1
|
Shatrov AB, Soldatenko EV, Benken KA, Petrov AA. The structural analysis of secretion in the freshwater mite Limnesia maculata (Acariformes, Limnesiidae) supports the idea of a new form of arthropod silk. EXPERIMENTAL & APPLIED ACAROLOGY 2023:10.1007/s10493-023-00826-y. [PMID: 37480394 DOI: 10.1007/s10493-023-00826-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 07/12/2023] [Indexed: 07/24/2023]
Abstract
The structural characteristics of silk secretion of the freshwater mite Limnesia maculata (O.F. Müller) (Acariformes, Limnesiidae) are described and analyzed for the first time based on light, atomic force and electron-microscopical approaches. The common dermal glands (14 pairs scattered over the body) produce silk mostly during the warm summer season. The process of silk secretion lasts from several hours to several days. The silk may appear like barely recognized clouds of a fine whitish substance. An individual silk thread is an indefinitely long uniform unbranched and non-stretchable tube, hollow or with a vesicular electron-dense residual content. In the silk bundle, threads may be freely interlaced, bent, curved or occasionally broken. The diameter of the tubes is in the range of 0.9-1.5 µm. The width of the tube walls varies greatly from 60 to 300 nm. Chaotically interlaced fine fibrils build the tube walls. On the external surface of the tube wall, these fibrils are loosely organized and frequently rising vertically, whereas on the internal side they are packed more tightly sometimes showing a mesh. The walls may reveal a layered structure or, contrary, are quite thin with through foramens. The revealed organization of silk in the freshwater mites is found to be the simplest among that of other arthropods. We propose a role of the silk in the capture of potential prey in the summer season. Silk in water mites significantly widens the wholesome area for the mites' life and gives them better chances in competition for potential resources.
Collapse
Affiliation(s)
- Andrey B Shatrov
- Zoological Institute of the Russian Academy of Science, Universitetskaya nab. 1, St. Petersburg, Russia, 199034.
| | - Elena V Soldatenko
- Zoological Institute of the Russian Academy of Science, Universitetskaya nab. 1, St. Petersburg, Russia, 199034
| | - Konstantin A Benken
- Centre for Microscopy and Microanalysis, St. Petersburg State University, Universitetskaya nab. 7/9, St. Petersburg, Russia, 199034
| | - Anatoly A Petrov
- Zoological Institute of the Russian Academy of Science, Universitetskaya nab. 1, St. Petersburg, Russia, 199034
| |
Collapse
|
2
|
Wan HY, Chen YT, Li GT, Wu HC, Huang TC, Yang TI. Electroactive aniline tetramer-spider silks with conductive and electrochromic functionality. RSC Adv 2022; 12:21946-21956. [PMID: 36043065 PMCID: PMC9364158 DOI: 10.1039/d2ra01065h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 07/27/2022] [Indexed: 11/21/2022] Open
Abstract
Electroactive aniline tetramer-spider silk composite fibers with high conductivity and mechanical strength were developed using a dip coating method. The fabricated spider silk composite fibers retain the high mechanical strength (0.92 GPa) and unique reversible relaxation-contraction behavior of spider dragline silks. The aniline tetramer modified on the silk surface imparted electroactive properties to the composite fibers. The color of aniline tetramer/spider silk composite fibers could be controlled by applying different pH values and voltages. Furthermore, the composite fiber's resistivity could reach 186 Ω m which can conduct electrical current to light LEDs. This study could provide a valuable guideline for developing highly-conductive electrochromic spider silks for use in E-textiles.
