1
|
Kim S, Kang S, Lee J. High-Thermal-Conductivity and High-Fluidity Heat Transfer Emulsion with 89 wt % Suspended Liquid Metal Microdroplets. ACS OMEGA 2023; 8:17748-17757. [PMID: 37251162 PMCID: PMC10210168 DOI: 10.1021/acsomega.3c00487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 04/25/2023] [Indexed: 05/31/2023]
Abstract
Colloidal suspensions of thermally conductive particles in a carrier fluid are considered promising heat transfer fluids for various thermal energy transfer applications, such as transportation, plants, electronics, and renewable energy systems. The thermal conductivity (k) of the particle-suspended fluids can be improved substantially by increasing the concentration of conductive particles above a "thermal percolation threshold," which is limited because of the vitrification of the resulting fluid at the high particle loadings. In this study, eutectic Ga-In liquid metal (LM) was employed as a soft high-k filler dispersed as microdroplets at high loadings in paraffin oil (as a carrier fluid) to produce an emulsion-type heat transfer fluid with the combined advantages of high thermal conductivity and high fluidity. Two types of the LM-in-oil emulsions, which were produced via the probe-sonication and rotor-stator homogenization (RSH) methods, demonstrated significant improvements in k, i.e., Δk ∼409 and ∼261%, respectively, at the maximum investigated LM loading of 50 vol % (∼89 wt %), attributed to the enhanced heat transport via high-k LM fillers above the percolation threshold. Despite the high filler loading, the RSH-produced emulsion retained remarkably high fluidity, with a relatively low viscosity increase and no yield stress, demonstrating its potential as a circulatable heat transfer fluid.
Collapse
|
2
|
Guzman-Juarez B, Abdelaal AB, Reven L. NMR Characterization of Nanoscale Surface Patterning in Mixed Ligand Nanoparticles. ACS NANO 2022; 16:20116-20128. [PMID: 36411252 DOI: 10.1021/acsnano.2c03707] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Spontaneous phase separation in binary mixed ligand shells is a proposed strategy to create patchy nanoparticles. The surface anisotropy, providing directionality along with interfacial properties emerging from both ligands, is highly desirable for targeted drug delivery, catalysis, and other applications. However, characterization of phase separation on the nanoscale remains quite challenging. Here we have adapted solid-state 1H spin diffusion NMR experiments designed to detect and quantify spatial heterogeneity in polymeric materials to nanoparticles (NPs) functionalized with mixed short ligands. Janus NPs and physical mixtures of homoligand 3.5 nm diameter ZrO2 NPs, with aromatic (phenylphosphonic acid, PPA) and aliphatic (oleic acid, OA) ligands, were used to calibrate the 1H spin diffusion experiments. The Janus NPs, prepared by a facile wax/water Pickering emulsion method, and mixed ligand NPs, produced by ligand exchange, both with 1:1 PPA:OA ligand compositions, display strikingly different solvent and particle-particle interactions. 1H spin diffusion NMR experiments are most consistent with a lamellar surface pattern for the mixed ligand ZrO2 NPs. Solid-state 1H spin diffusion NMR is shown to be a valuable additional characterization tool for mixed ligand NPs, as it not only detects the presence of nanoscale phase separation but also allows measurement of the domain sizes and geometries of the surface phase separation.
