in the vicinity of - and in contact with - complex biological surfaces is mandatory. It requires the development of suitable techniques for deciphering the processes that govern nano-bio interactions when a single organism is exposed to an extremely low dose of NPs. Here, we used atomic force spectroscopy (AFM)-based force measurements to investigate at the nanoscale the interactions between carboxylate-terminated polyamidoamine (PAMAM) nanodendrimers (radius ca. 4.5 nm) and two bacteria with very distinct surface properties, Escherichia coli and Lactococcus lactis. The zwitterionic nanodendrimers exhibit a negative peripheral surface charge and/or a positive intraparticulate core depending on the solution pH and salt concentration. Following an original strategy according to which a single dendrimer NP is grafted at the very apex of the AFM tip, the density and localization of NP binding sites are probed at the surface of E. coli and L. lactis mutants expressing different cell surface structures (presence/absence of the O-antigen of the lipopolysaccharides (LPS) or of a polysaccharide pellicle). In line with electrokinetic analysis, AFM force measurements evidence that adhesion of NPs onto pellicle-decorated L. lactis is governed by their underlying electrostatic interactions as controlled by the pH-dependent charge of the peripheral and internal NP components, and the negatively-charged cell surface. In contrast, the presence of the O-antigen on E. coli systematically suppresses the adhesion of nanodendrimers onto cells, may the apparent NP surface charge be determined by the peripheral carboxylate groups or by the internal amine functions. Altogether, this work highlights the differentiated roles played by surface polysaccharides in mediating NP attachment to Gram-positive and Gram-negative bacteria. It further demonstrates that the assessment of NP bioadhesion features requires a critical analysis of the electrostatic contributions stemming from the various structures composing the stratified cell envelope, and those originating from the bulk and surface NP components. The joint use of electrokinetics and AFM provides a valuable option for rapidly addressing the binding propensity of NPs to microorganisms, as urgently needed in NP risk assessments.
Collapse
|
26
|
Maurya SK, Gopmandal PP, Ohshima H. Electrophoresis of concentrated suspension of soft particles with volumetrically charged inner core. Colloid Polym Sci 2018. [DOI: 10.1007/s00396-018-4292-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
27
|
Beaussart A, Caillet C, Bihannic I, Zimmermann R, Duval JFL. Remarkable reversal of electrostatic interaction forces on zwitterionic soft nanointerfaces in a monovalent aqueous electrolyte: an AFM study at the single nanoparticle level. NANOSCALE 2018; 10:3181-3190. [PMID: 29372221 DOI: 10.1039/c7nr07976a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Soft (nano)colloids are increasingly used in medical applications due to the versatile options they offer in terms of e.g. tunable chemical composition, adaptable physical properties and (bio)functionalization perspectives. Obtaining a clear understanding of the nature of the interaction forces that such particles experience with neighboring charged (bio)surfaces is a mandatory prerequisite to draw a comprehensive and mechanistic picture of their stability and reactivity and to further optimize their current functionalities. In this study, adopting an original strategy for nanoparticle attachment to atomic force microscopy (AFM) tips, we demonstrate that the sign of electrostatic forces between carboxylate-terminated poly(amidoamine) nanodendrimers (∼9 nm in diameter) and planar cysteamine-coated gold surfaces can be tailored under fixed pH conditions upon the sole variation of the monovalent salt concentration in solution. The origin of this unconventional electrostatic force reversal is deciphered upon confrontation between AFM force measurements and mean-field force evaluation performed beyond the Derjaguin approximation by integrating the dendrimer and cysteamine electrostatic properties derived independently from electrokinetic measurements. It is shown that the electrostatic force reversal (i) originates from the zwitterionic character of the nanodendrimer-solution interphase, and (ii) becomes operational under the strict condition that the sub-nanometric separation distance between peripheral carboxylate groups and intraparticulate amines is of the order of the characteristic electric Debye layer thickness. The possibility to mediate - via suitable adjustment of monovalent salt content in solution - both the magnitude and sign of the electrostatic forces acting on soft interfaces with zwitterionic functionality paves the way for the design of innovative strategies to control the stability of nanoparticles against aggregation, and to modulate their adhesion onto inorganic surfaces or living organisms.