Collapse
Affiliation(s)
- Hung-Yu Wan
- Department of Chemical Engineering, Chung-Yuan Christian University Taoyuan Taiwan +886 3 2654199 +886 3 2654149
| | - Yi-Ting Chen
- Department of Chemical Engineering, Chung-Yuan Christian University Taoyuan Taiwan +886 3 2654199 +886 3 2654149
| | - Guan-Ting Li
- Department of Chemical Engineering, Chung-Yuan Christian University Taoyuan Taiwan +886 3 2654199 +886 3 2654149
| | - Hsuan-Chen Wu
- Department of Biochemical Science and Technology, National Taiwan University Taipei Taiwan
| | - Tsao-Cheng Huang
- Technical Department Plastics Division, Formosa Plastics Corporation 814538 Kaohsiung Taiwan
| | - Ta-I Yang
- Department of Chemical Engineering, Chung-Yuan Christian University Taoyuan Taiwan +886 3 2654199 +886 3 2654149
| |
Collapse
|
3
|
Andrews AC, Duffy S, Edgerly JS, Barber RP. Morphological transformation from fibers to sheets in embiopteran silk. Phys Rev E 2022; 106:014801. [PMID: 35974555 DOI: 10.1103/physreve.106.014801] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 05/27/2022] [Indexed: 06/15/2023]
Abstract
Embioptera (webspinners) are insects that construct domiciles using silk produced from their front feet. This silk is the finest known with measured single fiber diameters in the 30-140 nm range. In the wild, some webspinner silk on trees is observed to have a clothlike or shiny sheetlike appearance. Both forms of silk shield the occupants from rain water effectively: presumably valuable in tropical environments. In this article we elucidate the mechanism by which silk fibers are transformed into these structures through interaction with water. We quantify the evaporation rates of single water droplets which have been suspended on unmodified as-spun silk for two Trinidadian arboreal species: Antipaluria urichi (Clothodidae) and Pararhagadochir trinitatis (Scelembiidae). These rates are compared to those of droplets suspended on rose petals due to similar wetting properties (both hydrophobicity and pinning). We observe that on sufficiently thick silk, droplet evaporation rates decrease with time. This behavior is a result of a thin soluble film developing on the drop surface that later becomes a solid residual film. Experimentally verified theoretical models are invoked to support the results.
Collapse
Affiliation(s)
- Aleimah C Andrews
- Department of Biology, Santa Clara University, Santa Clara, California 95053, USA
- Center for Nanostructures, Santa Clara University, Santa Clara, California 95053, USA
| | - Sean Duffy
- Center for Nanostructures, Santa Clara University, Santa Clara, California 95053, USA
- Department of Physics, Santa Clara University, Santa Clara, California 95053, USA
| | - Janice S Edgerly
- Department of Biology, Santa Clara University, Santa Clara, California 95053, USA
| | - Richard P Barber
- Center for Nanostructures, Santa Clara University, Santa Clara, California 95053, USA
- Department of Physics, Santa Clara University, Santa Clara, California 95053, USA
| |
Collapse
|
4
|
Edgerly JS. Dispersal Risks and Decisions Shape How Non-kin Groups Form in a Tropical Silk-Sharing Webspinner (Insecta: Embioptera). Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.727541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Relying on silk can promote sharing, especially when its presence means life and its absence, quick death. In the case of Embioptera, they construct silken tubes and coverings exposed on tree bark in humid and warm environments or in leaf litter and underground in dry habitats. These coverings protect occupants from rain and natural enemies. Of note, adult females are neotenous, wingless and must walk to disperse. Evidence is pulled together from two sources to explore mechanisms that promote the establishment of non-kin groups that typify the neotropical Antipaluria urichi (Clothodidae): (1) a review of relevant information from 40 years of research to identify potential drivers of the facultative colonial system and (2) experimental and observational data exploring how dispersal contributes to group formation. To determine risks of dispersal and decisions of where to settle, adult females were released into the field and their ability to survive in the face of likely predation was monitored. Additional captured dispersers were released onto bark containing silk galleries; their decision to join the silk or to settle was noted. An experiment tested which attributes of trees attract a disperser: vertical or horizontal boles in one test and small, medium, or large boles in another. While walking, experimentally released adult female dispersers experienced a risk of being killed of approximately 25%. Dispersers orient to large diameter trees and join silk of others if encountered. These results align with observations of natural colonies in that adults and late-stage nymphs join existing colonies of non-kin. Experiments further demonstrated that dispersing females orient to vertical and larger diameter tree-like objects, a behavior that matched the distribution of field colonies. The ultimate reason for the observed dispersion pattern is probably because large trees support more expansive epiphytic algae and lichens (the food for this species), although the impact of food resources on dispersion has not been tested. Finally, further research questions and other webspinner species (including parthenogenetic ones) that warrant a closer look are described. Given that this group of primitively social insects, with approximately 1,000 species known, has remained virtually unstudied, one hope is that this report can encourage more exploration.
