1
|
Liang Y, Zhu X, Liu H, Yang L, Liu M, Yue Y, He B, Wang J. Investigation of the Differences in Amyloid-Like Fibrils Derived from Wheat Gluten with Varying Structures under Typical Food Processing Conditions. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:9271-9285. [PMID: 40180613 DOI: 10.1021/acs.jafc.4c12444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
Abstract
This study investigates the differences in physicochemical properties, structural characteristics, and fibril morphology among three wheat gluten with distinct secondary structure contents (A protein: high α-helices, low β-sheets, low random coils; C protein: low α-helices, high β-sheets, high random coils; B protein: intermediate structure) when amyloid-like fibrils (AFs) are formed under boiling and steaming conditions. Congo red absorption, polarized light microscopy, and X-ray diffraction confirmed the formation of AFs in proteins A, B, and C under boiling and steaming conditions. Thioflavin T fluorescence revealed that C-protein-derived fibrils (CPF) exhibited the highest intensity, indicating the strongest fibril-forming ability. SE-HPLC analysis showed a gradual increase in molecular weight and AFs contents with prolonged heating. Increased heating time led to larger particle sizes, higher β-sheet content, and involvement of aromatic amino acids in β-sheet formation via π-π stacking, promoting fibril growth. These changes were more pronounced under steaming conditions. AFM revealed that under steaming, the C protein formed longer and taller fibril structures than under boiling. This work establishes a theoretical foundation for understanding the growth mechanism of AFs formed by gluten proteins with different structures during food processing.
Collapse
Affiliation(s)
- Ying Liang
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Xiuling Zhu
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Hao Liu
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Liu Yang
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Mei Liu
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Yuanyuan Yue
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Baoshan He
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Jinshui Wang
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| |
Collapse
|
2
|
Xu Y, McRae DM, Leonenko Z. Quantitative Analysis of the Influence of Trehalose on Amyloid-β Binding to Membranes by Localized Surface Plasmon Resonance Spectroscopy. ACS OMEGA 2025; 10:12872-12879. [PMID: 40224471 PMCID: PMC11983167 DOI: 10.1021/acsomega.4c07038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 03/17/2025] [Accepted: 03/20/2025] [Indexed: 04/15/2025]
Abstract
The damaging effect of amyloid-β (Aβ) on cellular membranes is an essential factor that contributes to Aβ's neurotoxicity in Alzheimer's disease. In this work, we explore the role of trehalose sugar in protecting model lipid membranes composed of DPPC-POPC-Cholesterol against Aβ toxicity. We used localized surface plasmon resonance (LSPR) spectroscopy and conducted a quantitative analysis to study the influence of trehalose on Aβ-membrane interactions. The LSPR data indicate that trehalose can effectively reduce the level of binding of Aβ to the lipid membrane, indicating its protective role against amyloid toxicity. Additionally, atomic force microscopy (AFM) was used to visualize the lipid membranes supported on the LSPR sensors and to elucidate the effect of trehalose on membrane morphology. The ability of trehalose to alter the physical properties of model membranes is discussed in relation to its protective role against Aβ during dehydration.
Collapse
Affiliation(s)
- Yue Xu
- Department
of Physics & Astronomy, University of
Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Danielle M. McRae
- Department
of Physics & Astronomy, University of
Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Zoya Leonenko
- Department
of Physics & Astronomy, University of
Waterloo, Waterloo, Ontario N2L 3G1, Canada
- Department
of Biology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
- Waterloo
Institute for Nanotechnology, Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
3
|
Olari LR, Liu S, Arnold F, Kühlwein J, Gil Miró M, Updahaya AR, Stürzel C, Thal DR, Walther P, Sparrer KMJ, Danzer KM, Münch J, Kirchhoff F. α-Synuclein fibrils enhance HIV-1 infection of human T cells, macrophages and microglia. Nat Commun 2025; 16:813. [PMID: 39827271 PMCID: PMC11742913 DOI: 10.1038/s41467-025-56099-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 01/06/2025] [Indexed: 01/30/2025] Open
Abstract
HIV-associated neurocognitive disorders (HAND) and viral reservoirs in the brain remain a significant challenge. Despite their importance, the mechanisms allowing HIV-1 entry and replication in the central nervous system (CNS) are poorly understood. Here, we show that α-synuclein and (to a lesser extent) Aβ fibrils associated with neurological diseases enhance HIV-1 entry and replication in human T cells, macrophages, and microglia. Additionally, an HIV-1 Env-derived amyloidogenic peptide accelerated amyloid formation by α-synuclein and Aβ peptides. Mechanistic studies show that α-synuclein and Aβ fibrils interact with HIV-1 particles and promote virion attachment and fusion with target cells. Despite an overall negative surface charge, these fibrils facilitate interactions between viral and cellular membranes. The enhancing effects of human brain extracts on HIV-1 infection correlated with their binding to Thioflavin T, a dye commonly used to stain amyloids. Our results suggest a detrimental interplay between HIV-1 and brain amyloids that may contribute to the development of neurodegenerative diseases.
Collapse
Affiliation(s)
- Lia-Raluca Olari
- Institute of Molecular Virology, Ulm University Medical Center, 89081, Ulm, Germany
| | - Sichen Liu
- Institute of Molecular Virology, Ulm University Medical Center, 89081, Ulm, Germany
| | - Franziska Arnold
- Institute of Molecular Virology, Ulm University Medical Center, 89081, Ulm, Germany
| | - Julia Kühlwein
- Department of Neurology, Ulm University, 89081, Ulm, Germany
| | - Marta Gil Miró
- Institute of Molecular Virology, Ulm University Medical Center, 89081, Ulm, Germany
| | - Ajeet Rijal Updahaya
- Laboratory of Neuropathology, Institute of Pathology, Center for Clinical Research at the University of Ulm, 89081, Ulm, Germany
| | - Christina Stürzel
- Institute of Molecular Virology, Ulm University Medical Center, 89081, Ulm, Germany
| | - Dietmar Rudolf Thal
- Laboratory of Neuropathology, Institute of Pathology, Center for Clinical Research at the University of Ulm, 89081, Ulm, Germany
- Laboratory of Neuropathology, Department of Imaging and Pathology, Leuven Brain Institute, KU Leuven, 3001, Leuven, Belgium
| | - Paul Walther
- Central Facility for Electron Microscopy, Ulm University, 89081, Ulm, Germany
| | - Konstantin M J Sparrer
- Institute of Molecular Virology, Ulm University Medical Center, 89081, Ulm, Germany
- German Center for Neurodegenerative Diseases (DZNE), 89081, Ulm, Germany
| | - Karin M Danzer
- Department of Neurology, Ulm University, 89081, Ulm, Germany
- German Center for Neurodegenerative Diseases (DZNE), 89081, Ulm, Germany
| | - Jan Münch
- Institute of Molecular Virology, Ulm University Medical Center, 89081, Ulm, Germany
| | - Frank Kirchhoff
- Institute of Molecular Virology, Ulm University Medical Center, 89081, Ulm, Germany.
| |
Collapse
|
4
|
Seychell RM, El Saghir A, Vassallo N. Modulation of Biological Membranes Using Small-Molecule Compounds to Counter Toxicity Caused by Amyloidogenic Proteins. MEMBRANES 2024; 14:231. [PMID: 39590617 PMCID: PMC11596372 DOI: 10.3390/membranes14110231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 11/01/2024] [Accepted: 11/05/2024] [Indexed: 11/28/2024]
Abstract
The transition of peptides or proteins along a misfolding continuum from soluble functional states to pathological aggregates, to ultimately deposit as amyloid fibrils, is a process that underlies an expanding group of human diseases-collectively known as protein-misfolding disorders (PMDs). These include common and debilitating conditions, such as Alzheimer's disease, Parkinson's disease, and type-2 diabetes. Compelling evidence has emerged that the complex interplay between the misfolded proteins and biological membranes is a key determinant of the pathogenic mechanisms by which harmful amyloid entities are formed and exert their cytotoxicity. Most efforts thus far to develop disease-modifying treatments for PMDs have largely focused on anti-aggregation strategies: to neutralise, or prevent the formation of, toxic amyloid species. Herein, we review the critical role of the phospholipid membrane in mediating and enabling amyloid pathogenicity. We consequently propose that the development of small molecules, which have the potential to uniquely modify the physicochemical properties of the membrane and make it more resilient against damage by misfolded proteins, could provide a novel therapeutic approach in PMDs. By way of an example, natural compounds shown to intercalate into lipid bilayers and inhibit amyloid-lipid interactions, such as the aminosterols, squalamine and trodusquamine, cholesterol, ubiquinone, and select polyphenols, are discussed. Such a strategy would provide a novel approach to counter a wide range of toxic biomolecules implicit in numerous human amyloid pathologies.
Collapse
Affiliation(s)
- Raina Marie Seychell
- Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, MSD 2080 Msida, Malta
| | - Adam El Saghir
- Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, MSD 2080 Msida, Malta
| | - Neville Vassallo
- Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, MSD 2080 Msida, Malta
- Centre for Molecular Medicine and Biobanking, University of Malta, MSD 2080 Msida, Malta
| |
Collapse
|
5
|
Shin KC, Ali Moussa HY, Park Y. Cholesterol imbalance and neurotransmission defects in neurodegeneration. Exp Mol Med 2024; 56:1685-1690. [PMID: 39085348 PMCID: PMC11371908 DOI: 10.1038/s12276-024-01273-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 04/16/2024] [Accepted: 04/18/2024] [Indexed: 08/02/2024] Open
Abstract
The brain contains the highest concentration of cholesterol in the human body, which emphasizes the importance of cholesterol in brain physiology. Cholesterol is involved in neurogenesis and synaptogenesis, and age-related reductions in cholesterol levels can lead to synaptic loss and impaired synaptic plasticity, which potentially contribute to neurodegeneration. The maintenance of cholesterol homeostasis in the neuronal plasma membrane is essential for normal brain function, and imbalances in cholesterol distribution are associated with various neurodegenerative disorders, including Alzheimer's disease, Parkinson's disease, and Huntington's disease. This review aims to explore the molecular and pathological mechanisms by which cholesterol imbalance can lead to neurotransmission defects and neurodegeneration, focusing on four key mechanisms: (1) synaptic dysfunction, (2) alterations in membrane structure and protein clustering, (3) oligomers of amyloid beta (Aβ) protein, and (4) α-synuclein aggregation.
Collapse
Affiliation(s)
- Kyung Chul Shin
- Neurological Disorders Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar
| | - Houda Yasmine Ali Moussa
- Neurological Disorders Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar
| | - Yongsoo Park
- Neurological Disorders Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar.
- College of Health & Life Sciences (CHLS), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar.
| |
Collapse
|
6
|
Ikeda K, Sugiura Y, Nakao H, Nakano M. Thermodynamics of oligomerization and Helix-to-sheet structural transition of amyloid β-protein on anionic phospholipid vesicles. Biophys Chem 2024; 310:107248. [PMID: 38653174 DOI: 10.1016/j.bpc.2024.107248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/15/2024] [Accepted: 04/16/2024] [Indexed: 04/25/2024]
Abstract
Understanding oligomerization and aggregation of the amyloid-β protein is important to elucidate the pathological mechanisms of Alzheimer's disease, and lipid membranes play critical roles in this process. In addition to studies reported by other groups, our group has also reported that the negatively-charged lipid bilayers with a high positive curvature induced α-helix-to-β-sheet conformational transitions of amyloid-β-(1-40) upon increase in protein density on the membrane surface and promoted amyloid fibril formation of the protein. Herein, we investigated detailed mechanisms of the conformational transition and oligomer formation of the amyloid-β protein on the membrane surface. Changes in the fractions of the three protein conformers (free monomer, membrane-bound α-helix-rich conformation, and β-sheet-rich conformation) were determined from the fluorescent spectral changes of the tryptophan probe in the protein. The helix-to-sheet structural transition on the surface was described by a thermodynamic model of octamer formation driven by entropic forces including hydrophobic interactions. These findings provide useful information for understanding the self-assembly of amyloidogenic proteins on lipid membrane surfaces.