Collapse
Affiliation(s)
- Audrey Beaussart
- CNRS, LIEC (Laboratoire Interdisciplinaire des Environnements Continentaux), UMR7360, Vandoeuvre-lès-Nancy F-54501, France
| | | | | | | | | |
Collapse
|
28
|
Huang Y, Yamaguchi A, Pham TD, Kobayashi M. Charging and aggregation behavior of silica particles in the presence of lysozymes. Colloid Polym Sci 2017. [DOI: 10.1007/s00396-017-4226-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
29
|
Gopmandal PP, Ohshima H. Importance of pH-regulated charge density on the electrophoresis of soft particles. Chem Phys 2017. [DOI: 10.1016/j.chemphys.2016.11.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
30
|
Rotureau E, Waldvogel Y, Pinheiro JP, Farinha JPS, Bihannic I, Présent RM, Duval JFL. Structural effects of soft nanoparticulate ligands on trace metal complexation thermodynamics. Phys Chem Chem Phys 2016; 18:31711-31724. [PMID: 27841406 DOI: 10.1039/c6cp06880d] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Metal binding to natural soft colloids is difficult to address due to the inherent heterogeneity of their reactive polyelectrolytic volume and the modifications of their shell structure following changes in e.g. solution pH, salinity or temperature. In this work, we investigate the impacts of temperature- and salinity-mediated modifications of the shell structure of polymeric ligand nanoparticles on the thermodynamics of divalent metal ions Cd(ii)-complexation. The adopted particles consist of a glassy core decorated by a fine-tunable poly(N-isopropylacrylamide) anionic corona. According to synthesis, the charges originating from the metal binding carboxylic moieties supported by the corona chains are located preferentially either in the vicinity of the core or at the outer shell periphery (p(MA-N) and p(N-AA) particles, respectively). Stability constants (KML) of cadmium-nanoparticle complexes are measured under different temperature and salinity conditions using electroanalytical techniques. The obtained KML is clearly impacted by the location of the carboxylic functional groups within the shell as p(MA-N) leads to stronger nanoparticulate Cd complexes than p(N-AA). The dependence of KML on solution salinity for p(N-AA) is shown to be consistent with a binding of Cd to peripheral carboxylic groups driven by Coulombic interactions (Eigen-Fuoss mechanism for ions-pairing) or with particle electrostatic features operating at the edge of the shell Donnan volume. For p(MA-N) particulate ligands, a scenario where metal binding occurs within the intraparticulate Donnan phase correctly reproduces the experimental findings. Careful analysis of electroanalytical data further evidences that complexation of metal ions by core-shell particles significantly differ according to the location and distribution of the metal-binding sites throughout the reactive shell. This complexation heterogeneity is basically enhanced with increasing temperature i.e. upon significant increase of particle shell shrinking, which suggests that the contraction of the reactive phase volume of the particulate ligands promotes cooperative metal binding effects.
Collapse
Affiliation(s)
- Elise Rotureau
- CNRS, LIEC (Laboratoire Interdisciplinaire des Environnements Continentaux), UMR 7360, Vandoeuvre-lès-Nancy F-54501, France and Université de Lorraine, LIEC, UMR 7360, Vandoeuvre-lès-Nancy F-54501, France.
| | - Yves Waldvogel
- CNRS, LIEC (Laboratoire Interdisciplinaire des Environnements Continentaux), UMR 7360, Vandoeuvre-lès-Nancy F-54501, France and Université de Lorraine, LIEC, UMR 7360, Vandoeuvre-lès-Nancy F-54501, France.
| | - José P Pinheiro
- CNRS, LIEC (Laboratoire Interdisciplinaire des Environnements Continentaux), UMR 7360, Vandoeuvre-lès-Nancy F-54501, France and Université de Lorraine, LIEC, UMR 7360, Vandoeuvre-lès-Nancy F-54501, France.
| | - José Paulo S Farinha
- Centro de Quimica Fisica Molecular and IN-Institute of Nanoscience and Nanotechnology, Instituto Superior Tecnico, University of Lisbon, 1049-001 Lisboa, Portugal
| | - Isabelle Bihannic
- CNRS, LIEC (Laboratoire Interdisciplinaire des Environnements Continentaux), UMR 7360, Vandoeuvre-lès-Nancy F-54501, France and Université de Lorraine, LIEC, UMR 7360, Vandoeuvre-lès-Nancy F-54501, France.
| | - Romain M Présent
- CNRS, LIEC (Laboratoire Interdisciplinaire des Environnements Continentaux), UMR 7360, Vandoeuvre-lès-Nancy F-54501, France and Université de Lorraine, LIEC, UMR 7360, Vandoeuvre-lès-Nancy F-54501, France.
| | - Jérôme F L Duval
- CNRS, LIEC (Laboratoire Interdisciplinaire des Environnements Continentaux), UMR 7360, Vandoeuvre-lès-Nancy F-54501, France and Université de Lorraine, LIEC, UMR 7360, Vandoeuvre-lès-Nancy F-54501, France.