Collapse
|
5
|
Harper JR, Sripada N, Kher P, Whittall JB, Edgerly JS. Interpreting nature's finest insect silks (Order Embioptera): hydropathy, interrupted repetitive motifs, and fiber-to-film transformation for two neotropical species. ZOOLOGY 2021; 146:125923. [PMID: 33901836 DOI: 10.1016/j.zool.2021.125923] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 03/14/2021] [Accepted: 03/19/2021] [Indexed: 10/21/2022]
Abstract
Silks produced by webspinners (Order Embioptera) interact with water by transforming from fiber to film, which then becomes slippery and capable of shedding water. We chose to explore this mechanism by analyzing and comparing the silk protein transcripts of two species with overlapping distributions in Trinidad but from different taxonomic families. The transcript of one, Antipaluria urichi (Clothodidae), was partially characterized in 2009 providing a control for our methods to characterize a second species: Pararhagadochir trinitatis (Scelembiidae), a family that adds to the taxon sampling for this little known order of insects. Previous reports showed that embiopteran silk protein (dubbed Efibroin) consists of a protein core of repetitive motifs largely composed of glycine (Gly), serine (Ser), and alanine (Ala) and a highly conserved C-terminal region. Based on mRNA extracted from silk glands, Next Generation sequencing, and de novo assembly, P. trinitatis silk can be characterized by repetitive motifs of Gly-Ser followed periodically by Gly-Asparagine (Asn-an unusual amino acid for Efibroins) and by a lack of Ala which is otherwise common in Efibroins. The putative N-terminal domain, composed mostly of polar, charged and bulky amino acids, is ten amino acids long with cysteine in the 10th position-a feature likely related to stabilization of the silk fibers. The 29 amino acids of the C-terminus for P. trinitatis silk closely resemble that of other Efibroin sequences, which show 74% shared identity on average. Examination of hydropathicity of Efibroins of both P. trinitatis and An. urichi revealed that these proteins are largely hydrophilic despite having a thin lipid coating on each nano-fiber. We deduced that the hydrophilic quality differs for the two species: due to Ser and Asn for P. trinitatis silk and to previously undetected spacers in An. urichi silk. Spacers are known from some spider and silkworm silks but this is the first report of such for Embioptera. Analysis of hydropathicity revealed the largely hydrophilic quality of these silks and this feature likely explains why water causes the transformation from fiber to film. We compared spun silk to the transcript and detected not insignificant differences between the two measurements implying that as yet undetermined post-translational modifications of their silk may occur. In addition, we found evidence for codon bias in the nucleotides of the putative silk transcript for P. trinitatis, a feature also known for other embiopteran silk genes.
Collapse
Affiliation(s)
- J René Harper
- Department of Biology, 500 El Camino Real, Santa Clara University, Santa Clara, California, 95053, USA.
| | - Neeraja Sripada
- Department of Biology, 500 El Camino Real, Santa Clara University, Santa Clara, California, 95053, USA.
| | - Pooja Kher
- Department of Biology, 500 El Camino Real, Santa Clara University, Santa Clara, California, 95053, USA.
| | - Justen B Whittall
- Department of Biology, 500 El Camino Real, Santa Clara University, Santa Clara, California, 95053, USA.
| | - Janice S Edgerly
- Department of Biology, 500 El Camino Real, Santa Clara University, Santa Clara, California, 95053, USA.