Collapse
Affiliation(s)
- Brenda Guzman-Juarez
- Centre Québécois sur les Matériaux Fonctionnels/Quebec Centre for Advanced Materials (CQMF/QCAM), Department of Chemistry, McGill University, 801 Sherbrooke Street W., MontrealQuebec, CanadaH3A 0B8
| | - Ahmed Bahaeldin Abdelaal
- Centre Québécois sur les Matériaux Fonctionnels/Quebec Centre for Advanced Materials (CQMF/QCAM), Department of Chemistry, McGill University, 801 Sherbrooke Street W., MontrealQuebec, CanadaH3A 0B8
| | - Linda Reven
- Centre Québécois sur les Matériaux Fonctionnels/Quebec Centre for Advanced Materials (CQMF/QCAM), Department of Chemistry, McGill University, 801 Sherbrooke Street W., MontrealQuebec, CanadaH3A 0B8
| |
Collapse
|
3
|
Young Ryu S, Kwak C, Kim J, Kim S, Cho H, Lee J. 3D-printable, lightweight, and electrically conductive metal inks based on evaporable emulsion templates jammed with natural rheology modifiers. J Colloid Interface Sci 2022; 628:758-767. [PMID: 36029590 DOI: 10.1016/j.jcis.2022.08.062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 07/06/2022] [Accepted: 08/10/2022] [Indexed: 10/15/2022]
Abstract
Conductive metal inks with 3D-printable rheological properties have gained considerable attention, owing to their potential for manufacturing 3D electronics. Typically, such inks are formulated with high volume fractions of metal particles to achieve both rheological and electrical percolation. However, this leads to a high product cost and weight, making this approach potentially undesirable for practical application. In this study, naturally occurring ingredients, i.e., bee pollen microparticles (BPMPs) and citric acids (CAs), are used to produce a jammed hexane-in-aqueous suspension-type emulsion with controllable viscoelasticity as a template for conductive metal particles. Correspondingly, it is possible to develop 3D-printable, lightweight, and conductive inks. The BPMPs and CAs, as rheology modifiers, facilitate the 3D printability of the ink. After drying, the ink forms 3D networks without macroscopic discontinuities. Hexanes co-dispersed with BPMPs and CAs in the aqueous continuous phase improve the ink rheological processability and create internal macropores within the 3D-printed structure upon evaporation under ambient conditions, decreasing the product density. A conductive copper ink based on the emulsion template shows excellent 3D printability and electrical percolation at low metal loadings (<10 vol%); moreover, the printed ink with the optimized formulation has a remarkably low density (<2 g ∙ cm-3).
Collapse
Affiliation(s)
- Seoung Young Ryu
- Department of Chemical Engineering, Myongji University, 116 Myongji-ro, Cheoin-gu, Yongin, Gyeonggi-do 17058, Republic of Korea
| | - Chaesu Kwak
- Department of Chemical Engineering, Myongji University, 116 Myongji-ro, Cheoin-gu, Yongin, Gyeonggi-do 17058, Republic of Korea
| | - Jieun Kim
- Department of Chemical Engineering, Myongji University, 116 Myongji-ro, Cheoin-gu, Yongin, Gyeonggi-do 17058, Republic of Korea
| | - Suyeon Kim
- Department of Chemical Engineering, Myongji University, 116 Myongji-ro, Cheoin-gu, Yongin, Gyeonggi-do 17058, Republic of Korea
| | - Hanbin Cho
- Department of Chemical Engineering, Myongji University, 116 Myongji-ro, Cheoin-gu, Yongin, Gyeonggi-do 17058, Republic of Korea
| | - Joohyung Lee
- Department of Chemical Engineering, Myongji University, 116 Myongji-ro, Cheoin-gu, Yongin, Gyeonggi-do 17058, Republic of Korea.
| |
Collapse
|
4
|
Kim J, Lee J. Liquid-Suspended and Liquid-Bridged Liquid Metal Microdroplets. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2108069. [PMID: 35150080 DOI: 10.1002/smll.202108069] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/19/2022] [Indexed: 06/14/2023]
Abstract
Liquid metals (LMs) and alloys are attracting increasing attention owing to their combined advantages of high conductivity and fluidity, and have shown promising results in various emerging applications. Patterning technologies using LMs are being actively researched; among them, direct ink writing is considered a potentially viable approach for efficient LM additive manufacturing. However, true LM additive manufacturing with arbitrary printing geometries remains challenging because of the intrinsically low rheological strength of LMs. Herein, colloidal suspensions of LM droplets amenable to additive manufacturing (or "3D printing") are realized using formulations containing minute amounts of liquid capillary bridges. The resulting LM suspensions exhibit exceptionally high rheological strength with yield stress values well above 103 Pa, attributed to inter-droplet capillary attraction mediated by the liquid bridges adsorbed on the oxide skin of the LM droplets. Such liquid-bridged LM suspensions, as extrudable ink-type filaments, are based on uncurable continuous-phase liquid media, have a long pot-life and outstanding shear-thinning properties, and shape retention, demonstrating excellent rheological processability suitable for 3D printing. These findings will enable the emergence of a variety of new advanced applications that necessitate LM patterning into highly complicated multidimensional structures.
