1
|
Kotova S, Kostjuk S, Rochev Y, Efremov Y, Frolova A, Timashev P. Phase transition and potential biomedical applications of thermoresponsive compositions based on polysaccharides, proteins and DNA: A review. Int J Biol Macromol 2023; 249:126054. [PMID: 37532189 DOI: 10.1016/j.ijbiomac.2023.126054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 08/04/2023]
Abstract
Smart thermoresponsive polymers have long attracted attention as materials of a great potential for biomedical applications, mainly for drug delivery, tissue engineering and wound dressing, with a special interest to injectable hydrogels. Poly-N-isopropylacrylamide (PNIPAM) is the most important synthetic thermoresponsive polymer due to its physiologically relevant transition temperature. However, the use of unmodified PNIPAM encounters such problems as low biodegradability, low drug loading capacity, slow response to thermal stimuli, and insufficient mechanical robustness. The use of natural polysaccharides and proteins in combinations with PNIPAM, in the form of grafted copolymers, IPNs, microgels and physical mixtures, is aimed at overcoming these drawbacks and creating dual-functional materials with both synthetic and natural polymers' properties. When developing such compositions, special attention should be paid to preserving their key property, thermoresponsiveness. Addition of hydrophobic and hydrophilic fragments to PNIPAM is known to affect its transition temperature. This review covers various classes of natural polymers - polysaccharides, fibrous and non-fibrous proteins, DNA - used in combination with PNIPAM for the prospective biomedical purposes, with a focus on their phase transition temperatures and its relation to the natural polymer's structure.
Collapse
Affiliation(s)
- Svetlana Kotova
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University (Sechenov University), Moscow 119991, Russia.
| | - Sergei Kostjuk
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University (Sechenov University), Moscow 119991, Russia; Department of Chemistry, Belarusian State University, Minsk 220006, Belarus; Research Institute for Physical Chemical Problems of the Belarusian State University, Minsk 220006, Belarus
| | - Yuri Rochev
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University (Sechenov University), Moscow 119991, Russia; National University of Ireland Galway, Galway H91 CF50, Ireland
| | - Yuri Efremov
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University (Sechenov University), Moscow 119991, Russia
| | - Anastasia Frolova
- World-Class Research Center "Digital Biodesign and Personalized Healthcare", Sechenov First Moscow State Medical University (Sechenov University), Moscow 119991, Russia
| | - Peter Timashev
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University (Sechenov University), Moscow 119991, Russia; World-Class Research Center "Digital Biodesign and Personalized Healthcare", Sechenov First Moscow State Medical University (Sechenov University), Moscow 119991, Russia; N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow 119991, Russia; Chemistry Department, Lomonosov Moscow State University, Moscow 119991, Russia
| |
Collapse
|
2
|
Ishaqat A, Herrmann A. Polymers Strive for Accuracy: From Sequence-Defined Polymers to mRNA Vaccines against COVID-19 and Polymers in Nucleic Acid Therapeutics. J Am Chem Soc 2021; 143:20529-20545. [PMID: 34841867 DOI: 10.1021/jacs.1c08484] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Unquestionably, polymers have influenced the world over the past 100 years. They are now more crucial than ever since the COVID-19 pandemic outbreak. The pandemic paved the way for certain polymers to be in the spotlight, namely sequence-defined polymers such as messenger ribonucleic acid (mRNA), which was the first type of vaccine to be authorized in the U.S. and Europe to protect against the SARS-CoV-2 virus. This rise of mRNA will probably influence scientific research concerning nucleic acids in general and RNA therapeutics in specific. In this Perspective, we highlight the recent trends in sequence-controlled and sequence-defined polymers. Then we discuss mRNA vaccines as an example to illustrate the need of ultimate sequence control to achieve complex functions such as specific activation of the immune system. We briefly present how mRNA vaccines are produced, the importance of modified nucleotides, the characteristic features, and the advantages and challenges associated with this class of vaccines. Finally, we discuss the chances and opportunities for polymer chemistry to provide solutions and contribute to the future progress of RNA-based therapeutics. We highlight two particular roles of polymers in this context. One represents conjugation of polymers to nucleic acids to form biohybrids. The other is concerned with advanced polymer-based carrier systems for nucleic acids. We believe that polymers can help to address present problems of RNA-based therapeutic technologies and impact the field beyond the COVID-19 pandemic.