| |
Collapse
|
6
|
Shenoy S, Ing K, Barber RP, Rooks EC, Edgerly JS. A Multiscale Characterization of Two Tropical Embiopteran Species: Nano- and Microscale Features of Silk, Silk-Spinning Behavior, and Environmental Correlates of their Distributions. ENVIRONMENTAL ENTOMOLOGY 2020; 49:1242-1251. [PMID: 32696060 DOI: 10.1093/ee/nvaa073] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Indexed: 06/11/2023]
Abstract
Embioptera display the unique ability to spin silk with their front feet to create protective domiciles. Their body form is remarkably uniform throughout the order, perhaps because they all live within the tight confines of silken tubes. This study contributes to an understanding of the ecology of Embioptera, an order that is rarely studied in the field. We conducted a census to quantify the habitats of two species with overlapping distributions on the tropical island of Trinidad in a search for characteristics that might explain their distinct ecologies. One species, Antipaluria urichi (Saussure) (Embioptera: Clothodidae), lives in larger colonies with more expansive silk in habitats throughout the island, especially in the rainforest of the Northern Range Mountains. The other, Pararhagadochir trinitatis (Saussure) (Embioptera: Scelembiidae), was found only in lowland locations. We quantified silk-spinning behavior and productivity of the two species and found that A. urichi spins thicker silk sheets per individual and emphasizes spin-steps that function to create a domicile that is more expansive than that produced by P. trinitatis. Their silks also interact differently when exposed to water: the smaller-diameter silk fibers of P. trinitatis form more continuous films on the surface of the domicile after being wetted and dried than that seen in A. urichi silk. This tendency gives P. trinitatis silk a shiny appearance in the field compared to the more cloth-like silk of A. urichi. How these silks function in the field and if the differences are partially responsible for the distinct distributions of the two species remain to be determined.
Collapse
Affiliation(s)
- Samantha Shenoy
- Department of Biology, Santa Clara University, 500 El Camino Real, Santa Clara, CA
| | - Keilyn Ing
- Department of Biology, Santa Clara University, 500 El Camino Real, Santa Clara, CA
- Center for Nanostructures, Santa Clara University, 500 El Camino Real, Santa Clara, CA
| | - Richard P Barber
- Center for Nanostructures, Santa Clara University, 500 El Camino Real, Santa Clara, CA
- Department of Physics, Santa Clara University, 500 El Camino Real, Santa Clara, CA
| | - Edward C Rooks
- Department of Biology, Santa Clara University, 500 El Camino Real, Santa Clara, CA
| | - Janice S Edgerly
- Department of Biology, Santa Clara University, 500 El Camino Real, Santa Clara, CA
| |
Collapse
|
7
|
Büsse S, Büscher TH, Kelly ET, Heepe L, Edgerly JS, Gorb SN. Pressure-induced silk spinning mechanism in webspinners (Insecta: Embioptera). SOFT MATTER 2019; 15:9742-9750. [PMID: 31742303 DOI: 10.1039/c9sm01782h] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The articulated appendages of arthropods are highly adaptable and potentially multifunctional, used for walking, swimming, feeding, prey capture, or other functions. Webspinners (Order Embioptera) are a paragon in this context. In contrast to other arthropods producing silk, they utilize their front feet for silk production. However, employing the same leg for alternative functions rather than for pure locomotion potentially imposes constraints and compromises. We here present morphological and experimental evidence for a "passive" pressure-induced silk spinning mechanism induced by external mechanical stimuli. Furthermore, we demonstrate that, as a consequence of the conflicting functions for their front feet, webspinners have evolved a unique style of walking that reduces the potentially problematic contact between silk ejectors and the substrate. Here we answer for the first time a long-term question within this enigmatic group of insects-how webspinners can use their front feet to spin their nanoscale silk. This knowledge may open the door for experimental studies on an artificial spinning process and for future utilization in applied fields of robotics or chemistry.
Collapse
Affiliation(s)
- Sebastian Büsse
- Functional Morphology and Biomechanics, Institute of Zoology, Kiel University, Kiel, Germany.