Collapse
Affiliation(s)
- Keisuke Ikeda
- Department of Biointerface Chemistry, Faculty of Pharmaceutical Sciences, University of Toyama, Sugitani 2630, Toyama 930-0194, Japan.
| | - Yuuki Sugiura
- Department of Biointerface Chemistry, Faculty of Pharmaceutical Sciences, University of Toyama, Sugitani 2630, Toyama 930-0194, Japan
| | - Hiroyuki Nakao
- Department of Biointerface Chemistry, Faculty of Pharmaceutical Sciences, University of Toyama, Sugitani 2630, Toyama 930-0194, Japan
| | - Minoru Nakano
- Department of Biointerface Chemistry, Faculty of Pharmaceutical Sciences, University of Toyama, Sugitani 2630, Toyama 930-0194, Japan
| |
Collapse
|
7
|
Díaz M. Multifactor Analyses of Frontal Cortex Lipids in the APP/PS1 Model of Familial Alzheimer's Disease Reveal Anomalies in Responses to Dietary n-3 PUFA and Estrogenic Treatments. Genes (Basel) 2024; 15:810. [PMID: 38927745 PMCID: PMC11202691 DOI: 10.3390/genes15060810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/11/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
Brain lipid homeostasis is an absolute requirement for proper functionality of nerve cells and neurological performance. Current evidence demonstrates that lipid alterations are linked to neurodegenerative diseases, especially Alzheimer's disease (AD). The complexity of the brain lipidome and its metabolic regulation has hampered the identification of critical processes associated with the onset and progression of AD. While most experimental studies have focused on the effects of known factors on the development of pathological hallmarks in AD, e.g., amyloid deposition, tau protein and neurofibrillary tangles, neuroinflammation, etc., studies addressing the causative effects of lipid alterations remain largely unexplored. In the present study, we have used a multifactor approach combining diets containing different amounts of polyunsaturated fatty acids (PUFAs), estrogen availabilities, and genetic backgrounds, i.e., wild type (WT) and APP/PS1 (FAD), to analyze the lipid phenotype of the frontal cortex in middle-aged female mice. First, we observed that severe n-3 PUFA deficiency impacts the brain n-3 long-chain PUFA (LCPUFA) composition, yet it was notably mitigated by hepatic de novo synthesis. n-6 LCPUFAs, ether-linked fatty acids, and saturates were also changed by the dietary condition, but the extent of changes was dependent on the genetic background and hormonal condition. Likewise, brain cortex phospholipids were mostly modified by the genotype (FAD>WT) with nuanced effects from dietary treatment. Cholesterol (but not sterol esters) was modified by the genotype (WT>FAD) and dietary condition (higher in DHA-free conditions, especially in WT mice). However, the effects of estrogen treatment were mostly observed in relation to phospholipid remodeling in a genotype-dependent manner. Analyses of lipid-derived variables indicate that nerve cell membrane biophysics were significantly affected by the three factors, with lower membrane microviscosity (higher fluidity) values obtained for FAD animals. In conclusion, our multifactor analyses revealed that the genotype, diet, and estrogen status modulate the lipid phenotype of the frontal cortex, both as independent factors and through their interactions. Altogether, the outcomes point to potential strategies based on dietary and hormonal interventions aimed at stabilizing the brain cortex lipid composition in Alzheimer's disease neuropathology.
Collapse
Affiliation(s)
- Mario Díaz
- Membrane Physiology and Biophysics, Department of Physics, School of Sciences, University of La Laguna, 38206 Tenerife, Spain; or
- Instituto Universitario de Neurociencias (IUNE), University of La Laguna, 38206 Tenerife, Spain
| |
Collapse
|
8
|
van der Pol RI, Brinkmann BW, Sevink GJA. Analyzing Lipid Membrane Defects via a Coarse-Grained to Triangulated Surface Map: The Role of Lipid Order and Local Curvature in Molecular Binding. J Chem Theory Comput 2024; 20:2888-2900. [PMID: 38537131 PMCID: PMC11008102 DOI: 10.1021/acs.jctc.4c00082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/14/2024] [Accepted: 03/14/2024] [Indexed: 04/10/2024]
Abstract
Lipid packing defects are known to serve as quantitative indicators for protein binding to lipid membranes. This paper presents a protocol for mapping molecular lipid detail onto a triangulated continuum leaflet representation. Besides establishing the desired forward counterpart to the existing inverse TS2CG map, this coarse-grained to triangulated surface (CG2TS) map enables straightforward extraction of the defect characteristics for any membrane geometry found in nature. We have applied our protocol to investigate the role of local curvature and varying lipid packing on the defect constant π. We find that the defect size is greatly influenced by both factors, arguing strongly against the usual assignment of a single defect constant in the case of more realistic membrane conditions. An important discovery is that lipids in the gel phase produce larger defects, or a higher π, in domains of high (local) curvature than the same lipid in a liquid phase of any curvature. This finding suggests that membranes featuring very ordered lipid packing can bind proteins via large defects in curved regions. Finally, we propose a route for estimating defect constants directly from the standard membrane properties. Identifying the precise role of composition, lipid (tail) order, and (local) curvature in defects for the irregular lipid structures that are (temporally) present in many biological processes is instrumental for obtaining fundamental insight as well as for a rational design of membrane binding targets.
Collapse
Affiliation(s)
- Rianne
W. I. van der Pol
- Leiden
Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Bregje W. Brinkmann
- Institute
of Environmental Sciences, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - G. J. Agur Sevink
- Leiden
Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| |
Collapse
|
9
|
Kurakin S, Badreeva D, Dushanov E, Shutikov A, Efimov S, Timerova A, Mukhametzyanov T, Murugova T, Ivankov O, Mamatkulov K, Arzumanyan G, Klochkov V, Kučerka N. Arrangement of lipid vesicles and bicelle-like structures formed in the presence of Aβ(25-35) peptide. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2024; 1866:184237. [PMID: 37820938 DOI: 10.1016/j.bbamem.2023.184237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 08/31/2023] [Accepted: 10/03/2023] [Indexed: 10/13/2023]
Abstract
Our complementary experimental data and molecular dynamics (MD) simulations results reveal the structure of previously observed lipid bicelle-like structures (BLSs) formed in the presence of amyloid-beta peptide Aβ(25-35) below the main phase transition temperature (Tm) of saturated phosphatidylcholine lipids and small unilamellar vesicles (SUVs) above this temperature. First, we show by using solid-state 31P nuclear magnetic resonance (NMR) spectroscopy that our BLSs being in the lipid gel phase demonstrate magnetic alignment along the magnetic field of NMR spectrometer and undergo a transition to SUVs in the lipid fluid phase when heated through the Tm. Secondly, thanks to the BLS alignment we present their lipid structure. Lipids are found located not only in the flat bilayered part but also around its perimeter, which is corroborated by the results of coarse-grained (CG) MD simulations. Finally, peptides appear to mix randomly with lipids in SUVs while assuming predominantly unordered secondary structures revealed by circular dichroism (CD), Raman spectroscopy, and all-atom MD simulations. Importantly, the former is changing little when the system undergoes morphological transitions between BLSs and SUVs. Our structural results then offer a platform for studying and understanding mechanisms of morphological transformations caused by the disruptive effect of amyloid-beta peptides on the lipid bilayer.
Collapse
Affiliation(s)
- Sergei Kurakin
- Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, Joliot-Curie 6, Dubna, Moscow Region 141980, Russia; Institute of Physics, Kazan Federal University, Kremlevskaya 18, Kazan 420008, Russia.
| | - Dina Badreeva
- Meshcheryakov Laboratory of Information Technologies, Joint Institute for Nuclear Research, Joliot-Curie 6, Dubna, Moscow Region 141980, Russia
| | - Ermuhammad Dushanov
- Laboratory of Radiation Biology, Joint Institute for Nuclear Research, Joliot-Curie 6, Dubna, Moscow Region 141980, Russia
| | - Artyom Shutikov
- Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, Joliot-Curie 6, Dubna, Moscow Region 141980, Russia
| | - Sergey Efimov
- Institute of Physics, Kazan Federal University, Kremlevskaya 18, Kazan 420008, Russia
| | - Ayzira Timerova
- Institute of Physics, Kazan Federal University, Kremlevskaya 18, Kazan 420008, Russia
| | - Timur Mukhametzyanov
- Butlerov Chemistry Institute, Kazan Federal University, Kremlevskaya 18, Kazan 420008, Russia
| | - Tatiana Murugova
- Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, Joliot-Curie 6, Dubna, Moscow Region 141980, Russia
| | - Oleksandr Ivankov
- Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, Joliot-Curie 6, Dubna, Moscow Region 141980, Russia
| | - Kahramon Mamatkulov
- Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, Joliot-Curie 6, Dubna, Moscow Region 141980, Russia
| | - Grigory Arzumanyan
- Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, Joliot-Curie 6, Dubna, Moscow Region 141980, Russia
| | - Vladimir Klochkov
- Institute of Physics, Kazan Federal University, Kremlevskaya 18, Kazan 420008, Russia
| | - Norbert Kučerka
- Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, Joliot-Curie 6, Dubna, Moscow Region 141980, Russia; Department of Physical Chemistry of Drugs, Faculty of Pharmacy, Comenius University Bratislava, Odbojárov 10, Bratislava 832 32, Slovakia.
| |
Collapse
|
10
|
Kumashiro M, Matsuo K. Characterization of membrane-interaction mechanisms of proteins using vacuum-ultraviolet circular dichroism spectroscopy. Chirality 2023; 35:826-837. [PMID: 37418251 DOI: 10.1002/chir.23607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/30/2023] [Accepted: 06/21/2023] [Indexed: 07/08/2023]
Abstract
Protein-membrane interactions play an important role in various biological phenomena, such as material transport, demyelinating diseases, and antimicrobial activity. We combined vacuum-ultraviolet circular dichroism (VUVCD) spectroscopy with theoretical (e.g., molecular dynamics and neural networks) and polarization experimental (e.g., linear dichroism and fluorescence anisotropy) methods to characterize the membrane interaction mechanisms of three soluble proteins (or peptides). α1 -Acid glycoprotein has the drug-binding ability, but the combination of VUVCD and neural-network method revealed that the membrane interaction causes the extension of helix in the N-terminal region, which reduces the binding ability. Myelin basic protein (MBP) is an essential component of the myelin sheath with a multi-layered structure. Molecular dynamics simulations using a VUVCD-guided system showed that MBP forms two amphiphilic and three non-amphiphilic helices as membrane interaction sites. These multivalent interactions may allow MBP to interact with two opposing membrane leaflets, contributing to the formation of a multi-layered myelin structure. The antimicrobial peptide magainin 2 interacts with the bacterial membrane, causing damage to its structure. VUVCD analysis revealed that the M2 peptides assemble in the membrane and turn into oligomers with a β-strand structure. Linear dichroism and fluorescence anisotropy suggested that the oligomers are inserted into the hydrophobic core of the membrane, disrupting the bacterial membrane. Overall, our findings demonstrate that VUVCD and its combination with theoretical and polarization experimental methods pave the way for unraveling the molecular mechanisms of biological phenomena related to protein-membrane interactions.