Collapse
Affiliation(s)
- Aman Ishaqat
- DWI - Leibniz Institute for Interactive Materials, Forckenbeckstraße 50, 52074 Aachen, Germany.,Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074 Aachen, Germany
| | - Andreas Herrmann
- DWI - Leibniz Institute for Interactive Materials, Forckenbeckstraße 50, 52074 Aachen, Germany.,Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074 Aachen, Germany
| |
Collapse
|
3
|
Synthesis, self-assembly and thermoresponsive behavior of Poly(lactide-co-glycolide)-b-Poly(ethylene glycol)-b-Poly(lactide-co-glycolide) copolymer in aqueous solution. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.123673] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
4
|
Albert SK, Golla M, Krishnan N, Perumal D, Varghese R. DNA-π Amphiphiles: A Unique Building Block for the Crafting of DNA-Decorated Unilamellar Nanostructures. Acc Chem Res 2020; 53:2668-2679. [PMID: 33052654 DOI: 10.1021/acs.accounts.0c00492] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The unparalleled ability of DNA to recognize its complementary strand through Watson and Crick base pairing is one of the most reliable molecular recognition events found in natural systems. This highly specific sequence information encoded in DNA enables it to be a versatile building block for bottom-up self-assembly. Hence, the decoration of functional nanostructures with information-rich DNA is extremely important as this allows the integration of other functional molecules onto the surface of the nanostructures through DNA hybridization in a highly predictable manner. DNA amphiphiles are a class of molecular hybrids where a short hydrophilic DNA is conjugated to a hydrophobic moiety. Since DNA amphiphiles comprise DNA as the hydrophilic segment, their self-assembly in aqueous medium always results in the formation of nanostructures with shell made of DNA. This clearly suggests that self-assembly of DNA amphiphiles is a straightforward strategy for the ultradense decoration of a nanostructure with DNA. However, initial attempts toward the design of DNA amphiphiles were primarily focused on long flexible hydrocarbon chains as the hydrophobic moiety, and it has been demonstrated in several examples that they typically self-assemble into DNA-decorated micelles (spherical or cylindrical). Hence, molecular level control over the self-assembly of DNA amphiphiles and achieving diverse morphologies was extremely challenging and unrealized until recently.In this Account, we summarize our recent efforts in the area of self-assembly of DNA amphiphiles and narrate the remarkable effect of the incorporation of a large π-surface as the hydrophobic domain in the self-assembly of DNA amphiphiles. Self-assembly of DNA amphiphiles with flexible hydrocarbon chains as the hydrophobic moiety is primarily driven by the hydrophobic effect. The morphology of such nanostructures is typically predicted based on the volume ratio of hydrophobic to hydrophilic segments. However, control over the self-assembly and prediction of the morphology become increasingly challenging when the hydrophobic moieties can interact with each other through other noncovalent interactions. In this Account, the unique self-assembly behaviors of DNA-π amphiphiles, where a large π-surface acts as the hydrophobe, are described. Due to the extremely strong π-π stacking in aqueous medium, the assembly of the amphiphile is found to preferably proceed in a lamellar fashion (bilayer) and hence the morphology of the nanostructures can easily be tuned by the structural modification of the π-surface. Design principles for crafting various DNA-decorated lamellar nanostructures including unilamellar vesicles, two-dimensional (2D) nanosheets, and helically twisted nanoribbons by selecting suitable π-surfaces are discussed. Unilamellar vesicular nanostructures were achieved by using linear oligo(phenylene ethynylene) (OPE) as the hydrophobic segment, where lamellar assembly undergoes folding to form unilamellar vesicles. The replacement of OPE with a strongly π-stacking hydrophobe such as hexabenzocoronene (HBC) or tetraphenylethylene (TPE) provides extremely strong π-stacking compared to OPE, which efficiently directed the 2D growth for the lamellar assembly and led to the formation of 2D nanosheets. A helical twist in the lamella was achieved by the replacement of HBC with hexaphenylbenzene (HPB), which is the twisted analogue of HBC, directing the assembly into helically twisted nanoribbons. The most beneficial structural feature of this kind of nanostructure is the extremely dense decoration of their surface with ssDNA, which can further be used for DNA-directed organization of other functional nanomaterials. By exploring this, their potential as a nanoscaffold for predefined assembly of plasmonic nanomaterials into various plasmonic 1D, 2D, and 3D nanostructures through DNA hybridization is discussed. Moreover, the design of pH-responsive DNA-based vesicles and their application as a nanocarrier for payload delivery is also demonstrated.