| | | | | | | | | | | |
Collapse
|
8
|
Godeau G, Orange F, Godeau RP, Szczepanski CR, Guittard F, Darmanin T. Variations in surface structures and wettability in the genus Pachnoda Burmeister. BIOINSPIRED BIOMIMETIC AND NANOBIOMATERIALS 2019. [DOI: 10.1680/jbibn.18.00017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
In order to grow and live, all species need access to water and often the ability to control their intake thereof. Among species throughout the world, several animals and plants are known for unique surface patterns and features that influence their wettability in such a way that water is always readily accessible, even in arid and hot climates. In this work, the authors report a journey into the genus Pachnoda, studying 12 species or subspecies to compare their surface properties and wettabilities. This work reveals exceptional natural surface morphologies based on a honeycomb structure with significant variations depending on the Pachnoda genus. Even if the materials present on their surface are intrinsically hydrophilic, some of the species have parahydrophobic properties with apparent contact angles of up to 145° and extremely strong water adhesion. Only the Cassie–Baxter equation can explain these results indicating the presence of trapped air within these surface structures when a liquid, such as water, makes contact. Among the species explored here, water hydrophobicity and adhesion are controlled by the dimensions of the honeycombs, the presence of lamellar structures on the border of these features and the presence of roughness in their internal structures.
Collapse
Affiliation(s)
- Guilhem Godeau
- Nature Inspires Creativity Engineers Lab, Institut méditerranéen du risque de l’environnement et du développement durable, Université Côte d’Azur, Nice, France
| | - François Orange
- Centre Commun de Microscopie Appliquée, Université Nice Sophia Antipolis, Nice, France
| | - René-Paul Godeau
- Retired Nature Inspires Creativity Engineers Lab, Institut méditerranéen du risque de l’environnement et du développement durable, Université Côte d’Azur, Nice, France
| | - Caroline R Szczepanski
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, USA
| | - Frédéric Guittard
- Nature Inspires Creativity Engineers Lab, Institut méditerranéen du risque de l’environnement et du développement durable, Université Côte d’Azur, Nice, France
| | - Thierry Darmanin
- Nature Inspires Creativity Engineers Lab, Institut méditerranéen du risque de l’environnement et du développement durable, Université Côte d’Azur, Nice, France
| |
Collapse
|
9
|
Bioinspired silica-containing polyurethane-acrylate films: Towards superhydrophobicity with tunable water adhesion. POLYMER 2018. [DOI: 10.1016/j.polymer.2018.09.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
10
|
Stokes GY, DiCicco EN, Moore TJ, Cheng VC, Wheeler KY, Soghigian J, Barber RP, Edgerly JS. Structural and wetting properties of nature's finest silks (order Embioptera). ROYAL SOCIETY OPEN SCIENCE 2018; 5:180893. [PMID: 30839723 PMCID: PMC6170577 DOI: 10.1098/rsos.180893] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 08/13/2018] [Indexed: 06/09/2023]
Abstract
Insects from the order Embioptera (webspinners) spin silk fibres which are less than 200 nm in diameter. In this work, we characterized and compared the diameters of single silk fibres from nine species-Antipaluria urichi, Pararhagadochir trinitatis, Saussurembia calypso, Diradius vandykei, Aposthonia ceylonica, Haploembia solieri, H. tarsalis, Oligotoma nigra and O. saundersii. Silk from seven of these species have not been previously quantified. Our studies cover five of the 10 named taxonomic families and represent about one third of the known taxonomic family-level diversity in the order Embioptera. Naturally spun silk varied in diameter from 43.6 ± 1.7 nm for D. vandykei to 122.4 ± 3.2 nm for An. urichi. Mean fibre diameter did not correlate with adult female body length. Fibre diameter is more similar in closely related species than in more distantly related species. Field observations indicated that silk appears shiny and smooth when exposed to rainwater. We therefore measured contact angles to learn more about interactions between silk and water. Higher contact angles were measured for silks with wider fibre diameter and higher quantity of hydrophobic amino acids. High static contact angles (ranging up to 122° ± 3° for An. urichi) indicated that silken sheets spun by four arboreal, webspinner species were hydrophobic. A second contact angle measurement made on a previously wetted patch of silk resulted in a lower contact angle (average difference was greater than 27°) for all four species. Our studies suggest that silk fibres which had been previously exposed to water exhibited irreversible changes in hydrophobicity and water adhesion properties. Our results are in alignment with the 'super-pinning' site hypothesis by Yarger and co-workers to describe the hydrophobic, yet water adhesive, properties exhibited by webspinner silk fibres. The physical and chemical insights gained here may inform the synthesis and development of smaller diameter silk fibres with unique water adhesion properties.