| |
Collapse
|
31
|
Electrophoresis of soft particles with charged rigid core coated with pH-regulated polyelectrolyte layer. Colloid Polym Sci 2016. [DOI: 10.1007/s00396-016-3948-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
32
|
Electrophoresis of diffuse soft particles with dielectric charged rigid core grafted with charge regulated inhomogeneous polymer segments. Colloids Surf A Physicochem Eng Asp 2016. [DOI: 10.1016/j.colsurfa.2016.05.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
33
|
Duval JF, Werner C, Zimmermann R. Electrokinetics of soft polymeric interphases with layered distribution of anionic and cationic charges. Curr Opin Colloid Interface Sci 2016. [DOI: 10.1016/j.cocis.2016.05.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
34
|
De S, Bhattacharyya S, Gopmandal PP. Importance of core electrostatic properties on the electrophoresis of a soft particle. Phys Rev E 2016; 94:022611. [PMID: 27627364 DOI: 10.1103/physreve.94.022611] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Indexed: 06/06/2023]
Abstract
The impact of the volumetric charged density of the dielectric rigid core on the electrophoresis of a soft particle is analyzed numerically. The volume charge density of the inner core of a soft particle can arise for a dendrimer structure or bacteriophage MS2. We consider the electrokinetic model based on the conservation principles, thus no conditions for Debye length or applied electric field is imposed. The fluid flow equations are coupled with the ion transport equations and the equation for the electric field. The occurrence of the induced nonuniform surface charge density on the outer surface of the inner core leads to a situation different from the existing analysis of a soft particle electrophoresis. The impact of this induced surface charge density together with the double-layer polarization and relaxation due to ion convection and electromigration is analyzed. The dielectric permittivity and the charge density of the core have a significant impact on the particle electrophoresis when the Debye length is in the order of the particle size. We find that by varying the ionic concentration of the electrolyte, the particle can exhibit reversal in its electrophoretic velocity. The role of the polymer layer softness parameter is addressed in the present analysis.
Collapse
Affiliation(s)
- Simanta De
- Department of Mathematics, Indian Institute of Technology Kharagpur, Kharagpur-721302, India
| | - Somnath Bhattacharyya
- Department of Mathematics, Indian Institute of Technology Kharagpur, Kharagpur-721302, India
| | - Partha P Gopmandal
- Department of Mathematics, National Institute of Technology Patna, Patna-800005, India
| |
Collapse
|
35
|
Effect of core charge density on the electrophoresis of a soft particle coated with polyelectrolyte layer. Colloid Polym Sci 2016. [DOI: 10.1007/s00396-015-3824-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
36
|
Zimmermann R, Werner C, Duval JFL. Recent Progress and Perspectives in the Electrokinetic Characterization of Polyelectrolyte Films. Polymers (Basel) 2015; 8:polym8010007. [PMID: 30979104 PMCID: PMC6432592 DOI: 10.3390/polym8010007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 12/22/2015] [Accepted: 12/23/2015] [Indexed: 11/16/2022] Open
Abstract
The analysis of the charge, structure and molecular interactions of/within polymeric substrates defines an important analytical challenge in materials science. Accordingly, advanced electrokinetic methods and theories have been developed to investigate the charging mechanisms and structure of soft material coatings. In particular, there has been significant progress in the quantitative interpretation of streaming current and surface conductivity data of polymeric films from the application of recent theories developed for the electrohydrodynamics of diffuse soft planar interfaces. Here, we review the theory and experimental strategies to analyze the interrelations of the charge and structure of polyelectrolyte layers supported by planar carriers under electrokinetic conditions. To illustrate the options arising from these developments, we discuss experimental and simulation data for plasma-immobilized poly(acrylic acid) films and for a polyelectrolyte bilayer consisting of poly(ethylene imine) and poly(acrylic acid). Finally, we briefly outline potential future developments in the field of the electrokinetics of polyelectrolyte layers.
Collapse
Affiliation(s)
- Ralf Zimmermann
- Leibniz Institute of Polymer Research Dresden, Max Bergmann Center of Biomaterials Dresden, Hohe Strasse 6, 01069 Dresden, Germany.
| | - Carsten Werner
- Leibniz Institute of Polymer Research Dresden, Max Bergmann Center of Biomaterials Dresden, Hohe Strasse 6, 01069 Dresden, Germany.
- Technische Universität Dresden, Center for Regenerative Therapies Dresden, Tatzberg 47, 01307 Dresden, Germany.
| | - Jérôme F L Duval
- Laboratoire Interdisciplinaire des Environnements Continentaux (LIEC), CNRS UMR 7360, 15 avenue du Charmois, B.P. 40, F-54501 Vandoeuvre-lès-Nancy cedex, France.
| |
Collapse
|