Collapse
Affiliation(s)
- Shine K. Albert
- School of Chemistry, Indian Institute of Science Education and Research (IISER) Thiruvananthapuram, Trivandrum, 695551 Kerala, India
| | - Murali Golla
- School of Chemistry, Indian Institute of Science Education and Research (IISER) Thiruvananthapuram, Trivandrum, 695551 Kerala, India
| | - Nthiyanandan Krishnan
- School of Chemistry, Indian Institute of Science Education and Research (IISER) Thiruvananthapuram, Trivandrum, 695551 Kerala, India
| | - Devanathan Perumal
- School of Chemistry, Indian Institute of Science Education and Research (IISER) Thiruvananthapuram, Trivandrum, 695551 Kerala, India
| | - Reji Varghese
- School of Chemistry, Indian Institute of Science Education and Research (IISER) Thiruvananthapuram, Trivandrum, 695551 Kerala, India
| |
Collapse
|
5
|
Chang X, Wang C, Shan G, Bao Y, Pan P. Thermoresponsivity, Micelle Structure, and Thermal-Induced Structural Transition of an Amphiphilic Block Copolymer Tuned by Terminal Multiple H-Bonding Units. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:956-965. [PMID: 31917586 DOI: 10.1021/acs.langmuir.9b03290] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Constructing noncovalent interactions has been a benign method to tune the stimuli responsivity and assembled structure of polymers in solution; this is essential for controlling the functions and properties of stimuli-responsive materials. Herein, we demonstrate a novel supramolecular strategy to manipulate the cloud point (Tcp) and assembled structure of thermoresponsive polymers in solution by using H-bonding interactions. We use poly(lactide-co-glycolide)-b-poly(ethylene glycol)-b- poly(lactide-co-glycolide) (PLGA-PEG-PLGA) as a model thermoresponsive polymer and functionalize its chain terminals by the self-complementary quadruple H-bonding motif, 2-ureido-4[1H]-pyrimidinone (UPy). UPy end functionalization and increasing PLGA block length decrease the Tcp of copolymer. Both UPy- and nonfunctionalized copolymers form the spherical micelles at low temperature. They undergo the intermicellar aggregation and form large compound micelles during heating; this thermally induced structural transition causes the presence of Tcp. Due to the UPy-UPy H-bonding interactions, UPy end functionalization leads to more copolymer chains to associate in one micelle, thus, enhancing the hydrodynamic, gyration radii, core size, as well as the packing density of PLGA in micelle core and grafting density of PEG on core-shell interface. The decreased Tcp of UPy-functionalized copolymer stemmed from the stronger intermicellar attractions at high temperature. Furthermore, UPy-functionalized copolymers exhibit higher drug loading content, slower drug release rate, and better separation efficiency in removing the hydrophobic substances from water than PLGA-PEG-PLGA precursors.
Collapse
Affiliation(s)
- Xiaohua Chang
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering , Zhejiang University , 38 Zheda Road , Hangzhou 310027 , China
| | - Chen Wang
- Key Laboratory of Auxiliary Chemistry and Technology for Chemical Industry, Ministry of Education , Shaanxi University of Science and Technology , Xi'an 710021 , China
| | - Guorong Shan
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering , Zhejiang University , 38 Zheda Road , Hangzhou 310027 , China
| | - Yongzhong Bao
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering , Zhejiang University , 38 Zheda Road , Hangzhou 310027 , China
| | - Pengju Pan
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering , Zhejiang University , 38 Zheda Road , Hangzhou 310027 , China
| |
Collapse
|
6
|
Albert SK, Hu X, Park SJ. Dynamic Nanostructures from DNA-Coupled Molecules, Polymers, and Nanoparticles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1900504. [PMID: 30985085 DOI: 10.1002/smll.201900504] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 03/28/2019] [Indexed: 05/20/2023]
Abstract
Dynamic and reconfigurable systems that can sense and react to physical and chemical signals are ubiquitous in nature and are of great interest in diverse areas of science and technology. DNA is a powerful tool for fabricating such smart materials and devices due to its programmable and responsive molecular recognition properties. For the past couple of decades, DNA-based self-assembly is actively explored to fabricate various DNA-organic and DNA-inorganic hybrid nanostructures with high-precision structural control. Building upon past development, researchers have recently begun to design and assemble dynamic nanostructures that can undergo an on-demand transformation in the structure, properties, and motion in response to various external stimuli. In this Review, recent advances in dynamic DNA nanostructures, focusing on hybrid structures fabricated from DNA-conjugated molecules, polymers, and nanoparticles, are introduced, and their potential applications and future perspectives are discussed.