Collapse
Affiliation(s)
- Jieun Kim
- Department of Chemical Engineering, Myongji University, 116 Myongji-ro, Cheoin-gu, Yongin, Gyeonggi-do, 17058, Korea
| | - Joohyung Lee
- Department of Chemical Engineering, Myongji University, 116 Myongji-ro, Cheoin-gu, Yongin, Gyeonggi-do, 17058, Korea
| |
Collapse
|
5
|
Li S, Liu X, Zhang H, Mao Y, Zhang T, Wang J. Shape-tunable polymeric Janus nanoparticles with hollow cavities derived from polymerization induced self-assembly based crosslinked vesicles. Chem Commun (Camb) 2022; 58:2228-2231. [PMID: 35073392 DOI: 10.1039/d1cc06966g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The fabrication of shape-tunable polymeric Janus nanoparticles with hollow cavities derived from polymerization induced self-assembly based crosslinked vesicles is reported for the first time in this work. These novel polymeric JNPs can be applied to an extensive range of applications, wherein nanoparticles with controllable hollow morphologies are needed.
Collapse
Affiliation(s)
- Shanshan Li
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Zhejiang Province Key Laboratory of Biofuel, Biodiesel Laboratory of China Petroleum and Chemical Industry Federation, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Xiaobo Liu
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Zhejiang Province Key Laboratory of Biofuel, Biodiesel Laboratory of China Petroleum and Chemical Industry Federation, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Hao Zhang
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Zhejiang Province Key Laboratory of Biofuel, Biodiesel Laboratory of China Petroleum and Chemical Industry Federation, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Yuhua Mao
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Zhejiang Province Key Laboratory of Biofuel, Biodiesel Laboratory of China Petroleum and Chemical Industry Federation, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Tangxin Zhang
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Zhejiang Province Key Laboratory of Biofuel, Biodiesel Laboratory of China Petroleum and Chemical Industry Federation, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Jianli Wang
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Zhejiang Province Key Laboratory of Biofuel, Biodiesel Laboratory of China Petroleum and Chemical Industry Federation, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
6
|
Qiang X, Franzka S, Quintieri G, Dai X, Wong CK, Gröschel AH. Size‐Controlled Formation of Polymer Janus Discs. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202105235] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Xiaolian Qiang
- Physical Chemistry University of Münster Corrensstraße 28–30 48149 Münster Germany
| | - Steffen Franzka
- Center for Nanointegration Duisburg-Essen (CENIDE) and Interdisciplinary Center for Analytics on the Nanoscale (ICAN) University of Duisburg-Essen Carl-Benz-Str. 199 47047 Duisburg Germany
| | - Giada Quintieri
- Physical Chemistry University of Münster Corrensstraße 28–30 48149 Münster Germany
| | - Xuezhi Dai
- Physical Chemistry University of Münster Corrensstraße 28–30 48149 Münster Germany
| | - Chin Ken Wong
- Physical Chemistry University of Münster Corrensstraße 28–30 48149 Münster Germany
| | - André H. Gröschel
- Physical Chemistry University of Münster Corrensstraße 28–30 48149 Münster Germany
| |
Collapse
|
7
|
Qiang X, Franzka S, Quintieri G, Dai X, Wong CK, Gröschel AH. Size-Controlled Formation of Polymer Janus Discs. Angew Chem Int Ed Engl 2021; 60:21668-21672. [PMID: 34265154 PMCID: PMC8518367 DOI: 10.1002/anie.202105235] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 06/01/2021] [Indexed: 11/08/2022]
Abstract
A straightforward method is presented for the preparation of nano- to micrometer-sized Janus discs with controlled shape, size, and aspect ratio. The method relies on cross-linkable ABC triblock terpolymers and involves first the preparation of prolate ellipsoidal microparticles by combining Shirasu porous glass (SPG) membrane emulsification with evaporation-induced confinement assembly (EICA). By varying the pore diameter of the SPG membrane, we produce Janus discs with controlled size distributions centered around hundreds of nanometers to several microns. We further transferred the discs to water by mild sulfonation of PS to polystyrene sulfonic acid (PSS) and verified the Janus character by subsequent labelling with cationic nanoparticles. Finally, we show that the sulfonated Janus discs are amphiphilic and can be used as efficient colloidal stabilizers for oil-in-water (O/W) emulsions.
