1
|
Picciolini S, Rodà F, Gualerzi A, Mangolini V, Forleo L, Mangolini A, Sesana S, Antoniou A, Re F, Seneci P, Bedoni M. SPRi analysis of molecular interactions of mApoE-functionalized liposomes as drug delivery systems for brain diseases. Analyst 2023; 148:6070-6077. [PMID: 37904570 DOI: 10.1039/d3an01507f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2023]
Abstract
The application of liposomes (LPs) to central nervous system disorders could represents a turning point in the therapy and quality of life of patients. Indeed, LPs have demonstrated their ability to cross the blood-brain barrier (BBB) and, as a consequence, to enhance the therapeutics delivery into the brain. Some approaches for BBB crossing involve the modification of LP surfaces with biologically active ligands. Among them, the Apolipoprotein E-modified peptide (mApoE) has been used for several LP-based nanovectors under investigation. In this study, we propose Surface Plasmon Resonance imaging (SPRi) for the characterization of multifunctionalized LPs for Glioblastoma treatment. LPs were functionalized with mApoE and with a metallo-protease sensitive lipopeptide to deliver and guarantee the localized release of an encapsulated drug in diseased areas. The SPRi analysis was optimized in order to evaluate the binding affinity between LPs and mApoE receptors, finding that mApoE-LPs generated SPRi signals referred to interactions between mApoE and receptors mainly present in the brain. Moreover, a significant binding between LPs and VCAM-1 (endothelial receptor) was observed, whereas LPs did not interact significantly with peripheral receptors expressed on monocytes and lymphocytes. SPRi results confirmed not only the presence of mApoE on LP surfaces, but also its binding affinity, thanks to the specific interaction with selected receptors. In conclusion, the high sensitivity and the multiplexing capability associated with the low volumes of sample required and the minimal sample preparation, make SPRi an excellent technique for the characterization of multifunctionalized nanoparticles-based formulations.
Collapse
Affiliation(s)
| | - Francesca Rodà
- IRCCS Fondazione Don Carlo Gnocchi Onlus, Milano, Italy.
- Clinical and Experimental Medicine PhD Program, University of Modena and Reggio Emilia, Modena, Italy
| | - Alice Gualerzi
- IRCCS Fondazione Don Carlo Gnocchi Onlus, Milano, Italy.
| | - Valentina Mangolini
- IRCCS Fondazione Don Carlo Gnocchi Onlus, Milano, Italy.
- Dipartimento di Medicina Molecolare e Traslazionale, Università degli Studi di Brescia, Brescia, Italy
| | - Luana Forleo
- IRCCS Fondazione Don Carlo Gnocchi Onlus, Milano, Italy.
| | | | - Silvia Sesana
- School of Medicine and Surgery, University of Milano-Bicocca, Vedano al Lambro, Italy
| | - Antonia Antoniou
- Chemistry Department, Università Statale di, Milano, Milano, Italy
| | - Francesca Re
- School of Medicine and Surgery, University of Milano-Bicocca, Vedano al Lambro, Italy
| | | | - Marzia Bedoni
- IRCCS Fondazione Don Carlo Gnocchi Onlus, Milano, Italy.
| |
Collapse
|
2
|
Belkilani M, Shokouhi M, Farre C, Chevalier Y, Minot S, Bessueille F, Abdelghani A, Jaffrezic-Renault N, Chaix C. Surface Plasmon Resonance Monitoring of Mono-Rhamnolipid Interaction with Phospholipid-Based Liposomes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:7975-7985. [PMID: 34170134 DOI: 10.1021/acs.langmuir.1c00846] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The interactions of mono-rhamnolipids (mono-RLs) with model membranes were investigated through a biomimetic approach using phospholipid-based liposomes immobilized on a gold substrate and also by the multiparametric surface plasmon resonance (MP-SPR) technique. Biotinylated liposomes were bound onto an SPR gold chip surface coated with a streptavidin layer. The resulting MP-SPR signal proved the efficient binding of the liposomes. The thickness of the liposome layer calculated by modeling the MP-SPR signal was about 80 nm, which matched the average diameter of the liposomes. The mono-RL binding to the film of the phospholipid liposomes was monitored by SPR and the morphological changes of the liposome layer were assessed by modeling the SPR signal. We demonstrated the capacity of the MP-SPR technique to characterize the different steps of the liposome architecture evolution, i.e., from a monolayer of phospholipid liposomes to a single phospholipid bilayer induced by the interaction with mono-RLs. Further washing treatment with Triton X-100 detergent left a monolayer of phospholipid on the surface. As a possible practical application, our method based on a biomimetic membrane coupled to an SPR measurement proved to be a robust and sensitive analytical tool for the detection of mono-RLs with a limit of detection of 2 μg mL-1.