Collapse
Affiliation(s)
- Shine K Albert
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Korea
| | - Xiaole Hu
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Korea
| | - So-Jung Park
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Korea
| |
Collapse
|
7
|
Chang X, Mao H, Shan G, Bao Y, Pan P. Tuning the Thermoresponsivity of Amphiphilic Copolymers via Stereocomplex Crystallization of Hydrophobic Blocks. ACS Macro Lett 2019; 8:357-362. [PMID: 35651137 DOI: 10.1021/acsmacrolett.9b00125] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Thermoresponsive polymers that exhibit a cloud point temperature (Tcp) are an important class of stimuli-responsive polymers that have great potential for biomedical applications. Precise tuning of the Tcp is of fundamental importance for designing thermoresponsive polymers. However, tuning the Tcp generally requires sophisticated control over the chemical and assembled structures of thermoresponsive polymers. Here, we report a simple yet effective method to tune the Tcp of thermoresponsive polymers only by mixing and varying the mixing ratios of amphiphilic copolymer pair that contains l- and d-configured hydrophobic blocks in a dilute solution. Stereocomplex (SC) crystallization of the l- and d-configured blocks led to form core-shell micelles with a larger size, a bigger core, and a higher aggregation number, which facilitated the intermicellar aggregation upon heating due to improved intermicellar attractions. SC crystallization of the hydrophobic blocks improved the separation efficacy of the thermoresponsive copolymers for removal of hydrophobic pollutants from water.
Collapse
Affiliation(s)
- Xiaohua Chang
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University 38 Zheda Road, Hangzhou 310027, China
| | - Hailiang Mao
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University 38 Zheda Road, Hangzhou 310027, China
| | - Guorong Shan
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University 38 Zheda Road, Hangzhou 310027, China
| | - Yongzhong Bao
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University 38 Zheda Road, Hangzhou 310027, China
| | - Pengju Pan
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University 38 Zheda Road, Hangzhou 310027, China
| |
Collapse
|
8
|
Hou Y, Guo Y, Qian S, Khan H, Han G, Zhang W. A new thermoresponsive polymer of poly(N-acetoxylethyl acrylamide). POLYMER 2019. [DOI: 10.1016/j.polymer.2019.02.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
9
|
Zhao Z, Du T, Liang F, Liu S. Amphiphilic DNA Organic Hybrids: Functional Materials in Nanoscience and Potential Application in Biomedicine. Int J Mol Sci 2018; 19:E2283. [PMID: 30081520 PMCID: PMC6121482 DOI: 10.3390/ijms19082283] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Revised: 07/23/2018] [Accepted: 07/30/2018] [Indexed: 12/13/2022] Open
Abstract
Due to the addressability and programmability, DNA has been applied not merely in constructing static elegant nanostructures such as two dimensional and three dimensional DNA nanostructures but also in designing dynamic nanodevices. Moreover, DNA could combine with hydrophobic organic molecules to be a new amphiphilic building block and then self-assemble into nanomaterials. Of particular note, a recent state-of-the-art research has turned our attention to the amphiphilic DNA organic hybrids including small molecule modified DNA (lipid-DNA, fluorescent molecule-DNA, etc.), DNA block copolymers, and DNA-dendron hybrids. This review focuses mainly on the development of their self-assembly behavior and their potential application in nanomaterial and biomedicine. The potential challenges regarding of the amphiphilic DNA organic hybrids are also briefly discussed, aiming to advance their practical applications in nanoscience and biomedicine.