Collapse
Affiliation(s)
- Grace Y. Stokes
- Department of Chemistry & Biochemistry, Santa Clara University, 500 El Camino Real, Santa Clara, CA 95053, USA
| | - Evangelea N. DiCicco
- Department of Physics and Center for Nanostructures, Santa Clara University, 500 El Camino Real, Santa Clara, CA 95053, USA
| | - Trevor J. Moore
- Department of Chemistry & Biochemistry, Santa Clara University, 500 El Camino Real, Santa Clara, CA 95053, USA
| | - Vivian C. Cheng
- Department of Biology, Santa Clara University, 500 El Camino Real, Santa Clara, CA 95053, USA
| | - Kira Y. Wheeler
- Department of Physics and Center for Nanostructures, Santa Clara University, 500 El Camino Real, Santa Clara, CA 95053, USA
| | - John Soghigian
- Department of Environmental Sciences, The Connecticut Agricultural Experiment Station, New Haven, CT, USA
| | - Richard P. Barber
- Department of Physics and Center for Nanostructures, Santa Clara University, 500 El Camino Real, Santa Clara, CA 95053, USA
| | - Janice S. Edgerly
- Department of Biology, Santa Clara University, 500 El Camino Real, Santa Clara, CA 95053, USA
| |
Collapse
|
11
|
Diouf D, Diouf A, Mortier C, Darmanin T, Dieng SY, Guittard F. Poly(3,4-propylenedioxypyrrole) Nanofibers with Branched Alkyl Chains by Electropolymerization to Obtain Sticky Surfaces with High Contact Angles. ChemistrySelect 2017. [DOI: 10.1002/slct.201701756] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Djibril Diouf
- Université Cheikh Anta Diop; Faculté des Sciences et Techniques; Département de Chimie, B.P.; 5005 Dakar Sénégal
| | - Alioune Diouf
- Université Cheikh Anta Diop; Faculté des Sciences et Techniques; Département de Chimie, B.P.; 5005 Dakar Sénégal
| | - Claudio Mortier
- Université Côte d'Azur; NICE Lab, IMREDD; Parc Valrose 06100 Nice France
| | - Thierry Darmanin
- Université Côte d'Azur; NICE Lab, IMREDD; Parc Valrose 06100 Nice France
| | - Samba Yandé Dieng
- Université Cheikh Anta Diop; Faculté des Sciences et Techniques; Département de Chimie, B.P.; 5005 Dakar Sénégal
| | - Frédéric Guittard
- Université Côte d'Azur; NICE Lab, IMREDD; Parc Valrose 06100 Nice France
| |
Collapse
|
12
|
Kout EE, Trad RB, Kateb ME, Beji M, Laugier JP, Godeau G, Guittard F, Darmanin T. Combining Staudinger Reductive Amination and Amidification for the Control of Surface Hydrophobicity and Water Adhesion by Introducing Heterobifunctional Groups: Post- and Ante-Approach. MACROMOL CHEM PHYS 2017. [DOI: 10.1002/macp.201700250] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Emna El Kout
- Université Côte d'Azur; NICE Lab; IMREDD Nice 06200 France
- Laboratory of Structural Organic Chemistry; Faculty of Sciences of Tunis; University of Tunis El Manar; Tunis 2092 Tunisia
| | - Rawia Ben Trad
- Université Côte d'Azur; NICE Lab; IMREDD Nice 06200 France
- Laboratory of Structural Organic Chemistry; Faculty of Sciences of Tunis; University of Tunis El Manar; Tunis 2092 Tunisia
| | - Mejda El Kateb
- Laboratory of Structural Organic Chemistry; Faculty of Sciences of Tunis; University of Tunis El Manar; Tunis 2092 Tunisia
| | - Mohammed Beji
- Laboratory of Structural Organic Chemistry; Faculty of Sciences of Tunis; University of Tunis El Manar; Tunis 2092 Tunisia
| | - Jean-Pierre Laugier
- Centre Commun de Microscopie Appliquée (CCMA); Université Nice Sophia Antipolis; Nice 06100 France