Collapse
Affiliation(s)
- Munehiro Kumashiro
- Institute of Advanced Medical Sciences, Tokushima University, Tokushima, Japan
| | - Koichi Matsuo
- Hiroshima Synchrotron Radiation Center, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
| |
Collapse
|
11
|
Ivankov O, Kondela T, Dushanov EB, Ermakova EV, Murugova TN, Soloviov D, Kuklin AI, Kučerka N. Cholesterol and melatonin regulated membrane fluidity does not affect the membrane breakage triggered by amyloid-beta peptide. Biophys Chem 2023; 298:107023. [PMID: 37148823 DOI: 10.1016/j.bpc.2023.107023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 04/12/2023] [Accepted: 04/12/2023] [Indexed: 05/08/2023]
Abstract
We have studied by means of small angle neutron scattering and diffraction, and molecular dynamics simulations the effect of lipid membrane fluidity on the amyloid-beta peptide interactions with the membrane. These interactions have been discovered previously to trigger the reorganization of model membranes between unilamellar vesicles and planar membranes (bicelle-like structures) during the lipid phase transition. The morphology changes were taking place in rigid membranes prepared of fully saturated lipids and were proposed to play a role in the onset of amyloid related disorders. We show in this study that the replacement of fully saturated lipids by more fluid mono-unsaturated lipids eliminates the mentioned morphology changes, most likely due to the absence of phase transition within the temperature range investigated. We have therefore controlled the membrane rigidity also while ensuring the presence of membrane phase transition within the biologically relevant temperatures. It was done by the addition of melatonin and/or cholesterol to the initial membranes made of saturated lipids. Small angle neutron scattering experiments performed over a range of cholesterol and melatonin concentrations show their distinctive effects on the local membrane structure only. The cholesterol for example affects the membrane curvature such that spontaneously formed unilamellar vesicles are of much larger sizes than those formed by the neat lipid membranes or membranes with melatonin added. The temperature dependent experiments, however, reveal no influence on the previously discovered membrane breakage whether cholesterol or melatonin have been added.
Collapse
Affiliation(s)
- O Ivankov
- Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, Dubna 141980, Russia.
| | - T Kondela
- Department of Nuclear Physics and Biophysics, Faculty of Mathematics, Physics and Informatics, Comenius University Bratislava, Bratislava 842 48, Slovakia
| | - E B Dushanov
- Laboratory of Radiation Biology, Joint Institute for Nuclear Research, Dubna 141980, Russia
| | - E V Ermakova
- Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, Dubna 141980, Russia
| | - T N Murugova
- Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, Dubna 141980, Russia
| | - D Soloviov
- European Molecular Biology Laboratory (EMBL), Hamburg Outstation c/o DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - A I Kuklin
- Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, Dubna 141980, Russia; Research Center for Molecular Mechanisms of Aging and Age-related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny 141701, Russia
| | - N Kučerka
- Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, Dubna 141980, Russia; Department of Physical Chemistry of Drugs, Faculty of Pharmacy, Comenius University Bratislava, Bratislava SK-832 32, Slovakia.
| |
Collapse
|
12
|
Ma L, Li X, Petersen RB, Peng A, Huang K. Probing the interactions between amyloidogenic proteins and bio-membranes. Biophys Chem 2023; 296:106984. [PMID: 36889133 DOI: 10.1016/j.bpc.2023.106984] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/11/2023] [Accepted: 02/22/2023] [Indexed: 03/01/2023]
Abstract
Protein misfolding diseases (PMDs) in humans are characterized by the deposition of protein aggregates in tissues, including Alzheimer's disease, Parkinson's disease, type 2 diabetes, and amyotrophic lateral sclerosis. Misfolding and aggregation of amyloidogenic proteins play a central role in the onset and progression of PMDs, and these processes are regulated by multiple factors, especially the interaction between proteins and bio-membranes. Bio-membranes induce conformational changes in amyloidogenic proteins and affect their aggregation; on the other hand, the aggregates of amyloidogenic proteins may cause membrane damage or dysfunction leading to cytotoxicity. In this review, we summarize the factors that affect the binding of amyloidogenic proteins and membranes, the effects of bio-membranes on the aggregation of amyloidogenic proteins, mechanisms of membrane disruption by amyloidogenic aggregates, technical approaches for detecting these interactions, and finally therapeutic strategies targeting membrane damage caused by amyloidogenic proteins.
Collapse
Affiliation(s)
- Liang Ma
- Department of Pharmacy, Wuhan Mental Health Center, Wuhan, China; Department of Pharmacy, Wuhan Hospital for Psychotherapy, Wuhan, China
| | - Xi Li
- Tongji School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Robert B Petersen
- Foundational Sciences, Central Michigan University College of Medicine, Mount Pleasant, MI, USA
| | - Anlin Peng
- Department of Pharmacy, The Third Hospital of Wuhan, Tongren Hospital of Wuhan University, Wuhan, China.
| | - Kun Huang
- Tongji School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
13
|
Mahakud AK, Shaikh J, Rifa Iqbal VV, Gupta A, Tiwari A, Saleem M. Amyloids on Membrane Interfaces: Implications for Neurodegeneration. J Membr Biol 2022; 255:705-722. [PMID: 35670831 DOI: 10.1007/s00232-022-00245-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 05/12/2022] [Indexed: 12/24/2022]
Abstract
Membrane interfaces are vital for various cellular processes, and their involvement in neurodegenerative disorders such as Alzheimer's and Parkinson's disease has taken precedence in recent years. The amyloidogenic proteins associated with neurodegenerative diseases interact with the neuronal membrane through various means, which has implications for both the onset and progression of the disease. The parameters that regulate the interaction between the membrane and the amyloids remain poorly understood. The review focuses on the various aspects of membrane interactions of amyloids, particularly amyloid-β (Aβ) peptides and Tau involved in Alzheimer's and α-synuclein involved in Parkinson's disease. The genetic, cell biological, biochemical, and biophysical studies that form the basis for our current understanding of the membrane interactions of Aβ peptides, Tau, and α-synuclein are discussed.
Collapse
Affiliation(s)
- Amaresh Kumar Mahakud
- School of Biological Sciences, National Institute of Science Education and Research, Bhubaneswar, India.,Homi Bhabha National Institute, Mumbai, India
| | - Jafarulla Shaikh
- School of Biological Sciences, National Institute of Science Education and Research, Bhubaneswar, India.,Homi Bhabha National Institute, Mumbai, India
| | - V V Rifa Iqbal
- School of Biological Sciences, National Institute of Science Education and Research, Bhubaneswar, India.,Homi Bhabha National Institute, Mumbai, India
| | - Abhinav Gupta
- School of Biological Sciences, National Institute of Science Education and Research, Bhubaneswar, India.,Homi Bhabha National Institute, Mumbai, India
| | - Anuj Tiwari
- Department of Life Sciences, National Institute of Technology, Rourkela, India
| | - Mohammed Saleem
- School of Biological Sciences, National Institute of Science Education and Research, Bhubaneswar, India. .,Homi Bhabha National Institute, Mumbai, India.
| |
Collapse
|
14
|
Saha J, Bose P, Dhakal S, Ghosh P, Rangachari V. Ganglioside-Enriched Phospholipid Vesicles Induce Cooperative Aβ Oligomerization and Membrane Disruption. Biochemistry 2022; 61:2206-2220. [PMID: 36173882 PMCID: PMC9840156 DOI: 10.1021/acs.biochem.2c00495] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
A major hallmark of Alzheimer's disease (AD) is the accumulation of extracellular aggregates of amyloid-β (Aβ). Structural polymorphism observed among Aβ fibrils in AD brains seem to correlate with the clinical subtypes suggesting a link between fibril polymorphism and pathology. Since fibrils emerge from a templated growth of low-molecular-weight oligomers, understanding the factors affecting oligomer generation is important. Membrane lipids are key factors to influence early stages of Aβ aggregation and oligomer generation, which cause membrane disruption. We have previously demonstrated that conformationally discrete Aβ oligomers can be generated by modulating the charge, composition, and chain length of lipids and surfactants. Here, we extend our studies into liposomal models by investigating Aβ oligomerization on large unilamellar vesicles (LUVs) of total brain extracts (TBE), reconstituted lipid rafts (LRs), or 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC). Varying the vesicle composition by specifically increasing the amount of GM1 gangliosides as a constituent, we found that only GM1-enriched liposomes induce the formation of toxic, low-molecular-weight oligomers. Furthermore, we found that the aggregation on liposome surface and membrane disruption are highly cooperative and sensitive to membrane surface characteristics. Numerical simulations confirm such a cooperativity and reveal that GM1-enriched liposomes form twice as many pores as those formed in the absence GM1. Overall, this study uncovers mechanisms of cooperativity between oligomerization and membrane disruption under controlled lipid compositional bias, and refocuses the significance of the early stages of Aβ aggregation in polymorphism, propagation, and toxicity in AD.
Collapse
Affiliation(s)
- Jhinuk Saha
- Department of Chemistry and Biochemistry, School of Mathematics and Natural Sciences, University of Southern Mississippi, Hattiesburg, Mississippi 39406, United States
| | - Priyankar Bose
- Department of Computer Science, Virginia Commonwealth University, Richmond, Virginia 23220, United States
| | - Shailendra Dhakal
- Center for Molecular and Cellular Biosciences, University of Southern Mississippi, Hattiesburg, Mississippi 39406, United States
| | - Preetam Ghosh
- Department of Computer Science, Virginia Commonwealth University, Richmond, Virginia 23220, United States
| | - Vijayaraghavan Rangachari
- Department of Chemistry and Biochemistry, School of Mathematics and Natural Sciences, University of Southern Mississippi, Hattiesburg, Mississippi 39406, United States; Center for Molecular and Cellular Biosciences, University of Southern Mississippi, Hattiesburg, Mississippi 39406, United States
| |
Collapse
|
15
|
Pal T, Paul R, Paul S. Phenylpropanoids on the Inhibition of β-Amyloid Aggregation and the Movement of These Molecules through the POPC Lipid Bilayer. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:7775-7790. [PMID: 35687701 DOI: 10.1021/acs.langmuir.2c00827] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Alzheimer's disease (AD), caused by Aβ aggregation, is a major concern in medical research. It is a neurodegenerative disorder, leading to a loss of cognitive abilities, which is still claiming the lives of many people all over the world. This poses a challenge before the scientific community to discover effective drugs which can prevent such toxic aggregation. Recent experimental findings suggest the potency of two naturally-occurring phenylpropanoids, Schizotenuin A (SCH) and Lycopic Acid B (LAB) which can effectively combat the deleterious effects of Aβ aggregation, although nothing is known about their mechanism of inhibition. In this work, we deal with an extensive computational study on the inhibitory effects of these inhibitors by using an all-atom molecular dynamics simulation to interpret the underlying mechanism of their inhibitory processes. A series of investigations is carried out while studying the various structural and conformational changes of the peptide chains in the absence and presence of inhibitors. To investigate the details of the interactions between the peptide residues and inhibitors, nonbonding energy calculations, the radial distribution function, the coordination number of water and inhibitor molecules around the peptide residues, and hydrogen-bonding interactions are calculated. The potential of mean force (PMF) is calculated to estimate aggregate formation from their free-energy profiles. It is seen that the hydrophobic core of the KLVFFAE undergoes aggregation and that these inhibitors show great promise in preventing the onset of AD in the future by preventing Aβ aggregation. Also, the translocation studies on these inhibitors through a model POPC lipid bilayer shed light on their permeation properties and biocompatibility.
Collapse
Affiliation(s)
- Triasha Pal
- Department of Chemistry, Indian Institute of Technology, Guwahati, Assam, India 781039
| | - Rabindranath Paul
- Department of Chemistry, Indian Institute of Technology, Guwahati, Assam, India 781039
| | - Sandip Paul
- Department of Chemistry, Indian Institute of Technology, Guwahati, Assam, India 781039
| |
Collapse
|
16
|
Geng Y, Huang T, Zhou W, Shen L. Physical Mechanism of Amyloid-β Peptide Chain Aggregation on Fluidic Lipid Nanotubules. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:5752-5758. [PMID: 35476922 DOI: 10.1021/acs.langmuir.2c00357] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The question of how peptide chain aggregation is influenced by lipid membranes with varying shapes and structures is crucial for a detailed understanding of the neurotoxicity effect of the peptide chains. Not like the more usual spherical liposomes and planar lipid membranes, herein, we use lipid nanotubules as a model of important neuron synapse nanowire structures and devote particular attention to the effect of nanotubule fluidity on amyloid-β peptide (Aβ) chain aggregation. We apply single-molecule tracking (SMT) to elucidate how Aβ chains diffuse and aggregate on lipid nanotubules with different fluidities. The physical mechanism implies that fluidic lipid nanotubules facilitate the super-diffusion of two-dimensional (2D)-mobile precursor Aβ chains and promote their aggregation. This aggregation mechanism is retarded on less fluidic lipid nanotubules where the super-diffusion of 2D-mobile precursor Aβ chains is restricted by "frozen" lipids with less mobility. This work provides a mechanistic explanation for Aβ chain aggregation on fluidic lipid nanotubules.