Collapse
Affiliation(s)
- Zhiyong Zhao
- The State Key Laboratory of Refractories and Metallurgy, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China.
| | - Ting Du
- The State Key Laboratory of Refractories and Metallurgy, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China.
| | - Feng Liang
- The State Key Laboratory of Refractories and Metallurgy, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China.
| | - Simin Liu
- The State Key Laboratory of Refractories and Metallurgy, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China.
| |
Collapse
|
10
|
Osváth Z, Iván B. The Dependence of the Cloud Point, Clearing Point, and Hysteresis of Poly(N-isopropylacrylamide) on Experimental Conditions: The Need for Standardization of Thermoresponsive Transition Determinations. MACROMOL CHEM PHYS 2016. [DOI: 10.1002/macp.201600470] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Zsófia Osváth
- Polymer Chemistry Research Group; Institute of Materials and Environmental Chemistry; Research Centre for Natural Sciences; Hungarian Academy of Sciences; Magyar tudósok krt. 2 H-1117 Budapest Hungary
| | - Béla Iván
- Polymer Chemistry Research Group; Institute of Materials and Environmental Chemistry; Research Centre for Natural Sciences; Hungarian Academy of Sciences; Magyar tudósok krt. 2 H-1117 Budapest Hungary
| |
Collapse
|
11
|
Liu J, Postupalenko V, Lörcher S, Wu D, Chami M, Meier W, Palivan CG. DNA-Mediated Self-Organization of Polymeric Nanocompartments Leads to Interconnected Artificial Organelles. NANO LETTERS 2016; 16:7128-7136. [PMID: 27726407 DOI: 10.1021/acs.nanolett.6b03430] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Self-organization of nanocomponents was mainly focused on solid nanoparticles, quantum dots, or liposomes to generate complex architectures with specific properties, but intrinsically limited or not developed enough, to mimic sophisticated structures with biological functions in cells. Here, we present a biomimetic strategy to self-organize synthetic nanocompartments (polymersomes) into clusters with controlled properties and topology by exploiting DNA hybridization to interconnect polymersomes. Molecular and external factors affecting the self-organization served to design clusters mimicking the connection of natural organelles: fine-tune of the distance between tethered polymersomes, different topologies, no fusion of clustered polymersomes, and no aggregation. Unexpected, extended DNA bridges that result from migration of the DNA strands inside the thick polymer membrane (about 12 nm) represent a key stability and control factor, not yet exploited for other synthetic nano-object networks. The replacement of the empty polymersomes with artificial organelles, already reported for single polymersome architecture, will provide an excellent platform for the development of artificial systems mimicking natural organelles or cells and represents a fundamental step in the engineering of molecular factories.
Collapse
Affiliation(s)
- Juan Liu
- Department of Chemistry, University of Basel , Klingelbergstrasse 80, Basel 4056, Switzerland
| | - Viktoriia Postupalenko
- Department of Chemistry, University of Basel , Klingelbergstrasse 80, Basel 4056, Switzerland
| | - Samuel Lörcher
- Department of Chemistry, University of Basel , Klingelbergstrasse 80, Basel 4056, Switzerland
| | - Dalin Wu
- Department of Chemistry, University of Basel , Klingelbergstrasse 80, Basel 4056, Switzerland
| | - Mohamed Chami
- BioEM lab, Biozentrum, University of Basel , Mattenstrasse 26, 4058 Basel, Switzerland
| | - Wolfgang Meier
- Department of Chemistry, University of Basel , Klingelbergstrasse 80, Basel 4056, Switzerland
| | - Cornelia G Palivan
- Department of Chemistry, University of Basel , Klingelbergstrasse 80, Basel 4056, Switzerland
| |
Collapse
|
12
|
