1
|
Wang S, Jia Z, Dai M, Feng X, Tang C, Liu L, Cao L. Advances in natural and synthetic macromolecules with stem cells and extracellular vesicles for orthopedic disease treatment. Int J Biol Macromol 2024; 268:131874. [PMID: 38692547 DOI: 10.1016/j.ijbiomac.2024.131874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 04/16/2024] [Accepted: 04/24/2024] [Indexed: 05/03/2024]
Abstract
Serious orthopedic disorders resulting from myriad diseases and impairments continue to pose a considerable challenge to contemporary clinical care. Owing to its limited regenerative capacity, achieving complete bone tissue regeneration and complete functional restoration has proven challenging with existing treatments. By virtue of cellular regenerative and paracrine pathways, stem cells are extensively utilized in the restoration and regeneration of bone tissue; however, low survival and retention after transplantation severely limit their therapeutic effect. Meanwhile, biomolecule materials provide a delivery platform that improves stem cell survival, increases retention, and enhances therapeutic efficacy. In this review, we present the basic concepts of stem cells and extracellular vesicles from different sources, emphasizing the importance of using appropriate expansion methods and modification strategies. We then review different types of biomolecule materials, focusing on their design strategies. Moreover, we summarize several forms of biomaterial preparation and application strategies as well as current research on biomacromolecule materials loaded with stem cells and extracellular vesicles. Finally, we present the challenges currently impeding their clinical application for the treatment of orthopedic diseases. The article aims to provide researchers with new insights for subsequent investigations.
Collapse
Affiliation(s)
- Supeng Wang
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325200, China; Jiujiang City Key Laboratory of Cell Therapy, The First Hospital of Jiujiang City, Jiujiang 332000, China; Ningxia Medical University, Ningxia 750004, China
| | - Zhiqiang Jia
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325200, China
| | - Minghai Dai
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325200, China
| | - Xujun Feng
- Jiujiang City Key Laboratory of Cell Therapy, The First Hospital of Jiujiang City, Jiujiang 332000, China
| | - Chengxuan Tang
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325200, China
| | - Liangle Liu
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325200, China.
| | - Lingling Cao
- Jiujiang City Key Laboratory of Cell Therapy, The First Hospital of Jiujiang City, Jiujiang 332000, China.
| |
Collapse
|
2
|
Ariga K, Lvov Y, Decher G. There is still plenty of room for layer-by-layer assembly for constructing nanoarchitectonics-based materials and devices. Phys Chem Chem Phys 2021; 24:4097-4115. [PMID: 34942636 DOI: 10.1039/d1cp04669a] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Nanoarchitectonics approaches can produce functional materials from tiny units through combination of various processes including atom/molecular manipulation, chemical conversion, self-assembly/self-organization, microfabrication, and bio-inspired procedures. Existing fabrication approaches can be regarded as fitting into the same concept. In particular, the so-called layer-by-layer (LbL) assembly method has huge potential for preparing applicable materials with a great variety of assembling mechanisms. LbL assembly is a multistep process where different components can be organized in planned sequences while simple alignment options provide access to superstructures, for example helical structures, and anisotropies which are important aspects of nanoarchitectonics. In this article, newly-featured examples are extracted from the literature on LbL assembly discussing trends for composite functional materials according to (i) principles and techniques, (ii) composite materials, and (iii) applications. We present our opinion on the present trends, and the prospects of LbL assembly. While this method has already reached a certain maturity, there is still plenty of room for expanding its usefulness for the fabrication of nanoarchitectonics-based materials and devices.
Collapse
Affiliation(s)
- Katsuhiko Ariga
- WPI Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan. .,Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan
| | - Yuri Lvov
- Institute for Micromanufacturing, Louisiana Tech University, Ruston, LA, 71272, USA
| | - Gero Decher
- WPI Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan. .,Université de Strasbourg, Faculté de Chimie and CNRS Institut Charles Sadron, F-67000 Strasbourg, France.,International Center for Frontier Research in Chemistry, F-67083 Strasbourg, France
| |
Collapse
|
3
|
Roupie C, Labat B, Morin-Grognet S, Echalard A, Ladam G, Thébault P. Dual-functional antibacterial and osteogenic nisin-based layer-by-layer coatings. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 131:112479. [PMID: 34857265 DOI: 10.1016/j.msec.2021.112479] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 09/15/2021] [Accepted: 10/07/2021] [Indexed: 01/12/2023]
Abstract
Implanted biomaterials can be regarded in a cornerstone in the domain of bone surgery. Their surfaces are expected to fulfil two particular requirements: preventing the settlement and the development of bacteria, and stimulating bone cells in view to foster osseointegration. Therefore, a modern approach consists in the design of dual functional coatings with both antibacterial and osteogenic features. To this end, we developed ultrathin Layer-by-Layer (LbL) coatings composed of biocompatible polyelectrolytes, namely chondroitin sulfate A (CSA) and poly-l-lysine (PLL). The coatings were crosslinked with genipin (GnP), a natural and biocompatible crosslinking agent, to increase their resistance against environmental changes, and to confer them adequate mechanical properties with regards to bone cell behaviors. Antibacterial activity was obtained with nisin Z, an antimicrobial peptide (AMP), which is active against gram-positive bacteria. The coatings had a significant bactericidal impact upon Staphylococcus aureus, with fully maintained bone cell adhesion, proliferation and osteogenic differentiation.