Collapse
Affiliation(s)
- Meryem Belkilani
- CNRS, Claude Bernard Lyon 1 University, Institute of Analytical Sciences, University of Lyon, 5 rue de la Doua, F-69100 Villeurbanne, France
- ENSIT, University of Tunis, Avenue Taha Hussein, Montfleury, 1008 Tunis, Tunisia
- INSAT, Research Unit of Nanobiotechnology and Valorisation of Medicinal Plants, University of Carthage, 1080 Charguia Cedex, Tunisia
| | - Maryam Shokouhi
- Department of chemistry, University of Isfahan, Isfahan 81746-73441, Iran
| | - Carole Farre
- CNRS, Claude Bernard Lyon 1 University, Institute of Analytical Sciences, University of Lyon, 5 rue de la Doua, F-69100 Villeurbanne, France
| | - Yves Chevalier
- CNRS, Claude Bernard Lyon1 University, University of Lyon, LAGEPP, 43 Bd 11 Novembre, F-69622 Villeurbanne, France
| | - Sylvain Minot
- CNRS, Claude Bernard Lyon 1 University, Institute of Analytical Sciences, University of Lyon, 5 rue de la Doua, F-69100 Villeurbanne, France
| | - François Bessueille
- CNRS, Claude Bernard Lyon 1 University, Institute of Analytical Sciences, University of Lyon, 5 rue de la Doua, F-69100 Villeurbanne, France
| | - Adnane Abdelghani
- INSAT, Research Unit of Nanobiotechnology and Valorisation of Medicinal Plants, University of Carthage, 1080 Charguia Cedex, Tunisia
| | - Nicole Jaffrezic-Renault
- CNRS, Claude Bernard Lyon 1 University, Institute of Analytical Sciences, University of Lyon, 5 rue de la Doua, F-69100 Villeurbanne, France
| | - Carole Chaix
- CNRS, Claude Bernard Lyon 1 University, Institute of Analytical Sciences, University of Lyon, 5 rue de la Doua, F-69100 Villeurbanne, France
| |
Collapse
|
3
|
Chain CY, Daza Millone MA, Cisneros JS, Ramirez EA, Vela ME. Surface Plasmon Resonance as a Characterization Tool for Lipid Nanoparticles Used in Drug Delivery. Front Chem 2021; 8:605307. [PMID: 33490037 PMCID: PMC7817952 DOI: 10.3389/fchem.2020.605307] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 12/04/2020] [Indexed: 12/24/2022] Open
Abstract
The development of drug carriers based in lipid nanoparticles (LNPs) aims toward the synthesis of non-toxic multifunctional nanovehicles that can bypass the immune system and allow specific site targeting, controlled release and complete degradation of the carrier components. Among label free techniques, Surface Plasmon Resonance (SPR) biosensing is a versatile tool to study LNPs in the field of nanotherapeutics research. SPR, widely used for the analysis of molecular interactions, is based on the immobilization of one of the interacting partners to the sensor surface, which can be easily achieved in the case of LNPs by hydrophobic attachment onto commercial lipid- capture sensor chips. In the last years SPR technology has emerged as an interesting strategy for studying molecular aspects of drug delivery that determines the efficacy of the nanotherapeutical such as LNPs' interactions with biological targets, with serum proteins and with tumor extracelullar matrix. Moreover, SPR has contributed to the obtention and characterization of LNPs, gathering information about the interplay between components of the formulations, their response to organic molecules and, more recently, the quantification and molecular characterization of exosomes. By the combination of available sensor platforms, assay quickness and straight forward platform adaptation for new carrier systems, SPR is becoming a high throughput technique for LNPs' characterization and analysis.