Collapse
|
17
|
Lipid membrane-mediated assembly of the functional amyloid-forming peptide Somatostatin-14. Biophys Chem 2022; 287:106830. [DOI: 10.1016/j.bpc.2022.106830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 05/03/2022] [Accepted: 05/17/2022] [Indexed: 11/20/2022]
|
18
|
Estes RE, Lin B, Khera A, Davis MY. Lipid Metabolism Influence on Neurodegenerative Disease Progression: Is the Vehicle as Important as the Cargo? Front Mol Neurosci 2022; 14:788695. [PMID: 34987360 PMCID: PMC8721228 DOI: 10.3389/fnmol.2021.788695] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 11/22/2021] [Indexed: 12/13/2022] Open
Abstract
Many neurodegenerative diseases are characterized by abnormal protein aggregates, including the two most common neurodegenerative diseases Alzheimer’s disease (AD) and Parkinson’s disease (PD). In the global search to prevent and treat diseases, most research has been focused on the early stages of the diseases, including how these pathogenic protein aggregates are initially formed. We argue, however, that an equally important aspect of disease etiology is the characteristic spread of protein aggregates throughout the nervous system, a key process in disease progression. Growing evidence suggests that both alterations in lipid metabolism and dysregulation of extracellular vesicles (EVs) accelerate the spread of protein aggregation and progression of neurodegeneration, both in neurons and potentially in surrounding glia. We will review how these two pathways are intertwined and accelerate the progression of AD and PD. Understanding how lipid metabolism, EV biogenesis, and EV uptake regulate the spread of pathogenic protein aggregation could reveal novel therapeutic targets to slow or halt neurodegenerative disease progression.
Collapse
Affiliation(s)
| | - Bernice Lin
- VA Puget Sound Health Care System, Seattle, WA, United States.,Division of Biological Sciences, University of Montana, Missoula, MT, United States
| | - Arnav Khera
- VA Puget Sound Health Care System, Seattle, WA, United States
| | - Marie Ynez Davis
- VA Puget Sound Health Care System, Seattle, WA, United States.,Department of Neurology, University of Washington, Seattle, WA, United States
| |
Collapse
|
19
|
Interaction of membrane vesicles with the Pseudomonas functional amyloid protein FapC facilitates amyloid formation. BBA ADVANCES 2022; 2:100055. [PMID: 37082589 PMCID: PMC10074931 DOI: 10.1016/j.bbadva.2022.100055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/13/2022] [Accepted: 09/16/2022] [Indexed: 11/20/2022] Open
Abstract
Functional amyloids (FA) are proteins which are evolutionarily optimized to form highly stable fibrillar structures that strengthen the bacterial biofilm matrix. FA such as CsgA (E. coli) and FapC (Pseudomonas) are secreted to the bacterial surface where they integrate into growing fibril structures projecting from the outer membrane. FA are exposed to membrane surfaces in this process, but it remains unclear how membranes can interact with FA and potentially affect the self-assembly. Here we report the effect of different vesicles (DOPG, DMPG, DOPS, DOPC and DMPC) on the kinetics and structural endpoints of FapC fibrillation using various biophysical techniques. Particularly anionic lipids such as DMPG trigger FapC fibrillation, and the protein's second repeat sequence (R2) appears to be important for this interaction. Vesicles formed from phospholipids extracted from three different Pseudomonas strains (Δfap, ΔFapC and pfap) induce FapC fibrillation by accelerating nucleation. The general aggregation inhibitor epigallocatechin gallate (EGCG) inhibits FapC fibrillation by blocking interactions between FapC and vesicles and redirecting FapC monomers to oligomer structures. Our work indicates that biological membranes can contribute significantly to the fibrillation of functional amyloid.
Collapse
|
20
|
Xu B, Chen SL, Zhang Y, Li B, Yuan Q, Gan W. Evaluating the cross-membrane dynamics of a charged molecule on lipid films with different surface curvature. J Colloid Interface Sci 2021; 610:376-384. [PMID: 34923275 DOI: 10.1016/j.jcis.2021.12.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 11/27/2021] [Accepted: 12/04/2021] [Indexed: 11/25/2022]
Abstract
Does the curvature of a phospholipid membrane influence the permeability of the lipid bilayers? This is a question of great importance yet hard to answer. In this work the permeability of a positively charged rod like probing molecule (D289 dye) on the bilayers of DOPG lipid vesicles was investigated using angle resolved second harmonic generation method. It was revealed that the permeability of D289 on the surface of small vesicles with ∼ 100 nm diameter was notably lower than that on giant vesicles with ∼ 1000 nm diameter. With the increasing of temperature or the introducing of dimethyl sulfoxide (DMSO) in the solutions, the D289 permeability of the lipid bilayers was notably enhanced as expected, on both the small and the giant vesicles. Still, the D289 permeability of the lipid film with more curvature is lower than the relatively flat film in all these cases. This work demonstrated a general protocol for the investigating of surface permeability of lipid films with various curvature.
Collapse
Affiliation(s)
- Baomei Xu
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, and School of Science, Harbin Institute of Technology (Shenzhen), University Town, Shenzhen 518055, Guangdong, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, Heilongjiang, China
| | - Shun-Li Chen
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structure Materials of Guangdong Province, Shantou University, Shantou 515063, Guangdong, China
| | - Yiru Zhang
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, and School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), University Town, Shenzhen 518055, Guangdong, China
| | - Bifei Li
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, and School of Science, Harbin Institute of Technology (Shenzhen), University Town, Shenzhen 518055, Guangdong, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, Heilongjiang, China
| | - Qunhui Yuan
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, and School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), University Town, Shenzhen 518055, Guangdong, China
| | - Wei Gan
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, and School of Science, Harbin Institute of Technology (Shenzhen), University Town, Shenzhen 518055, Guangdong, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, Heilongjiang, China.
| |
Collapse
|
21
|
Amyloid-beta peptide (25-35) triggers a reorganization of lipid membranes driven by temperature changes. Sci Rep 2021; 11:21990. [PMID: 34754013 PMCID: PMC8578324 DOI: 10.1038/s41598-021-01347-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 10/27/2021] [Indexed: 11/08/2022] Open
Abstract
The amyloid-beta peptide (Aβ) is considered a key factor in Alzheimer's disease (AD) ever since the discovery of the disease. The understanding of its damaging influence has however shifted recently from large fibrils observed in the inter-cellular environment to the small oligomers interacting with a cell membrane. We studied the effect of temperature on the latter interactions by evaluating the structural characteristics of zwitterionic phosphatidylcholine (PC) membranes with incorporated Aβ25–35 peptide. By means of small angle neutron scattering (SANS), we have observed for the first time a spontaneous reformation of extruded unilamellar vesicles (EULVs) to discoidal bicelle-like structures (BLSs) and small unilamellar vesicles (SULVs). These changes in the membrane self-organization happen during the thermodynamic phase transitions of lipids and only in the presence of the peptide. We interpret the dramatic changes in the membrane's overall shape with parallel changes in its thickness as the Aβ25–35 triggered membrane damage and a consequent reorganization of its structure. The suggested process is consistent with an action of separate peptides or small size peptide oligomers rather than the result of large Aβ fibrils.
Collapse
|
22
|
Song Y, Geng Y, Shen L. Visualizing Super-Diffusion, Oligomerization, and Fibrillation of Amyloid-β Peptide Chains along Tubular Membranes. ACS Macro Lett 2021; 10:1295-1299. [PMID: 35549032 DOI: 10.1021/acsmacrolett.1c00541] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A deeper mechanistic study of peptide amyloidosis on lipid membranes with varying shapes could enhance the comprehensive understanding of the contribution of cellular structures to multiple neurodegenerative diseases, including Alzheimer's disease. We report here the direct visual observation of amyloid-β peptide (Aβ) superdiffusing along tubular lipid membranes via single-molecule tracking (SMT). Such mobility on tubular membranes is critical, as it allows Aβ chains to oligomerize and elongate into fibrils. Factors such as cholesterol that favor Aβ chains with sufficient surface residence time can promote the inter-Aβ interaction and enhance Aβ fibrillation. This study provides previously uncharacterized insights into the chain behaviors of Aβ along important biological nanowire structures, which is essential to understanding and exploring the factors of cellular shapes to manipulate peptide amyloidosis.
Collapse
Affiliation(s)
- Yuhang Song
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, China
| | - Yu Geng
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, China
| | - Lei Shen
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, China
| |
Collapse
|
23
|
Sahoo A, Matysiak S. Effects of applied surface-tension on membrane-assisted Aβ aggregation. Phys Chem Chem Phys 2021; 23:20627-20633. [PMID: 34514475 DOI: 10.1039/d1cp02642a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Accumulation of protein-based (Aβ) aggregates on cellular membranes with varying structural properties is commonly recognized as the key step in Alzheimer's pathogenesis. But experimental and computational challenges have made this biophysical characterization difficult. In particular, studies connecting biological membrane organization and Aβ aggregation are limited. While experiments have suggested that an increased membrane curvature results in faster Aβ peptide aggregation in the context of Alzheimer's disease, a mechanistic explanation for this relation is missing. In this work, we are leveraging molecular simulations with a physics-based coarse grained model to address and understand the relationships between curved cellular membranes and aggregation of a model template peptide Aβ 16-22. In agreement with experimental results, our simulations also suggest a positive correlation between increased peptide aggregation and membrane curvature. More curved membranes have higher lipid packing defects that engage peptide hydrophobic groups and promote faster diffusion leading to peptide fibrillar structures. In addition, we curated the effects of peptide aggregation on the membrane's structure and organization. Interfacial peptide aggregation results in heterogeneous headgroup-peptide interactions and an induced crowding effect at the lipid headgroup region, leading to a more ordered headgroup region and disordered lipid-tails at the membrane core. This work presents a mechanistic and morphological overview of the relationships between the biomembrane local structure and organization, and Aβ peptide aggregation.
Collapse
Affiliation(s)
- Abhilash Sahoo
- Biophysics Program, Institute of Physical Science and Technology, University of Maryland, College Park, MD, USA
| | - Silvina Matysiak
- Biophysics Program, Institute of Physical Science and Technology, University of Maryland, College Park, MD, USA.,Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA.
| |
Collapse
|
24
|
Miyazaki R, Nargis M, Ihsan AB, Nakajima N, Hamada M, Koyama Y. Effects of Glycon and Temperature on Self-Assembly Behaviors of α-Galactosyl Ceramide in Water. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:7936-7944. [PMID: 34161093 DOI: 10.1021/acs.langmuir.1c00545] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
α-Galactosyl ceramide (GalCer) is an anticancer glycolipid consisting of d-galactose and phytosphingosine-based ceramide. Although the amphiphilic structure of GalCer is expected to form self-associates in water, the self-assembly behaviors of GalCer and its derivatives have not been systematically investigated at this moment in spite of its great importance. The evaluation of morphologies and properties of the associates should open new insights into glycolipid chemistry such as the application of GalCer derivatives to a nanocarrier and the elucidation of the detailed pharmacological mechanism of GalCer. Herein, we show the synthesis of the aglycon fragment (Aglycon) of GalCer and the self-assembly behaviors of both GalCer and Aglycon in water. The critical aggregation concentrations of Aglycon and GalCer were determined using UV-vis spectral measurements at various concentrations. The transmission electron microscopy observations of the aqueous sample solutions indicated that the solution of GalCer includes vesicles, while that of Aglycon comprises giant micelles in the absence of vesicles. The vesicle formation in the solution of GalCer was also confirmed by Triton X-100-triggered dye-release experiments. To reveal the effects of glycon on the self-assembly behaviors in detail, we performed the measurements of dynamic light scattering, temperature-dependence of turbidity, differential scanning calorimetry, and wide-angle X-ray diffraction. The results clarify that the glycon moiety of GalCer has a significant role in the formation inhibition of second associates and the plasticization of the hydrophobe. This work will shed light on the other natural glycosides to evaluate the self-assembly behaviors for supramolecular and pharmacological applications in the near future.