Collapse
Affiliation(s)
- Xiaolian Qiang
- Physical ChemistryUniversity of MünsterCorrensstraße 28–3048149MünsterGermany
| | - Steffen Franzka
- Center for Nanointegration Duisburg-Essen (CENIDE) and Interdisciplinary Center for Analytics on the Nanoscale (ICAN)University of Duisburg-EssenCarl-Benz-Str. 19947047DuisburgGermany
| | - Giada Quintieri
- Physical ChemistryUniversity of MünsterCorrensstraße 28–3048149MünsterGermany
| | - Xuezhi Dai
- Physical ChemistryUniversity of MünsterCorrensstraße 28–3048149MünsterGermany
| | - Chin Ken Wong
- Physical ChemistryUniversity of MünsterCorrensstraße 28–3048149MünsterGermany
| | - André H. Gröschel
- Physical ChemistryUniversity of MünsterCorrensstraße 28–3048149MünsterGermany
| |
Collapse
|
8
|
A pickering emulsion stabilized by chlorella microalgae as an eco-friendly extrusion-based 3D printing ink processable under ambient conditions. J Colloid Interface Sci 2020; 582:81-89. [PMID: 32814225 DOI: 10.1016/j.jcis.2020.08.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 08/01/2020] [Accepted: 08/03/2020] [Indexed: 11/23/2022]
Abstract
Three-dimensional (3D) printing technology is actively utilized in various industrial fields because it facilitates effective and customizable fabrication of complex structures. An important processing route for 3D printing is the extrusion of inks in the form of colloidal suspensions or emulsions, which has recently attracted considerable attention because it allows for selection of a wide range of printing materials and is operable under ambient processing conditions. Herein, we investigate the 3D printability of complex fluids containing chlorella microalgae as an eco-friendly material for 3D printing. Two possible ink types are considered: aqueous chlorella suspensions and emulsions of oil and water mixtures. While the aqueous chlorella suspensions at high particle loading display the 3D-printable rheological properties such as high yield stress and good shape retention, the final structures after extruding and drying the suspensions under ambient conditions show a significant number of macroscopic defects, limiting their practical application. In contrast, the 3D structures produced from the oil-in-water Pickering emulsions stabilized by chlorella microalgae, which are amphiphilic and active at the oil-water interface, show significantly reduced defect formation. Addition of a fast-evaporable oil phase, hexane, is crucial in the mechanisms of enhanced cementation between the individual microalgae via increased inter-particle packing, capillary attraction, and hydrophobic interaction. Furthermore, addition of solid paraffin wax, which is crystalline but well-soluble in the hydrocarbon oil phase under ambient conditions, completely eliminates the undesirable defect formation via enhanced inter-particle binding, while maintaining the overall rheological properties of the emulsion. The optimal formulation of the Pickering emulsion is finally employed to produce a 3D scaffold of satisfactory structural integrity, suggesting that the chlorella-based ink, in the form of an emulsion, has potential as an eco-friendly 3D printing ink processable under ambient conditions.
Collapse
|
9
|
Park H, Lim S, Yang J, Kwak C, Kim J, Kim J, Choi SS, Kim CB, Lee J. A Systematic Investigation on the Properties of Silica Nanoparticles "Multipoint"-Grafted with Poly(2-acrylamido-2-methylpropanesulfonate- co-acrylic Acid) in Extreme Salinity Brines and Brine-Oil Interfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:3174-3183. [PMID: 32101011 DOI: 10.1021/acs.langmuir.9b03692] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Nanoparticles (NPs) may have great potential for various subsurface applications, including oil and gas recovery, reservoir imaging, and environmental remediation. One of the important challenges for these downhole applications is to achieve colloidal stability in subsurface media at high salinity and high temperature. It has been previously shown that several functional NPs "multipoint"-grafted with anionic poly(2-acrylamido-2-methyl-1-propanesulfonate-co-acrylic acid; AMPS-co-AA) exhibited remarkable colloidal stabilities in specific environments mimicking the harsh subsurface aquatic media, such as the American Petroleum Institute (API) brine. However, many important properties of such particles, other than the colloidal stabilities, must be studied in a more systematic fashion for a wide range of salt concentrations (Cs). Herein, we investigate various properties of the silica (SiO2) NPs multipoint-grafted with poly(AMPS-co-AA), SiO2-g-poly(AMPS-co-AA), in NaCl and CaCl2 solutions across a range of salinities. The brush behavior of the grafted random copolymers was investigated in both salt solutions from salt-free conditions up to extreme salinities. The particles displayed brine-oil interfacial activity with increasing Cs, stabilizing oil-in-brine emulsions as Pickering emulsifiers. A high internal phase emulsion (HIPE) with an internal oil phase of up to 80 vol % could be formed in CaCl2 solutions at high Cs, which exhibited gel-like behaviors.