Kim CJ, Hu X, Park SJ. Multimodal Shape Transformation of Dual-Responsive DNA Block Copolymers. J Am Chem Soc 2016; 138:14941-14947. [PMID: 27791376 DOI: 10.1021/jacs.6b07985] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Herein, we report the self-assembly and multimodal shape transformation of dual-responsive DNA di- and triblock copolymers. Dual-responsive DNA diblock copolymer was synthesized by coupling a thermoresponsive polymer, poly(N-isopropylacrylamide (PNIPAM), and an oligonucleotide. DNA-b-PNIPAM possesses thermoresponsive properties of PNIPAM as well as molecular recognition properties of DNA. Thus, they undergo reversible temperature-triggered transition at lower critical solution temperature (LCST) between molecular DNA and polymer micelles with high density DNA corona. The hybridization of DNA-b-PNIPAM and DNA-modified nanoparticles generates functional nanoparticles showing unique temperature-dependent aggregation and disaggregation behaviors due to the dual-responsive nature of DNA-b-PNIPAM. DNA triblock copolymers of DNA-b-PNIPAM-b-PMA were synthesized by introducing a hydrophobic block, poly(methyl acrylate) (PMA), to DNA/PNIPAM block copolymers, which form spherical micelles at room temperature. They are capable of nanoscale shape transformation through the combination of thermal trigger and DNA binding. DNA-b-PNIPAM-b-PMA micelles undergo sphere-to-cylinder shape changes above LCST due to the conformational change of PNIPAM. The shape change is reversible, and fast cylinder-to-sphere transition occurs when the temperature is lowered below LCST. The low temperature spherical morphology can also be accessed while keeping the temperature above LCST by introducing complementary DNA strands with single stranded overhang regions. These results demonstrate the multidimensional shape changing capability of DNA-b-PNIPAM-b-PMA enabled by the dual-responsive property.
Collapse
Affiliation(s)
- Chan-Jin Kim
- Department of Chemistry and Nano Science, Ewha Womans University , 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 120-750, Korea
| | - Xiaole Hu
- Department of Chemistry and Nano Science, Ewha Womans University , 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 120-750, Korea
| | - So-Jung Park
- Department of Chemistry and Nano Science, Ewha Womans University , 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 120-750, Korea
| |
Collapse
|
13
|
Hernández-Ainsa S, Ricci M, Hilton L, Aviñó A, Eritja R, Keyser UF. Controlling the Reversible Assembly of Liposomes through a Multistimuli Responsive Anchored DNA. NANO LETTERS 2016; 16:4462-6. [PMID: 27367802 PMCID: PMC4956241 DOI: 10.1021/acs.nanolett.6b01618] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 06/23/2016] [Indexed: 05/21/2023]
Abstract
We present a novel approach to reversibly control the assembly of liposomes through an anchored multistimuli responsive DNA oligonucleotide decorated with an azobenzene moiety (AZO-ON1). We show that liposomes assembly can be simultaneously controlled by three external stimuli: light, Mg(2+), and temperature. (i) Light alters the interaction of AZO-ON1 with liposomes, which influences DNA coating and consequently liposomes assembly. (ii) Mg(2+) induces the assembly, hence variation in its concentration enables for reversibility. (iii) Double-stranded AZO-ON1 is more efficient than single-stranded AZO-ON1 in triggering the assembly of liposomes and temperature has been used for controllable assembly through DNA thermal denaturation. Our multiresponsive AZO-ON1 represents a unique example in which multiple stimuli can be simultaneously applied to regulate the reversible assembly of liposomes.
Collapse
Affiliation(s)
- Silvia Hernández-Ainsa
- Cavendish Laboratory, Department of Physics, University of Cambridge, JJ Thomson Avenue, Cambridge, CB3 0HE, United Kingdom
| | - Maria Ricci
- Cavendish Laboratory, Department of Physics, University of Cambridge, JJ Thomson Avenue, Cambridge, CB3 0HE, United Kingdom
| | - Lloyd Hilton
- Cavendish Laboratory, Department of Physics, University of Cambridge, JJ Thomson Avenue, Cambridge, CB3 0HE, United Kingdom
| | - Anna Aviñó
- IQAC−CSIC, CIBER-BBN Networking Centre on Bioengineering,
Biomaterials and Nanomedicine, c/Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Ramon Eritja
- IQAC−CSIC, CIBER-BBN Networking Centre on Bioengineering,
Biomaterials and Nanomedicine, c/Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Ulrich F. Keyser
- Cavendish Laboratory, Department of Physics, University of Cambridge, JJ Thomson Avenue, Cambridge, CB3 0HE, United Kingdom
| |
Collapse
|