Collapse
Affiliation(s)
- Cecilia Yamil Chain
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA- Universidad Nacional de La Plata (UNLP)- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)), La Plata, Argentina
| | - María Antonieta Daza Millone
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA- Universidad Nacional de La Plata (UNLP)- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)), La Plata, Argentina
| | - José Sebastián Cisneros
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA- Universidad Nacional de La Plata (UNLP)- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)), La Plata, Argentina
| | - Eduardo Alejandro Ramirez
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA- Universidad Nacional de La Plata (UNLP)- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)), La Plata, Argentina
| | - María Elena Vela
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA- Universidad Nacional de La Plata (UNLP)- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)), La Plata, Argentina
| |
Collapse
|
4
|
Li H, Liu Q, Crielaard BJ, de Vries JW, Loznik M, Meng Z, Yang X, Göstl R, Herrmann A. Fast, Efficient, and Targeted Liposome Delivery Mediated by DNA Hybridization. Adv Healthc Mater 2019; 8:e1900389. [PMID: 31081288 DOI: 10.1002/adhm.201900389] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 04/26/2019] [Indexed: 12/22/2022]
Abstract
Safety and efficacy, two significant parameters in drug administration, can be improved by site-specific delivery approaches. Here a fast, efficient, and targeted liposome delivery system steered by a DNA hybridization recognition mechanism is presented. For this purpose, lipid-terminated DNA is inserted in both liposome and cell membranes by simple mixing of the components. Cellular accumulation of cargo encapsulated in the liposomal core is substantially enhanced when the DNA sequence on the cell is complementary to that on the liposome. Additionally, in mixed cell populations, liposomes discriminate targets by their complementary DNA sequences. Exposure of cells to low temperature and endocytosis inhibitors suggests a caveolae-dependent endocytosis uptake pathway. Mechanistically, hybridization between DNA strands spatially traps liposomes and cell membranes in close proximity, consequently increases the local liposome concentration, and thereby enhances cellular uptake of liposomes and their payload. This programmable delivery system might contribute to new applications in molecular biology and drug delivery.
Collapse
Affiliation(s)
- Hongyan Li
- Zernike Institute for Advanced MaterialsUniversity of Groningen Nijenborgh 4 9747 AG Groningen The Netherlands
- DWI – Leibniz Institute for Interactive Materials Forckenbeckstr. 50 52056 Aachen Germany
| | - Qing Liu
- Zernike Institute for Advanced MaterialsUniversity of Groningen Nijenborgh 4 9747 AG Groningen The Netherlands
| | - Bart J. Crielaard
- Zernike Institute for Advanced MaterialsUniversity of Groningen Nijenborgh 4 9747 AG Groningen The Netherlands
| | - Jan W. de Vries
- Zernike Institute for Advanced MaterialsUniversity of Groningen Nijenborgh 4 9747 AG Groningen The Netherlands
| | - Mark Loznik
- DWI – Leibniz Institute for Interactive Materials Forckenbeckstr. 50 52056 Aachen Germany
- Institute of Technical and Macromolecular ChemistryRWTH Aachen University Worringerweg 2 52074 Aachen Germany
| | - Zhuojun Meng
- Zernike Institute for Advanced MaterialsUniversity of Groningen Nijenborgh 4 9747 AG Groningen The Netherlands
| | - Xintong Yang
- Zernike Institute for Advanced MaterialsUniversity of Groningen Nijenborgh 4 9747 AG Groningen The Netherlands
- DWI – Leibniz Institute for Interactive Materials Forckenbeckstr. 50 52056 Aachen Germany
| | - Robert Göstl
- DWI – Leibniz Institute for Interactive Materials Forckenbeckstr. 50 52056 Aachen Germany
| | - Andreas Herrmann
- Zernike Institute for Advanced MaterialsUniversity of Groningen Nijenborgh 4 9747 AG Groningen The Netherlands
- DWI – Leibniz Institute for Interactive Materials Forckenbeckstr. 50 52056 Aachen Germany
- Institute of Technical and Macromolecular ChemistryRWTH Aachen University Worringerweg 2 52074 Aachen Germany