Collapse
Affiliation(s)
- Ryo Miyazaki
- Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Mahmuda Nargis
- Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Abu Bin Ihsan
- Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Noriyuki Nakajima
- Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
- Biotechnology Research Center, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Masahiro Hamada
- Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
- Biotechnology Research Center, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Yasuhito Koyama
- Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
- Biotechnology Research Center, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| |
Collapse
|
25
|
Andrade S, Loureiro JA, Pereira MC. The Role of Amyloid β-Biomembrane Interactions in the Pathogenesis of Alzheimer's Disease: Insights from Liposomes as Membrane Models. Chemphyschem 2021; 22:1547-1565. [PMID: 34086399 DOI: 10.1002/cphc.202100124] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 05/10/2021] [Indexed: 02/06/2023]
Abstract
The aggregation and deposition of amyloid β (Aβ) peptide onto neuronal cells, with consequent cellular membrane perturbation, are central to the pathogenesis of Alzheimer's disease (AD). Substantial evidence reveals that biological membranes play a key role in this process. Thus, elucidating the mechanisms by which Aβ interacts with biomembranes and becomes neurotoxic is fundamental to developing effective therapies for this devastating progressive disease. However, the structural basis behind such interactions is not fully understood, largely due to the complexity of natural membranes. In this context, lipid biomembrane models provide a simplified way to mimic the characteristics and composition of membranes. Aβ-biomembrane interactions have been extensively investigated applying artificial membrane models to elucidate the molecular mechanisms underlying the AD pathogenesis. This review summarizes the latest findings on this field using liposomes as biomembrane model, as they are considered the most promising 3D model. The current challenges and future directions are discussed.
Collapse
Affiliation(s)
- Stéphanie Andrade
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal
| | - Joana Angélica Loureiro
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal
| | - Maria Carmo Pereira
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal
| |
Collapse
|
26
|
Smeralda W, Since M, Cardin J, Corvaisier S, Lecomte S, Cullin C, Malzert-Fréon A. β-Amyloid peptide interactions with biomimetic membranes: A multiparametric characterization. Int J Biol Macromol 2021; 181:769-777. [PMID: 33811932 DOI: 10.1016/j.ijbiomac.2021.03.107] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 02/14/2021] [Accepted: 03/19/2021] [Indexed: 10/21/2022]
Abstract
Alzheimer's disease is the most common form of senile dementia in the world, and amyloid β peptide1-42 (Aβ1-42) is one of its two principal biological hallmarks. While interactome concept was getting forward the scientific community, we proposed that the study of the molecular interactions of amyloid β peptide with the biological membranes will allow to highlight underlying mechanisms responsive of AD. We have developed two simple liposomal formulations (phosphatidylcholine, cholesterol, phosphatidylglycerol) mimicking neuronal cell membrane (composition, charge, curvature radius). Interactions with Aβ1-42 and mutant oG37C, a stable oligomeric form of the peptide, were characterized according to a simple multiparametric procedure based on ThT fluorescence, liposome leakage assay, ATR-FTIR spectroscopy. Kinetic aggregation, membrane damage and peptide conformation provided our first methodologic bases to develop an original model to describe interactions of Aβ peptide and lipids.
Collapse
Affiliation(s)
| | - Marc Since
- Normandie Univ, UNICAEN, CERMN, 14000 Caen, France.
| | - Julien Cardin
- NIMPH Team, CIMAP CNRS UMR 6252, EnsiCaen-UNICAEN-CEA, 14050 Caen, France.
| | | | - Sophie Lecomte
- CBMN, CNRS UMR 5248, Univ. Bordeaux, 33600 Pessac, France.
| | | | | |
Collapse
|
27
|
Nie J, Yang J, Wei Y, Wei X. The role of oxidized phospholipids in the development of disease. Mol Aspects Med 2020; 76:100909. [PMID: 33023753 DOI: 10.1016/j.mam.2020.100909] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 08/29/2020] [Accepted: 09/21/2020] [Indexed: 02/05/2023]
Abstract
Oxidized phospholipids (OxPLs), complex mixtures of phospholipid oxidation products generated during normal or pathological processes, are increasingly recognized to show bioactive effects on many cellular signalling pathways. There is a growing body of evidence showing that OxPLs play an important role in many diseases, so it is essential to define the specific role of OxPLs in different diseases for the design of disease therapies. In vastly diverse pathological processes, OxPLs act as pro-inflammatory agents and contribute to the progression of many diseases; in addition, they play a role in anti-inflammatory processes, promoting the dissipation of inflammation and inhibiting the progression of some diseases. In addition to participating in the regulation of inflammatory responses, OxPLs affect the occurrence and development of diseases through other pathways, such as apoptosis promotion. In this review, the different and even opposite effects of different OxPL molecular species are discussed. Furthermore, the specific effects of OxPLs in various diseases, as well as the receptor and cellular mechanisms involved, are summarized.
Collapse
Affiliation(s)
- Ji Nie
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China; Department of Respiration, First People's Hospital of Yunnan Province, Yunnan, 650032, China; The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, 650032, China
| | - Jing Yang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China; Melanoma and Sarcoma Medical Oncology Unit, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, China; State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Yuquan Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
28
|
Zheng Q, Carty SN, Lazo ND. Helix Dipole and Membrane Electrostatics Delineate Conformational Transitions in the Self-Assembly of Amyloidogenic Peptides. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:8389-8397. [PMID: 32628488 PMCID: PMC8095063 DOI: 10.1021/acs.langmuir.0c00723] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
The self-assembly of amyloidogenic peptides on membrane surfaces is associated with the death of neurons and β-cells in Alzheimer's disease and type 2 diabetes, respectively. The early events of self-assembly in vivo are not known, but there is increasing evidence for the importance of the α-helix. To test the hypothesis that electrostatic interactions involving the helix dipole play a key role in membrane-mediated peptide self-assembly, we studied IAPP[11-25(S20G)-NH2] (R11LANFLVHSGNNFGA25-NH2), which under certain conditions self-assembles in hydro to form β-sheet assemblies through an α-helix-containing intermediate. In the presence of small unilamellar vesicles composed solely of zwitterionic lipids, the peptide does not self-assemble presumably because of the absence of stabilizing electrostatic interactions between the membrane surface and the helix dipole. In the presence of vesicles composed solely of anionic lipids, the peptide forms a long-lived α-helix presumably stabilized by dipole-dipole interactions between adjacent helix dipoles. This helix represents a kinetic trap that inhibits β-sheet formation. Intriguingly, when the amount of anionic lipids was decreased to mimic the ratio of zwitterionic and anionic lipids in cells, the α-helix was short-lived and underwent an α-helix to β-sheet conformational transition. Our work suggests that the helix dipole and membrane electrostatics delineate the conformational transitions occurring along the self-assembly pathway to the amyloid.
Collapse
Affiliation(s)
- Qiuchen Zheng
- Carlson School of Chemistry and Biochemistry, Clark University, 950 Main Street, Worcester, Massachusetts 01610, United States
| | - Senegal N Carty
- Carlson School of Chemistry and Biochemistry, Clark University, 950 Main Street, Worcester, Massachusetts 01610, United States
| | - Noel D Lazo
- Carlson School of Chemistry and Biochemistry, Clark University, 950 Main Street, Worcester, Massachusetts 01610, United States
| |
Collapse
|
29
|
Three-dimensional real time imaging of amyloid β aggregation on living cells. Sci Rep 2020; 10:9742. [PMID: 32546691 PMCID: PMC7297742 DOI: 10.1038/s41598-020-66129-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Accepted: 05/13/2020] [Indexed: 01/17/2023] Open
Abstract
Alzheimer’s disease (AD) is a progressive disorder of the brain that gradually decreases thinking, memory, and language abilities. The aggregation process of amyloid β (Aβ) is a key step in the expression of its neurocytotoxicity and development of AD because Aβ aggregation and accumulation around neuronal cells induces cell death. However, the molecular mechanism underlying the neurocytotoxicity and cell death by Aβ aggregation has not been clearly elucidated. In this study, we successfully visualized real-time process of Aβ42 aggregation around living cells by applying our established QD imaging method. 3D observations using confocal laser microscopy revealed that Aβ42 preferentially started to aggregate at the region where membrane protrusions frequently formed. Furthermore, we found that inhibition of actin polymerization using cytochalasin D reduced aggregation of Aβ42 on the cell surface. These results indicate that actin polymerization-dependent cell motility is responsible for the promotion of Aβ42 aggregation at the cell periphery. 3D observation also revealed that the aggregates around the cell remained in that location even if cell death occurred, implying that amyloid plaques found in the AD brain grew from the debris of dead cells that accumulated Aβ42 aggregates.
Collapse
|
30
|
Fibrillization of 40-Residue β-Amyloid Peptides in Membrane-Like Environments Leads to Different Fibril Structures and Reduced Molecular Polymorphisms. Biomolecules 2020; 10:biom10060881. [PMID: 32521743 PMCID: PMC7356566 DOI: 10.3390/biom10060881] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 05/28/2020] [Accepted: 06/04/2020] [Indexed: 12/31/2022] Open
Abstract
The molecular-level polymorphism in β-Amyloid (Aβ) fibrils have recently been considered as a pathologically relevant factor in Alzheimer’s disease (AD). Studies showed that the structural deviations in human-brain-seeded Aβ fibrils potentially correlated with the clinical histories of AD patients. For the 40-residue Aβ (Aβ40) fibrils derived from human brain tissues, a predominant molecular structure was proposed based on solid-state nuclear magnetic resonance (ssNMR) spectroscopy. However, previous studies have shown that the molecular structures of Aβ40 fibrils were sensitive to their growth conditions in aqueous environments. We show in this work that biological membranes and their phospholipid bilayer mimics serve as environmental factors to reduce the structural heterogeneity in Aβ40 fibrils. Fibrillization in the presence of membranes leads to fibril structures that are significantly different to the Aβ40 fibrils grown in aqueous solutions. Fibrils grown from multiple types of membranes, including the biological membranes extracted from the rats’ synaptosomes, shared similar ssNMR spectral features. Our studies emphasize the biological relevance of membranes in Aβ40 fibril structures and fibrillization processes.