Collapse
Affiliation(s)
- Hyunsu Park
- Department of Chemical Engineering, Myongji University, 116 Myongji-ro, Cheoin-gu, Yongin, Gyeonggi-do 17058, Korea
| | - Sehyeong Lim
- Department of Chemical Engineering, Myongji University, 116 Myongji-ro, Cheoin-gu, Yongin, Gyeonggi-do 17058, Korea
| | - Jeewon Yang
- Department of Chemical Engineering, Myongji University, 116 Myongji-ro, Cheoin-gu, Yongin, Gyeonggi-do 17058, Korea
| | - Chaesu Kwak
- Department of Chemical Engineering, Myongji University, 116 Myongji-ro, Cheoin-gu, Yongin, Gyeonggi-do 17058, Korea
| | - Jieun Kim
- Department of Chemical Engineering, Myongji University, 116 Myongji-ro, Cheoin-gu, Yongin, Gyeonggi-do 17058, Korea
| | - Jieun Kim
- Department of Chemical Engineering, Myongji University, 116 Myongji-ro, Cheoin-gu, Yongin, Gyeonggi-do 17058, Korea
| | - Shin Sik Choi
- Department of Food and Nutrition, Myongji University, 116 Myongji-ro, Cheoin-gu, Yongin, Gyeonggi-do 17058, Korea
| | - Chae Bin Kim
- Department of Polymer Science and Engineering, Pusan National University, 2 Busandaehak-ro, Geumjeong-gu, Busan 46241, Korea
| | - Joohyung Lee
- Department of Chemical Engineering, Myongji University, 116 Myongji-ro, Cheoin-gu, Yongin, Gyeonggi-do 17058, Korea
| |
Collapse
|
10
|
Lim S, Park H, Yang J, Kwak C, Lee J. Stable colloidal dispersion of octylated Ti3C2-MXenes in a nonpolar solvent. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2019.123648] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
11
|
Percebom AM, Costa LHM. Formation and assembly of amphiphilic Janus nanoparticles promoted by polymer interactions. Adv Colloid Interface Sci 2019; 269:256-269. [PMID: 31102800 DOI: 10.1016/j.cis.2019.05.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 05/01/2019] [Accepted: 05/02/2019] [Indexed: 01/18/2023]
Abstract
Almost three decades after de Gennes have introduced the term Janus for particles possessing two faces with different chemical nature, Janus particles are currently a hot topic in itself. Although de Gennes was not concerned with the size of particles, due to the advent and perspectives of nanotechnology, nanosized Janus particles have particularly received great attention. The capacity of having two antagonistic properties within the same particle has attracted interest on Janus nanoparticles for innumerous potential applications. It took some years for the studies about Janus nanoparticles to finally see great advances, mainly due to the progress in nanoparticle synthesis. What de Gennes might have not predicted (or at least he did not mention it during his speech) is that intermolecular interactions between polymers would be of immense importance to the actual achievement of Janus nanoparticles. Moreover, these interactions can also have large effects on the assembly process of amphiphilic Janus nanoparticles, which is important to form hierarchical structures and new materials at different scales. Hence, it is interesting to notice that de Gennes' contribution for the polymer field has been influencing the preparation and the controlled assembly of Janus nanoparticles. This article attempts to summarize empirical studies where noncovalent forces between polymers played a role, either on the production of Janus nanoparticles or on their assembly.
Collapse
Affiliation(s)
- Ana Maria Percebom
- Department of Chemistry, Pontifical Catholic University of Rio de Janeiro, PUC-Rio, 22451-900 Rio de Janeiro, RJ, Brazil.