| |
Collapse
|
5
|
Roointan A, Kianpour S, Memari F, Gandomani M, Gheibi Hayat SM, Mohammadi-Samani S. Poly(lactic-co-glycolic acid): The most ardent and flexible candidate in biomedicine! INT J POLYM MATER PO 2018. [DOI: 10.1080/00914037.2017.1405350] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Amir Roointan
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sedigheh Kianpour
- Department of Pharmaceutical Biotechnology, Pharmaceutical Sciences Research Center, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fatemeh Memari
- Department of Medical Biotechnology, School of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Molood Gandomani
- Department of Bioengineering, Biotechnology Research Center, Cyprus international University, Nicosia, Cyprus
| | - Seyed Mohammad Gheibi Hayat
- Student Research Committee, Department of Medical Biotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Soliman Mohammadi-Samani
- Department of Pharmaceutics, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
6
|
Deng C, Zhang Q, Fu Y, Sun X, Gong T, Zhang Z. Coadministration of Oligomeric Hyaluronic Acid-Modified Liposomes with Tumor-Penetrating Peptide-iRGD Enhances the Antitumor Efficacy of Doxorubicin against Melanoma. ACS APPLIED MATERIALS & INTERFACES 2017; 9:1280-1292. [PMID: 28009503 DOI: 10.1021/acsami.6b13738] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
A safe and efficient tumor-targeting strategy based on oligomeric hyaluronic acid (HA) modification and coadministration of tumor-penetrating peptide-iRGD was successfully developed. In this study, common liposomes (cLip) were modified by oligomeric HA to obtain HA-Lip. After injection into rats, HA-Lip showed good stealth in the bloodstream and lower liver distribution compared with cLip. Moreover, our HA-Lip could be internalized into B16F10 cells (CD44-overexpressing tumor cells) through HA-CD44 interaction. After systemic administration to B16F10 melanoma-bearing mice, HA-Lip showed an increased distribution in tumor due to the prolonged blood circulation time and the enhanced penetration and retention effect. When coadministered with iRGD, the tumor penetration of HA-Lip was significantly enhanced, which could promote HA-Lip internalization by tumors cells located in deep tumor regions through receptor-mediated endocytosis. Furthermore, doxorubicin (DOX)-loaded HA-Lip coadministering with iRGD showed much better antitumor effect compared to DOX-loaded cLip and DOX-loaded cLip in combination with iRGD. In systemic toxicity test, DOX-loaded HA-Lip could significantly decrease the cardiotoxicity and myelosuppression of DOX. Taken together, our results demonstrated that coadministration of oligomeric HA-modified liposomes with iRGD could be a promising treatment strategy for targeted therapy of melanoma.
Collapse
Affiliation(s)
- Caifeng Deng
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, West China School of Pharmacy, Sichuan University , Chengdu 610041, China
| | - Quan Zhang
- School of Pharmacy, Chengdu Medical College , Chengdu 610083, China
| | - Yao Fu
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, West China School of Pharmacy, Sichuan University , Chengdu 610041, China
| | - Xun Sun
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, West China School of Pharmacy, Sichuan University , Chengdu 610041, China
| | - Tao Gong
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, West China School of Pharmacy, Sichuan University , Chengdu 610041, China
| | - Zhirong Zhang
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, West China School of Pharmacy, Sichuan University , Chengdu 610041, China
| |
Collapse
|
7
|
Abd Ellah NH, Abouelmagd SA. Surface functionalization of polymeric nanoparticles for tumor drug delivery: approaches and challenges. Expert Opin Drug Deliv 2016; 14:201-214. [DOI: 10.1080/17425247.2016.1213238] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Noura H. Abd Ellah
- Department of Pharmaceutics, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| | - Sara A. Abouelmagd
- Department of Pharmaceutics, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| |
Collapse
|