Collapse
|
31
|
Darkow E, Rog-Zielinska EA, Madl J, Brandel A, Siukstaite L, Omidvar R, Kohl P, Ravens U, Römer W, Peyronnet R. The Lectin LecA Sensitizes the Human Stretch-Activated Channel TREK-1 but Not Piezo1 and Binds Selectively to Cardiac Non-myocytes. Front Physiol 2020; 11:457. [PMID: 32499717 PMCID: PMC7243936 DOI: 10.3389/fphys.2020.00457] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 04/15/2020] [Indexed: 12/16/2022] Open
Abstract
The healthy heart adapts continuously to a complex set of dynamically changing mechanical conditions. The mechanical environment is altered by, and contributes to, multiple cardiac diseases. Mechanical stimuli are detected and transduced by cellular mechano-sensors, including stretch-activated ion channels (SAC). The precise role of SAC in the heart is unclear, in part because there are few SAC-specific pharmacological modulators. That said, most SAC can be activated by inducers of membrane curvature. The lectin LecA is a virulence factor of Pseudomonas aeruginosa and essential for P. aeruginosa-induced membrane curvature, resulting in formation of endocytic structures and bacterial cell invasion. We investigate whether LecA modulates SAC activity. TREK-1 and Piezo1 have been selected, as they are widely expressed in the body, including cardiac tissue, and they are “canonical representatives” for the potassium selective and the cation non-selective SAC families, respectively. Live cell confocal microscopy and electron tomographic imaging were used to follow binding dynamics of LecA, and to track changes in cell morphology and membrane topology in human embryonic kidney (HEK) cells and in giant unilamellar vesicles (GUV). HEK cells were further transfected with human TREK-1 or Piezo1 constructs, and ion channel activity was recorded using the patch-clamp technique. Finally, freshly isolated cardiac cells were used for studies into cell type dependency of LecA binding. LecA (500 nM) binds within seconds to the surface of HEK cells, with highest concentration at cell-cell contact sites. Local membrane invaginations are detected in the presence of LecA, both in the plasma membrane of cells (by 17 min of LecA exposure) as well as in GUV. In HEK cells, LecA sensitizes TREK-1, but not Piezo1, to voltage and mechanical stimulation. In freshly isolated cardiac cells, LecA binds to non-myocytes, but not to ventricular or atrial cardiomyocytes. This cell type specific lack of binding is observed across cardiomyocytes from mouse, rabbit, pig, and human. Our results suggest that LecA may serve as a pharmacological tool to study SAC in a cell type-preferential manner. This could aid tissue-based research into the roles of SAC in cardiac non-myocytes.
Collapse
Affiliation(s)
- Elisa Darkow
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg-Bad Krozingen, Medical Center-University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Freiburg, Germany.,Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Eva A Rog-Zielinska
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg-Bad Krozingen, Medical Center-University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Josef Madl
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg-Bad Krozingen, Medical Center-University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Annette Brandel
- Faculty of Biology, University of Freiburg, Freiburg, Germany.,Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| | - Lina Siukstaite
- Faculty of Biology, University of Freiburg, Freiburg, Germany.,Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| | - Ramin Omidvar
- Faculty of Biology, University of Freiburg, Freiburg, Germany.,Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| | - Peter Kohl
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg-Bad Krozingen, Medical Center-University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| | - Ursula Ravens
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg-Bad Krozingen, Medical Center-University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Winfried Römer
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Freiburg, Germany.,Faculty of Biology, University of Freiburg, Freiburg, Germany.,Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| | - Rémi Peyronnet
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg-Bad Krozingen, Medical Center-University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
32
|
Dias CL, Jalali S, Yang Y, Cruz L. Role of Cholesterol on Binding of Amyloid Fibrils to Lipid Bilayers. J Phys Chem B 2020; 124:3036-3042. [DOI: 10.1021/acs.jpcb.0c00485] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Cristiano L. Dias
- Department of Physics, New Jersey Institute of Technology, Newark, New Jersey 07102-1982, United States
| | - Sharareh Jalali
- Department of Physics, New Jersey Institute of Technology, Newark, New Jersey 07102-1982, United States
| | - Yanxing Yang
- Department of Physics, New Jersey Institute of Technology, Newark, New Jersey 07102-1982, United States
| | - Luis Cruz
- Department of Physics, Drexel University, 3141 Chestnut Street, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
33
|
Kinetic study of Aβ(1-42) amyloidosis in the presence of ganglioside-containing vesicles. Colloids Surf B Biointerfaces 2019; 185:110615. [PMID: 31707229 DOI: 10.1016/j.colsurfb.2019.110615] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 10/21/2019] [Accepted: 10/25/2019] [Indexed: 12/21/2022]
Abstract
Alzheimer's disease (AD) is characterized by the amyloid-beta peptide (Aβ) misfolding to form aberrant amyloid aggregates in the brain. Although recent evidence implicates that amyloid deposition in vivo is highly related to biomembranes, how the characteristic lipid components of neuronal membranes mediate this process remains to be fully elucidated. Herein, we established vesicle models to mimic exosomes and investigated their influence on the kinetics of Aβ(1-42) amyloidosis. By using ternary vesicles composed of three brain lipids monosialoganglioside GM1, cholesterol and sphingomyelin, we found that GM1 could regulate peptide fibrillation by facilitating the conformational transition of Aβ(1-42), and further quantitatively analyzed the influence of GM1-containing vesicles on the kinetics of Aβ(1-42) fibrillation. In addition, GM1-containing vesicles induced the formation of Aβ(1-42) fibrils at low concentrations, and these fibrils were toxic to PC12 cells. By analyzing the role of GM1 in this ternary mixture of membranes at the molecular level, we confirmed that GM1 clusters are presented as attachment sites for peptides, thus promoting the fibrillation of Aβ(1-42).
Collapse
|
34
|
Kawano K, Ogushi M, Masuda T, Futaki S. Development of a Membrane Curvature-Sensing Peptide Based on a Structure-Activity Correlation Study. Chem Pharm Bull (Tokyo) 2019; 67:1131-1138. [PMID: 31316036 DOI: 10.1248/cpb.c19-00465] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Membrane curvature formation is important for various biological processes such as cell motility, intracellular signal transmission, and cellular uptake of foreign substances. However, it remains still a challenging topic to visualize the membrane curvature formation on the cell membranes in real-time imaging. To develop and design membrane curvature-sensors, we focused on amphipathic helical peptides of proteins belonging to the Bin/Amphiphysin/Rvs (BAR) family as the starting point. BAR proteins individually have various characteristic structures that recognize different curvatures, and the derived peptides possess the potential to function as curvature sensors with a variety of recognition abilities. Peptide-based curvature sensors can have wide applications in biological research fields due to their small size, easy modification, and large production capability in comparison to protein-based sensors. In the present study, we found that an amphipathic peptide derived from sorting nexin1 (SNX1) has a curvature-recognition ability. The mutation studies of the initial peptide revealed a close correlation between the α-helicity and lipid binding ability of the peptides. In particular, the amino acids located on the hydrophobic face played a vital role in curvature recognition. The α-helix formation of the peptides was thought to serve to accommodate lipid-packing defects on the membrane surface and to maintain their binding to lipid vesicles. The structure-activity correlation found in this study have the potential to contribute to the design of peptide-based curvature sensors that will enable the capture of various life phenomena in cells.
Collapse
|
35
|
Fanni AM, Vander Zanden CM, Majewska PV, Majewski J, Chi EY. Membrane-mediated fibrillation and toxicity of the tau hexapeptide PHF6. J Biol Chem 2019; 294:15304-15317. [PMID: 31439664 DOI: 10.1074/jbc.ra119.010003] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 08/18/2019] [Indexed: 01/29/2023] Open
Abstract
The aggregation of the tau protein into neurofibrillary tangles is believed to correlate with cognitive decline in several neurodegenerative disorders, including Alzheimer's disease. Recent studies suggest that tau's interactions with the cell membrane could serve as a toxicity pathway and also enhance fibrillation into paired helical filaments (PHFs). Conformational changes associated with tau-membrane interactions are poorly understood, and their characterization could improve our understanding of tau pathogenicity. In this study, we investigated the molecular level structural changes associated with the interaction of the tau hexapeptide PHF6 with model lipid membranes and characterized the effects of these interactions on membrane stability and peptide fibrillation. We used two PHF6 forms, the aggregation-prone PHF6 with N-terminal acetylation (Ac-PHF6) and the non-aggregation prone PHF6 with a standard N terminus (NH3 +-PHF6). We found that both PHF6 peptides are neurotoxic and exhibit similar membrane-mediated changes, consisting of: 1) favorable interactions with anionic membranes, 2) membrane destabilization through lipid extraction, and 3) membrane-mediated fibrillation. The rate at which these changes occurred was the main difference between the two peptides. NH3 +-PHF6 displayed slow membrane-mediated fibrillation after 6 days of incubation, whereas Ac-PHF6 adopted a β-sheet conformation at the surface of the membrane within hours. Ac-PHF6 interactions with the membrane were also accompanied by membrane invagination and rapid membrane destabilization. Overall, our results reveal that membrane interactions could play a critical role in tau toxicity and fibrillation, and highlight that unraveling these interactions is important for significantly advancing the development of therapeutic strategies to manage tau-associated neurodegenerative diseases.
Collapse
Affiliation(s)
- Adeline M Fanni
- Center for Biomedical Engineering, University of New Mexico, Albuquerque, New Mexico 87131.,Biomedical Engineering Graduate Program, University of New Mexico, Albuquerque, New Mexico 87131
| | - Crystal M Vander Zanden
- Center for Biomedical Engineering, University of New Mexico, Albuquerque, New Mexico 87131.,Department of Chemical and Biological Engineering, University of New Mexico, Albuquerque, New Mexico 87131
| | - Paulina V Majewska
- Center for Biomedical Engineering, University of New Mexico, Albuquerque, New Mexico 87131
| | - Jaroslaw Majewski
- Department of Chemical and Biological Engineering, University of New Mexico, Albuquerque, New Mexico 87131.,Department of Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, New Mexico 87545.,Division of Molecular and Cellular Biosciences, National Science Foundation, Alexandria, Virginia 22314
| | - Eva Y Chi
- Center for Biomedical Engineering, University of New Mexico, Albuquerque, New Mexico 87131 .,Department of Chemical and Biological Engineering, University of New Mexico, Albuquerque, New Mexico 87131
| |
Collapse
|
36
|
Sahoo A, Xu H, Matysiak S. Pathways of amyloid-beta absorption and aggregation in a membranous environment. Phys Chem Chem Phys 2019; 21:8559-8568. [PMID: 30964132 DOI: 10.1039/c9cp00040b] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Aggregation of misfolded oligomeric amyloid-beta (Aβ) peptides on lipid membranes has been identified as a primary event in Alzheimer's pathogenesis. However, the structural and dynamical features of this membrane assisted Aβ aggregation have not been well characterized. The microscopic characterization of dynamic molecular-level interactions in peptide aggregation pathways has been challenging both computationally and experimentally. In this work, we explore differential patterns of membrane-induced Aβ 16-22 (K-L-V-F-F-A-E) aggregation from the microscopic perspective of molecular interactions. Physics-based coarse-grained molecular dynamics (CG-MD) simulations were employed to investigate the effect of lipid headgroup charge - zwitterionic (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine: POPC) and anionic (1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-l-serine: POPS) - on Aβ 16-22 peptide aggregation. Our analyses present an extensive overview of multiple pathways for peptide absorption and biomechanical forces governing peptide folding and aggregation. In agreement with experimental observations, anionic POPS molecules promote extended configurations in Aβ peptides that contribute towards faster emergence of ordered β-sheet-rich peptide assemblies compared to POPC, suggesting faster fibrillation. In addition, lower cumulative rates of peptide aggregation in POPS due to higher peptide-lipid interactions and slower lipid diffusion result in multiple distinct ordered peptide aggregates that can serve as nucleation seeds for subsequent Aβ aggregation. This study provides an in-silico assessment of experimentally observed aggregation patterns, presents new morphological insights and highlights the importance of lipid headgroup chemistry in modulating the peptide absorption and aggregation process.