| | - Guilhem Godeau
- Université Côte d'Azur; NICE Lab; IMREDD Nice 06200 France
| | | | | |
Collapse
|
13
|
Szczepanski CR, Guittard F, Darmanin T. Recent advances in the study and design of parahydrophobic surfaces: From natural examples to synthetic approaches. Adv Colloid Interface Sci 2017; 241:37-61. [PMID: 28132673 DOI: 10.1016/j.cis.2017.01.002] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Revised: 12/22/2016] [Accepted: 01/18/2017] [Indexed: 12/14/2022]
Abstract
Parahydrophobic surfaces are an interesting class of materials that combines both high contact angles and very strong adhesion with wetting fluids, most commonly water. This unique set of properties makes parahydrophobic surfaces attractive for a variety of applications, including water harvesting and collection, guided fluid transport, and membrane development, amongst many others. Taking inspiration from natural surfaces that display this same behavior such as rose petals and gecko feet, synthetic approaches aim to incorporate the nano- and micro-scale topography as well as the low surface energy chemistry found on these interfaces. Here, we discuss the chemical and physical factors that contribute to parahydrophobic behavior and provide a comprehensive overview on the current technologies and procedures used towards constructing surfaces that mimic this behavior already observed in nature. This includes etching processes, colloidal assemblies, deposition methods, and in situ growth of surface features. Furthermore, issues such as ease of scale-up, efficiency of technical procedures, and other current challenges associated with these methods will be discussed to provide insight as to the future directions for this growing area of research.
Collapse
Affiliation(s)
| | - Frédéric Guittard
- Université Côte d'Azur, NICE Lab, IMREDD, 61-63 Av. Simon Veil, 06200 Nice, France
| | - Thierry Darmanin
- Université Côte d'Azur, NICE Lab, IMREDD, 61-63 Av. Simon Veil, 06200 Nice, France.
| |
Collapse
|
14
|
Mortier C, Darmanin T, Guittard F. 3,4-Dialkoxypyrrole for the Formation of Bioinspired Rose Petal-like Substrates with High Water Adhesion. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:12476-12487. [PMID: 27478990 DOI: 10.1021/acs.langmuir.6b02245] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Self-organization is commonly present in nature and can lead to the formation of surface structures with different wettabilities. Indeed, in nature superhydrophobic (low water adhesion) and parahydrophobic (high water adhesion) properties exist, such as in lotus leaves and red roses, respectively. The aim of this work is to prepare parahydrophobic properties by electrodeposition. For this, pyrrole derivatives with two alkoxy groups of various lengths (from 1 to 12) were synthesized in 8 steps by adapting a method developed by Merz et al. We show that the alkyl chain length has a huge influence on the polymer solubility and as a consequence on the surface morphology and hydrophobicity. Moreover, the alkyl chain length should be at least greater than eight carbons in order to obtain parahydrophobic properties. The properties are also controlled by the electrolyte nature. These materials can be used for many potential applications in water harvesting and transportation and separation membranes.