| | - Lais Helena Moreira Costa
- Department of Chemistry, Pontifical Catholic University of Rio de Janeiro, PUC-Rio, 22451-900 Rio de Janeiro, RJ, Brazil
| |
Collapse
|
12
|
Santana Vega M, Guerrero Martínez A, Cucinotta F. Facile Strategy for the Synthesis of Gold@Silica Hybrid Nanoparticles with Controlled Porosity and Janus Morphology. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E348. [PMID: 30832432 PMCID: PMC6473971 DOI: 10.3390/nano9030348] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 02/22/2019] [Accepted: 02/26/2019] [Indexed: 12/31/2022]
Abstract
Hybrid materials prepared by encapsulation of plasmonic nanoparticles in porous silica systems are of increasing interest due to their high chemical stability and applications in optics, catalysis and biological sensing. Particularly promising is the possibility of obtaining gold@silica nanoparticles (Au@SiO₂ NPs) with Janus morphology, as the induced anisotropy can be further exploited to achieve selectivity and directionality in physical interactions and chemical reactivity. However, current methods to realise such systems rely on the use of complex procedures based on binary solvent mixtures and varying concentrations of precursors and reaction conditions, with reproducibility limited to specific Au@SiO₂ NP types. Here, we report a simple one-pot protocol leading to controlled crystallinity, pore order, monodispersity, and position of gold nanoparticles (AuNPs) within mesoporous silica by the simple addition of a small amount of sodium silicate. Using a fully water-based strategy and constant content of synthetic precursors, cetyl trimethylammonium bromide (CTAB) and tetraethyl orthosilicate (TEOS), we prepared a series of four silica systems: (A) without added silicate, (B) with added silicate, (C) with AuNPs and without added silicate, and (D) with AuNPs and with added silicate. The obtained samples were characterised by transmission electron microscopy (TEM), small angle X-ray scattering (SAXS), and UV-visible spectroscopy, and kinetic studies were carried out by monitoring the growth of the silica samples at different stages of the reaction: 1, 10, 15, 30 and 120 min. The analysis shows that the addition of sodium silicate in system B induces slower MCM-41 nanoparticle (MCM-41 NP) growth, with consequent higher crystallinity and better-defined hexagonal columnar porosity than those in system A. When the synthesis was carried out in the presence of CTAB-capped AuNPs, two different outcomes were obtained: without added silicate, isotropic mesoporous silica with AuNPs located at the centre and radial pore order (C), whereas the addition of silicate produced Janus-type Au@SiO₂ NPs (D) in the form of MCM-41 and AuNPs positioned at the silica⁻water interface. Our method was nicely reproducible with gold nanospheres of different sizes (10, 30, and 68 nm diameter) and gold nanorods (55 × 19 nm), proving to be the simplest and most versatile method to date for the realisation of Janus-type systems based on MCM-41-coated plasmonic nanoparticles.
Collapse
Affiliation(s)
- Marina Santana Vega
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, UK.
| | - Andrés Guerrero Martínez
- Departamento de Química Física, Universidad Complutense de Madrid, Avenida Complutense s/n, 28040 Madrid, Spain.
| | - Fabio Cucinotta
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, UK.
| |
Collapse
|
13
|
|
14
|
Li N, Panagiotopoulos AZ, Nikoubashman A. Structured Nanoparticles from the Self-Assembly of Polymer Blends through Rapid Solvent Exchange. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:6021-6028. [PMID: 28314373 DOI: 10.1021/acs.langmuir.7b00291] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Molecular dynamics simulations were performed to study systematically the rapid mixing of a polymer blend in solution with a miscible nonsolvent. In agreement with experiments, we observe that polymers self-assemble into complex nanoparticles, such as Janus and core-shell particles, when the good solvent is displaced by the poor solvent. The emerging structures can be predicted on the basis of the surface tensions between the polymers as well as between the polymers and the surrounding liquid. Furthermore, the size of the nanoparticles can be independently tuned through the mixing rate and the polymer concentration in the feed stream; meanwhile, the composition of the nanoparticles can be controlled by the polymer feed ratio. Our results demonstrate that this process is highly promising for the production of structured nanoparticles in a continuous and scalable way with independent and precise control over particle size, morphology, and composition. Such tailored nanoparticles are highly sought after in various scientific and industrial applications, and our theoretical findings provide important guidelines for designing appropriate experimental fabrication processes.
Collapse
Affiliation(s)
- Nannan Li
- Department of Chemical and Biological Engineering, Princeton University , Princeton, New Jersey 08544, United States
| | - Athanassios Z Panagiotopoulos
- Department of Chemical and Biological Engineering, Princeton University , Princeton, New Jersey 08544, United States
| | - Arash Nikoubashman
- Institute of Physics, Johannes Gutenberg University Mainz , Staudingerweg 7, 55128 Mainz, Germany
| |
Collapse
|
15
|
Bleier BJ, Yezer BA, Freireich BJ, Anna SL, Walker LM. Droplet-based characterization of surfactant efficacy in colloidal stabilization of carbon black in nonpolar solvents. J Colloid Interface Sci 2017; 493:265-274. [DOI: 10.1016/j.jcis.2017.01.033] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 01/06/2017] [Accepted: 01/09/2017] [Indexed: 10/20/2022]
|