Collapse
Affiliation(s)
- Abhilash Sahoo
- Biophysics Program, Institute of Physical Science and Technology, University of Maryland, College Park, MD, USA.
| | | | | |
Collapse
|
37
|
Rangachari V, Dean DN, Rana P, Vaidya A, Ghosh P. Cause and consequence of Aβ - Lipid interactions in Alzheimer disease pathogenesis. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2018; 1860:1652-1662. [PMID: 29526709 PMCID: PMC6133763 DOI: 10.1016/j.bbamem.2018.03.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Revised: 02/28/2018] [Accepted: 03/02/2018] [Indexed: 12/14/2022]
Abstract
Self-templating propagation of protein aggregate conformations is increasingly becoming a significant factor in many neurological diseases. In Alzheimer disease (AD), intrinsically disordered amyloid-β (Aβ) peptides undergo aggregation that is sensitive to environmental conditions. High-molecular weight aggregates of Aβ that form insoluble fibrils are deposited as senile plaques in AD brains. However, low-molecular weight aggregates called soluble oligomers are known to be the primary toxic agents responsible for neuronal dysfunction. The aggregation process is highly stochastic involving both homotypic (Aβ-Aβ) and heterotypic (Aβ with interacting partners) interactions. Two of the important members of interacting partners are membrane lipids and surfactants, to which Aβ shows a perpetual association. Aβ-membrane interactions have been widely investigated for more than two decades, and this research has provided a wealth of information. Although this has greatly enriched our understanding, the objective of this review is to consolidate the information from the literature that collectively showcases the unique phenomenon of lipid-mediated Aβ oligomer generation, which has largely remained inconspicuous. This is especially important because Aβ aggregate "strains" are increasingly becoming relevant in light of the correlations between the structure of aggregates and AD phenotypes. Here, we will focus on aspects of Aβ-lipid interactions specifically from the context of how lipid modulation generates a wide variety of biophysically and biochemically distinct oligomer sub-types. This, we believe, will refocus our thinking on the influence of lipids and open new approaches in delineating the mechanisms of AD pathogenesis. This article is part of a Special Issue entitled: Protein Aggregation and Misfolding at the Cell Membrane Interface edited by Ayyalusamy Ramamoorthy.
Collapse
Affiliation(s)
- Vijayaraghavan Rangachari
- Department of Chemistry & Biochemistry, University of Southern Mississippi, Hattiesburg, MS 39406, USA.
| | - Dexter N Dean
- Department of Chemistry & Biochemistry, University of Southern Mississippi, Hattiesburg, MS 39406, USA
| | - Pratip Rana
- Department of Computer Science, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - Ashwin Vaidya
- Department of Mathematical Science, Montclair State University, Montclair, NJ 07043, USA
| | - Preetam Ghosh
- Department of Computer Science, Virginia Commonwealth University, Richmond, VA 23284, USA
| |
Collapse
|
38
|
Cheng Q, Hu ZW, Doherty KE, Tobin-Miyaji YJ, Qiang W. The on-fibrillation-pathway membrane content leakage and off-fibrillation-pathway lipid mixing induced by 40-residue β-amyloid peptides in biologically relevant model liposomes. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2018; 1860:1670-1680. [PMID: 29548698 PMCID: PMC6295276 DOI: 10.1016/j.bbamem.2018.03.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 03/08/2018] [Accepted: 03/10/2018] [Indexed: 02/06/2023]
Abstract
Disruption of the synaptic plasma membrane (SPM) induced by the aggregation of β-amyloid (Aβ) peptides has been considered as a potential mechanism for the neurotoxicity of Aβ in Alzheimer's disease (AD). However, the molecular basis of such membrane disruption process remains unclear, mainly because of the severe systematic heterogeneity problem that prevents the high-resolution studies. Our previous studies using a two-component phosphatidylcholine (PC)/phosphatidylglycerol (PG) model liposome showed the presence of Aβ-induced membrane disruptions that were either on the pathway or off the pathway of fibril formation. The present study focuses on a more biologically relevant model membrane with compositions that mimic the outer leaflet of SPMs. The main findings are: (1) the two competing membrane disruption effects discovered in PC/PG liposomes and their general peptide-to-lipid-molar-ratio dependence persist in the more complicated membrane models; (2) the SPM-mimic membrane promotes the formation of certain "on-fibrillation-pathway" intermediates with higher α-helical structural population, which lead to more rapid and significant of membrane content leakage; (3) although the "on-fibrillation-pathway" intermediate structures show dependence on membrane compositions, there seems to be a common final fibril structure grown from different liposomes, suggesting that there may be a predominant fibril structure for 40-residue Aβ (i.e. Aβ40) peptides in biologically-relevant membranes. This article is part of a Special Issue entitled: Protein Aggregation and Misfolding at the Cell Membrane Interface edited by Ayyalusamy Ramamoorthy.
Collapse
Affiliation(s)
- Qinghui Cheng
- Department of Chemistry, State University of New York at Binghamton, Binghamton, NY 13902, United States
| | - Zhi-Wen Hu
- Department of Chemistry, State University of New York at Binghamton, Binghamton, NY 13902, United States
| | - Katelynne E Doherty
- Department of Chemistry, State University of New York at Binghamton, Binghamton, NY 13902, United States
| | - Yuto J Tobin-Miyaji
- Department of Chemistry, State University of New York at Binghamton, Binghamton, NY 13902, United States
| | - Wei Qiang
- Department of Chemistry, State University of New York at Binghamton, Binghamton, NY 13902, United States.
| |
Collapse
|
39
|
Kumar M, Patil N, Ambade AV, Kumaraswamy G. Large PAMAM Dendron Induces Formation of Unusual P4 332 Mesophase in Monoolein/Water Systems. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:6827-6834. [PMID: 29775311 DOI: 10.1021/acs.langmuir.8b00551] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Compact macromolecular dendrons have previously been shown to induce the formation of discontinuous inverse micellar assemblies with Fd3 m symmetry in monoolein/water systems. Here, we demonstrate that a large PAMAM dendron (G5: fifth generation) induces the formation of a very unusual mesophase with P4332 symmetry. This mesophase had previously been observed in monoolein/water systems only on addition of cytochrome c. The P4332 mesophase can be considered an intermediate phase between the bicontinuous Ia3 d and discontinuous micellar mesophases. We present a detailed investigation of the phase behavior of monoolein/water as a function of G5 concentration and temperature. Addition of 1% G5 in 85/15 monoolein/water system induces a transition from the Lα to Ia3 d phase. Further increase in G5 concentration to above 2% induces the formation of the P4332 phase. In contrast to this, incorporation of lower generation PAMAM dendrons (G2-G4) in monoolein/water yields a qualitatively different phase diagram with the formation of the reverse micellar Fd3 m phase. PAMAM dendrons of all generations, G2-G5, bear terminal amine groups that interact with the monoolein headgroup. The compact molecular architecture of the dendrons and these attractive interactions induce bending of the monoolein bilayer structure. For smaller dendrons, G2-G4, this results in the formation of the Fd3 m phase. However, the large size of the G5 dendron precludes this and a rare intermediate phase between the Ia3 d and discontinuous micellar phase, and the P4332 mesophase forms instead.
Collapse
|
40
|
Ferhan AR, Jackman JA, Malekian B, Xiong K, Emilsson G, Park S, Dahlin AB, Cho NJ. Nanoplasmonic Sensing Architectures for Decoding Membrane Curvature-Dependent Biomacromolecular Interactions. Anal Chem 2018; 90:7458-7466. [DOI: 10.1021/acs.analchem.8b00974] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Abdul Rahim Ferhan
- School of Materials Science and Engineering and Centre for Biomimetic Sensor Science, Nanyang Technological University, 50 Nanyang Drive, Singapore 637553, Singapore
| | - Joshua A. Jackman
- School of Materials Science and Engineering and Centre for Biomimetic Sensor Science, Nanyang Technological University, 50 Nanyang Drive, Singapore 637553, Singapore
| | - Bita Malekian
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 41296 Göteborg, Sweden
| | - Kunli Xiong
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 41296 Göteborg, Sweden
| | - Gustav Emilsson
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 41296 Göteborg, Sweden
| | - Soohyun Park
- School of Materials Science and Engineering and Centre for Biomimetic Sensor Science, Nanyang Technological University, 50 Nanyang Drive, Singapore 637553, Singapore
| | - Andreas B. Dahlin
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 41296 Göteborg, Sweden
| | - Nam-Joon Cho
- School of Materials Science and Engineering and Centre for Biomimetic Sensor Science, Nanyang Technological University, 50 Nanyang Drive, Singapore 637553, Singapore
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459, Singapore
| |
Collapse
|
41
|
Impact of membrane curvature on amyloid aggregation. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018; 1860:1741-1764. [PMID: 29709613 DOI: 10.1016/j.bbamem.2018.04.012] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 04/23/2018] [Accepted: 04/25/2018] [Indexed: 12/11/2022]
Abstract
The misfolding, amyloid aggregation, and fibril formation of intrinsically disordered proteins/peptides (or amyloid proteins) have been shown to cause a number of disorders. The underlying mechanisms of amyloid fibrillation and structural properties of amyloidogenic precursors, intermediates, and amyloid fibrils have been elucidated in detail; however, in-depth examinations on physiologically relevant contributing factors that induce amyloidogenesis and lead to cell death remain challenging. A large number of studies have attempted to characterize the roles of biomembranes on protein aggregation and membrane-mediated cell death by designing various membrane components, such as gangliosides, cholesterol, and other lipid compositions, and by using various membrane mimetics, including liposomes, bicelles, and different types of lipid-nanodiscs. We herein review the dynamic effects of membrane curvature on amyloid generation and the inhibition of amyloidogenic proteins and peptides, and also discuss how amyloid formation affects membrane curvature and integrity, which are key for understanding relationships with cell death. Small unilamellar vesicles with high curvature and large unilamellar vesicles with low curvature have been demonstrated to exhibit different capabilities to induce the nucleation, amyloid formation, and inhibition of amyloid-β peptides and α-synuclein. Polymorphic amyloidogenesis in small unilamellar vesicles was revealed and may be viewed as one of the generic properties of interprotein interaction-dominated amyloid formation. Several mechanical models and phase diagrams are comprehensively shown to better explain experimental findings. The negative membrane curvature-mediated mechanisms responsible for the toxicity of pancreatic β cells by the amyloid aggregation of human islet amyloid polypeptide (IAPP) and binding of the precursors of the semen-derived enhancer of viral infection (SEVI) are also described. The curvature-dependent binding modes of several types of islet amyloid polypeptides with high-resolution NMR structures are also discussed.
Collapse
|
42
|
Messina GML, Bocchinfuso G, Giamblanco N, Mazzuca C, Palleschi A, Marletta G. Orienting proteins by nanostructured surfaces: evidence of a curvature-driven geometrical resonance. NANOSCALE 2018; 10:7544-7555. [PMID: 29637964 DOI: 10.1039/c8nr00037a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Experimental and theoretical reports have shown that nanostructured surfaces have a dramatic effect on the amount of protein adsorbed and the conformational state and, in turn, on the performances of the related devices in tissue engineering strategies. Here we report an innovative method to prepare silica-based nanostructured surfaces with a reproducible, well-defined local curvature, consisting of ordered hexagonally packed arrays of curved hemispheres, from nanoparticles of different diameters (respectively 147 nm, 235 nm and 403 nm). The nanostructured surfaces have been made chemically homogeneous by partially embedding silica nanoparticles in poly(hydroxymethylsiloxane) films, further modified by means of UV-O3 treatments. This paper has been focused on the experimental and theoretical study of laminin, taken as a model protein, to study the nanocurvature effects on the protein configuration at nanostructured surfaces. A simple model, based on the interplay of electrostatic interactions between the charged terminal domains of laminin and the nanocurved charged surfaces, closely reproduces the experimental findings. In particular, the model suggests that nanocurvature drives the orientation of rigid proteins by means of a "geometrical resonance" effect, involving the matching of dimensions, charge distribution and spatial arrangement of both adsorbed molecules and adsorbent nanostructures. Overall, the results pave the way to unravel the nanostructured surface effects on the intra- and inter-molecular organization processes of proteins.