Collapse
Affiliation(s)
- Claudio Mortier
- Université Nice Sophia Antipolis, CNRS, LPMC, UMR 7336 , 06100 Nice, France
| | - Thierry Darmanin
- Université Nice Sophia Antipolis, CNRS, LPMC, UMR 7336 , 06100 Nice, France
| | - Frédéric Guittard
- Université Nice Sophia Antipolis, CNRS, LPMC, UMR 7336 , 06100 Nice, France
| |
Collapse
|
15
|
Godeau G, Ben Taher Y, Pujol M, Guittard F, Darmanin T. Perfluorinated ProDOT monomers for superhydrophobic/oleophobic surfaces elaboration. J Fluor Chem 2016. [DOI: 10.1016/j.jfluchem.2016.09.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
16
|
Darmanin T, Bombera R, Colpo P, Valsesia A, Laugier JP, Rossi F, Guittard F. Bioinspired Rose-Petal-Like Substrates Generated by Electropolymerization on Micropatterned Gold Substrates. Chempluschem 2016; 82:352-357. [DOI: 10.1002/cplu.201600387] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2016] [Revised: 09/25/2016] [Indexed: 11/08/2022]
Affiliation(s)
- Thierry Darmanin
- Université Nice Sophia Antipolis; CNRS, LPMC, UMR 7336; 06100 Nice France
| | - Radoslaw Bombera
- European Commission; DG Joint Research Centre; TP125, Via Fermi 21027 Ispra Italy
| | - Pascal Colpo
- European Commission; DG Joint Research Centre; TP125, Via Fermi 21027 Ispra Italy
| | - Andrea Valsesia
- European Commission; DG Joint Research Centre; TP125, Via Fermi 21027 Ispra Italy
| | - Jean-Pierre Laugier
- Université Nice Sophia Antipolis; Centre Commun de Microscopie Appliquée (CCMA); Parc Valrose 06100 Nice France
| | - François Rossi
- European Commission; DG Joint Research Centre; TP125, Via Fermi 21027 Ispra Italy
| | - Frédéric Guittard
- Université Nice Sophia Antipolis; CNRS, LPMC, UMR 7336; 06100 Nice France
| |
Collapse
|
17
|
Rykaczewski K, Jordan JS, Linder R, Woods ET, Sun X, Kemme N, Manning KC, Cherry BR, Yarger JL, Majure LC. Microscale Mechanism of Age Dependent Wetting Properties of Prickly Pear Cacti (Opuntia). LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:9335-9341. [PMID: 27537082 DOI: 10.1021/acs.langmuir.6b02173] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Cacti thrive in xeric environments through specialized water storage and collection tactics such as a shallow, widespread root system that maximizes rainwater absorption and spines adapted for fog droplet collection. However, in many cacti, the epidermis, not the spines, dominates the exterior surface area. Yet, little attention has been dedicated to studying interactions of the cactus epidermis with water drops. Surprisingly, the epidermis of plants in the genus Opuntia, also known as prickly pear cacti, has water-repelling characteristics. In this work, we report that surface properties of cladodes of 25 taxa of Opuntia grown in an arid Sonoran climate switch from water-repelling to superwetting under water impact over the span of a single season. We show that the old cladode surfaces are not superhydrophilic, but have nearly vanishing receding contact angle. We study water drop interactions with, as well as nano/microscale topology and chemistry of, the new and old cladodes of two Opuntia species and use this information to uncover the microscopic mechanism underlying this phenomenon. We demonstrate that composition of extracted wax and its contact angle do not change significantly with time. Instead, we show that the reported age dependent wetting behavior primarily stems from pinning of the receding contact line along multilayer surface microcracks in the epicuticular wax that expose the underlying highly hydrophilic layers.
Collapse
Affiliation(s)
- Konrad Rykaczewski
- School for Engineering of Matter, Transport and Energy, Arizona State University , Tempe, Arizona 85287, United States
| | - Jacob S Jordan
- School of Molecular Sciences, Arizona State University , Tempe, Arizona 85287-1604, United States
| | - Rubin Linder
- School for Engineering of Matter, Transport and Energy, Arizona State University , Tempe, Arizona 85287, United States
| | - Erik T Woods
- School for Engineering of Matter, Transport and Energy, Arizona State University , Tempe, Arizona 85287, United States
| | - Xiaoda Sun
- School for Engineering of Matter, Transport and Energy, Arizona State University , Tempe, Arizona 85287, United States
| | - Nicholas Kemme
- School for Engineering of Matter, Transport and Energy, Arizona State University , Tempe, Arizona 85287, United States
| | - Kenneth C Manning
- School for Engineering of Matter, Transport and Energy, Arizona State University , Tempe, Arizona 85287, United States
| | - Brian R Cherry
- School of Molecular Sciences, Arizona State University , Tempe, Arizona 85287-1604, United States
| | - Jeffery L Yarger
- School of Molecular Sciences, Arizona State University , Tempe, Arizona 85287-1604, United States
| | - Lucas C Majure
- Department of Research, Conservation and Collections, Desert Botanical Garden , Phoenix, Arizona 85008, United States
- School of Life Sciences, Arizona State University , Tempe, Arizona 85287-4701, United States
| |
Collapse
|