Collapse
Affiliation(s)
- Grazia M L Messina
- Laboratory for Molecular Surfaces and Nanotechnology (LAMSUN), Department of Chemical Sciences, University of Catania, Viale A.Doria 6, 95125 Catania, Italy.
| | | | | | | | | | | |
Collapse
|
43
|
Slatter DA, Percy CL, Allen-Redpath K, Gajsiewicz JM, Brooks NJ, Clayton A, Tyrrell VJ, Rosas M, Lauder SN, Watson A, Dul M, Garcia-Diaz Y, Aldrovandi M, Heurich M, Hall J, Morrissey JH, Lacroix-Desmazes S, Delignat S, Jenkins PV, Collins PW, O'Donnell VB. Enzymatically oxidized phospholipids restore thrombin generation in coagulation factor deficiencies. JCI Insight 2018; 3:98459. [PMID: 29563336 PMCID: PMC5926910 DOI: 10.1172/jci.insight.98459] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 02/16/2018] [Indexed: 12/11/2022] Open
Abstract
Hemostatic defects are treated using coagulation factors; however, clot formation also requires a procoagulant phospholipid (PL) surface. Here, we show that innate immune cell–derived enzymatically oxidized phospholipids (eoxPL) termed hydroxyeicosatetraenoic acid–phospholipids (HETE-PLs) restore hemostasis in human and murine conditions of pathological bleeding. HETE-PLs abolished blood loss in murine hemophilia A and enhanced coagulation in factor VIII- (FVIII-), FIX-, and FX-deficient human plasma . HETE-PLs were decreased in platelets from patients after cardiopulmonary bypass (CPB). To explore molecular mechanisms, the ability of eoxPL to stimulate individual isolated coagulation factor/cofactor complexes was tested in vitro. Extrinsic tenase (FVIIa/tissue factor [TF]), intrinsic tenase (FVIIIa/FIXa), and prothrombinase (FVa/FXa) all were enhanced by both HETE-PEs and HETE-PCs, suggesting a common mechanism involving the fatty acid moiety. In plasma, 9-, 15-, and 12-HETE-PLs were more effective than 5-, 11-, or 8-HETE-PLs, indicating positional isomer specificity. Coagulation was enhanced at lower lipid/factor ratios, consistent with a more concentrated area for protein binding. Surface plasmon resonance confirmed binding of FII and FX to HETE-PEs. HETE-PEs increased membrane curvature and thickness, but not surface charge or homogeneity, possibly suggesting increased accessibility to cations/factors. In summary, innate immune-derived eoxPL enhance calcium-dependent coagulation factor function, and their potential utility in bleeding disorders is proposed. Innate immune-derived enzymatically oxidized phospholipids enhance calcium-dependent coagulation factor function.
Collapse
Affiliation(s)
- David A Slatter
- Systems Immunity Research Institute and Division of Infection and Immunity, Cardiff University, Cardiff, United Kingdom
| | - Charles L Percy
- Systems Immunity Research Institute and Division of Infection and Immunity, Cardiff University, Cardiff, United Kingdom
| | - Keith Allen-Redpath
- Systems Immunity Research Institute and Division of Infection and Immunity, Cardiff University, Cardiff, United Kingdom
| | - Joshua M Gajsiewicz
- Departments of Biological Chemistry and Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Nick J Brooks
- Faculty of Natural Science, Department of Chemistry, Imperial College London, London, United Kingdom
| | - Aled Clayton
- Institute of Cancer and Genetics, Velindre Cancer Centre, School of Medicine, and
| | - Victoria J Tyrrell
- Systems Immunity Research Institute and Division of Infection and Immunity, Cardiff University, Cardiff, United Kingdom
| | - Marcela Rosas
- Systems Immunity Research Institute and Division of Infection and Immunity, Cardiff University, Cardiff, United Kingdom
| | - Sarah N Lauder
- Systems Immunity Research Institute and Division of Infection and Immunity, Cardiff University, Cardiff, United Kingdom
| | - Andrew Watson
- Systems Immunity Research Institute and Division of Infection and Immunity, Cardiff University, Cardiff, United Kingdom
| | - Maria Dul
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, United Kingdom
| | - Yoel Garcia-Diaz
- School of Chemistry, Vanderbilt University, Nashville, Tennessee, USA
| | - Maceler Aldrovandi
- Systems Immunity Research Institute and Division of Infection and Immunity, Cardiff University, Cardiff, United Kingdom
| | - Meike Heurich
- Systems Immunity Research Institute and Division of Infection and Immunity, Cardiff University, Cardiff, United Kingdom
| | - Judith Hall
- Systems Immunity Research Institute and Division of Infection and Immunity, Cardiff University, Cardiff, United Kingdom
| | - James H Morrissey
- Departments of Biological Chemistry and Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | | | | | - P Vincent Jenkins
- Haematology Department, University Hospital of Wales, Cardiff, United Kingdom
| | - Peter W Collins
- Systems Immunity Research Institute and Division of Infection and Immunity, Cardiff University, Cardiff, United Kingdom
| | - Valerie B O'Donnell
- Systems Immunity Research Institute and Division of Infection and Immunity, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
44
|
Cheng B, Li Y, Ma L, Wang Z, Petersen RB, Zheng L, Chen Y, Huang K. Interaction between amyloidogenic proteins and biomembranes in protein misfolding diseases: Mechanisms, contributors, and therapy. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018; 1860:1876-1888. [PMID: 29466701 DOI: 10.1016/j.bbamem.2018.02.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Revised: 02/12/2018] [Accepted: 02/13/2018] [Indexed: 12/14/2022]
Abstract
The toxic deposition of misfolded amyloidogenic proteins is associated with more than fifty protein misfolding diseases (PMDs), including Alzheimer's disease, Parkinson's disease and type 2 diabetes mellitus. Protein deposition is a multi-step process modulated by a variety of factors, in particular by membrane-protein interaction. The interaction results in permeabilization of biomembranes contributing to the cytotoxicity that leads to PMDs. Different biological and physiochemical factors, such as protein sequence, lipid composition, and chaperones, are known to affect the membrane-protein interaction. Here, we provide a comprehensive review of the mechanisms and contributing factors of the interaction between biomembranes and amyloidogenic proteins, and a summary of the therapeutic approaches to PMDs that target this interaction. This article is part of a Special Issue entitled: Protein Aggregation and Misfolding at the Cell Membrane Interface edited by Ayyalusamy Ramamoorthy.
Collapse
Affiliation(s)
- Biao Cheng
- Department of Pharmacy, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430023, China; Key Laboratory for Molecular Diagnosis of Hubei Province, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430023, China
| | - Yang Li
- Tongji School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Liang Ma
- Tongji School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zhuoyi Wang
- Tongji School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Robert B Petersen
- Foundational Sciences, Central Michigan University College of Medicine, Mt. Pleasant, MI 48858, USA
| | - Ling Zheng
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan 430072, China
| | - Yuchen Chen
- Tongji School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Kun Huang
- Tongji School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
45
|
Head-to-tail cyclization of a heptapeptide eliminates its cytotoxicity and significantly increases its inhibition effect on amyloid β-protein fibrillation and cytotoxicity. Front Chem Sci Eng 2018. [DOI: 10.1007/s11705-017-1687-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
46
|
Guo J, Yu L, Sun Y, Dong X. Kinetic Insights into Zn2+-Induced Amyloid β-Protein Aggregation Revealed by Stopped-Flow Fluorescence Spectroscopy. J Phys Chem B 2017; 121:3909-3917. [DOI: 10.1021/acs.jpcb.6b12187] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Jingjing Guo
- Department of Biochemical
Engineering and Key Laboratory of Systems Bioengineering of the Ministry
of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Linling Yu
- Department of Biochemical
Engineering and Key Laboratory of Systems Bioengineering of the Ministry
of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Yan Sun
- Department of Biochemical
Engineering and Key Laboratory of Systems Bioengineering of the Ministry
of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Xiaoyan Dong
- Department of Biochemical
Engineering and Key Laboratory of Systems Bioengineering of the Ministry
of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| |
Collapse
|
47
|
Dinkins MB, Wang G, Bieberich E. Sphingolipid-Enriched Extracellular Vesicles and Alzheimer's Disease: A Decade of Research. J Alzheimers Dis 2017; 60:757-768. [PMID: 27662306 PMCID: PMC5360538 DOI: 10.3233/jad-160567] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Extracellular vesicles (EVs), particularly exosomes, have emerged in the last 10 years as a new player in the progression of Alzheimer's disease (AD) with high potential for being useful as a diagnostic and treatment tool. Exosomes and other EVs are enriched with the sphingolipid ceramide as well as other more complex glycosphingolipids such as gangliosides. At least a subpopulation of exosomes requires neutral sphingomyelinase activity for their biogenesis and secretion. As ceramide is often elevated in AD, exosome secretion may be affected as well. Here, we review the available data showing that exosomes regulate the aggregation and clearance of amyloid-beta (Aβ) and discuss the differences in data from laboratories regarding Aβ binding, induction of aggregation, and glial clearance. We also summarize available data on the role of exosomes in extracellular tau propagation, AD-related exosomal mRNA/miRNA cargo, and the use of exosomes as biomarker and gene therapy vehicles for diagnosis and potential treatment.
Collapse
Affiliation(s)
- Michael B. Dinkins
- Department of Neuroscience and Regenerative Medicine, The Medical College of Georgia, Augusta University, Augusta, Georgia, 30912, USA
| | - Guanghu Wang
- Department of Neuroscience and Regenerative Medicine, The Medical College of Georgia, Augusta University, Augusta, Georgia, 30912, USA
| | - Erhard Bieberich
- Department of Neuroscience and Regenerative Medicine, The Medical College of Georgia, Augusta University, Augusta, Georgia, 30912, USA
| |
Collapse
|
48
|
Ikeda K, Nakano M. Energetics of the Mixing of Phospholipids in Bilayers Determined Using Vesicle Solubilization. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:13270-13275. [PMID: 27951688 DOI: 10.1021/acs.langmuir.6b03333] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Here, we report an experimental approach for determining the change in the free energy and the enthalpy that accompanies the mixing of the anionic phosphatidylglycerol and the zwitterionic phosphatidylcholine. The enthalpy change originates in the thermal changes of disrupting lipid bilayer vesicles titrated into a surfactant micelle solution and is monitored using isothermal titration calorimetry. The difference in the solubilization enthalpies between pure and mixed lipid vesicles yields the lipid mixing enthalpy. The Gibbs free energy changes are estimated by determining the thermodynamic equilibrium constants of forming a molecular complex between phospholipids and methyl-β-cyclodextrin. We provide direct experimental evidence that mixing of the anionic lipid and the zwitterionic lipid is explained well by the entropic term of the electrostatic free energy of a charged surface in the Gouy-Chapman model. The present strategy enables us to determine the precise energetics of lipid-lipid interactions in near-native environments such as liposomes without any chemical modification to lipid molecules.
Collapse
Affiliation(s)
- Keisuke Ikeda
- Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama , Toyama 930-0194, Japan
| | - Minoru Nakano
- Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama , Toyama 930-0194, Japan
| |
Collapse
|
49
|
Lockhart C, Klimov DK. The Alzheimer's disease A β peptide binds to the anionic DMPS lipid bilayer. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:1118-28. [DOI: 10.1016/j.bbamem.2016.03.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Revised: 02/26/2016] [Accepted: 03/01/2016] [Indexed: 11/24/2022]
|
50
|
Zappulli V, Friis KP, Fitzpatrick Z, Maguire CA, Breakefield XO. Extracellular vesicles and intercellular communication within the nervous system. J Clin Invest 2016; 126:1198-207. [PMID: 27035811 DOI: 10.1172/jci81134] [Citation(s) in RCA: 183] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Extracellular vesicles (EVs, including exosomes) are implicated in many aspects of nervous system development and function, including regulation of synaptic communication, synaptic strength, and nerve regeneration. They mediate the transfer of packets of information in the form of nonsecreted proteins and DNA/RNA protected within a membrane compartment. EVs are essential for the packaging and transport of many cell-fate proteins during development as well as many neurotoxic misfolded proteins during pathogenesis. This form of communication provides another dimension of cellular crosstalk, with the ability to assemble a "kit" of directional instructions made up of different molecular entities and address it to specific recipient cells. This multidimensional form of communication has special significance in the nervous system. How EVs help to orchestrate the wiring of the brain while allowing for plasticity associated with learning and memory and contribute to regeneration and degeneration are all under investigation. Because they carry specific disease-related RNAs and proteins, practical applications of EVs include potential uses as biomarkers and therapeutics. This Review describes our current understanding of EVs and serves as a springboard for future advances, which may reveal new important mechanisms by which EVs in coordinate brain and body function and dysfunction.
Collapse
|