Collapse
Affiliation(s)
- Charlotte Roupie
- Normandie Univ, UNIROUEN, INSA Rouen, CNRS, PBS, Bd Maurice de Broglie, 76821 Mont Saint Aignan Cedex, France; Normandie Univ, UNIROUEN, INSA Rouen, CNRS, PBS, 55 rue Saint-Germain, 27000 Évreux, France
| | - Béatrice Labat
- Normandie Univ, UNIROUEN, INSA Rouen, CNRS, PBS, 55 rue Saint-Germain, 27000 Évreux, France
| | - Sandrine Morin-Grognet
- Normandie Univ, UNIROUEN, INSA Rouen, CNRS, PBS, 55 rue Saint-Germain, 27000 Évreux, France
| | - Aline Echalard
- Normandie Univ, UNIROUEN, INSA Rouen, CNRS, PBS, 55 rue Saint-Germain, 27000 Évreux, France
| | - Guy Ladam
- Normandie Univ, UNIROUEN, INSA Rouen, CNRS, PBS, 55 rue Saint-Germain, 27000 Évreux, France
| | - Pascal Thébault
- Normandie Univ, UNIROUEN, INSA Rouen, CNRS, PBS, Bd Maurice de Broglie, 76821 Mont Saint Aignan Cedex, France.
| |
Collapse
|
4
|
Polyelectrolyte Multilayers: An Overview on Fabrication, Properties, and Biomedical and Environmental Applications. MATERIALS 2021; 14:ma14154152. [PMID: 34361346 PMCID: PMC8348132 DOI: 10.3390/ma14154152] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 07/22/2021] [Accepted: 07/23/2021] [Indexed: 12/11/2022]
Abstract
Polyelectrolyte multilayers are versatile materials that are used in a large number of domains, including biomedical and environmental applications. The fabrication of polyelectrolyte multilayers using the layer-by-layer technique is one of the simplest methods to obtain composite functional materials. The properties of the final material can be easily tuned by changing the deposition conditions and the used building blocks. This review presents the main characteristics of polyelectrolyte multilayers, the fabrication methods currently used, and the factors influencing the layer-by-layer assembly of polyelectrolytes. The last section of this paper presents some of the most important applications of polyelectrolyte multilayers, with a special focus on biomedical and environmental applications.
Collapse
|
5
|
Aghajani M, Esmaeili F. Anti-biofouling assembly strategies for protein & cell repellent surfaces: a mini-review. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2021; 32:1770-1789. [PMID: 34085909 DOI: 10.1080/09205063.2021.1932357] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The protein/cell interactions with the surface at the blood-biomaterial interface generally control the efficiency of biomedical devices. A wide range of active processes and slow kinetics occur simultaneously with many biomaterials in healthcare applications, leading to multiple biological reactions and reduced clinical functions. In this work, we present a brief review of studies as the interface between proteins and biomaterials. These include mechanisms of resistance to proteins, protein-rejecting polyelectrolyte multilayers, and coatings of hydrophilic, polysaccharide and phospholipid nature. The mechanisms required to attain surfaces that resist adhesion include steric exclusion, water-related effects, and volume effects. Also, approaches in the use of hydrophilic, highly hydrated, and electrically neutral coatings have demonstrated a good ability to decrease cell adhesion. Moreover, amongst the available methods, the approach of layer-by-layer deposition has been known as an interesting process to manipulate protein and cell adhesion behavior.
Collapse
Affiliation(s)
- Mahdi Aghajani
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.,School of Advanced Technologies in Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Fariba Esmaeili
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
6
|
Muzzio N, Moya S, Romero G. Multifunctional Scaffolds and Synergistic Strategies in Tissue Engineering and Regenerative Medicine. Pharmaceutics 2021; 13:792. [PMID: 34073311 PMCID: PMC8230126 DOI: 10.3390/pharmaceutics13060792] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 05/17/2021] [Accepted: 05/20/2021] [Indexed: 12/20/2022] Open
Abstract
The increasing demand for organ replacements in a growing world with an aging population as well as the loss of tissues and organs due to congenital defects, trauma and diseases has resulted in rapidly evolving new approaches for tissue engineering and regenerative medicine (TERM). The extracellular matrix (ECM) is a crucial component in tissues and organs that surrounds and acts as a physical environment for cells. Thus, ECM has become a model guide for the design and fabrication of scaffolds and biomaterials in TERM. However, the fabrication of a tissue/organ replacement or its regeneration is a very complex process and often requires the combination of several strategies such as the development of scaffolds with multiple functionalities and the simultaneous delivery of growth factors, biochemical signals, cells, genes, immunomodulatory agents, and external stimuli. Although the development of multifunctional scaffolds and biomaterials is one of the most studied approaches for TERM, all these strategies can be combined among them to develop novel synergistic approaches for tissue regeneration. In this review we discuss recent advances in which multifunctional scaffolds alone or combined with other strategies have been employed for TERM purposes.
Collapse
Affiliation(s)
- Nicolas Muzzio
- Department of Biomedical Engineering and Chemical Engineering, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249, USA;
| | - Sergio Moya
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo Miramon 182 C, 20014 Donostia-San Sebastian, Spain;
- NanoBioMedical Centre, Adam Mickiewicz University, Wszechnicy Piastowskiej 3, 61-614 Poznan, Poland
| | - Gabriela Romero
- Department of Biomedical Engineering and Chemical Engineering, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249, USA;
| |
Collapse
|
7
|
Yang J, Liang G, Xiang T, Situ W. Effect of crosslinking processing on the chemical structure and biocompatibility of a chitosan-based hydrogel. Food Chem 2021; 354:129476. [PMID: 33752114 DOI: 10.1016/j.foodchem.2021.129476] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 01/26/2021] [Accepted: 02/22/2021] [Indexed: 01/08/2023]
Abstract
Chitosan (CS)-based hydrogels with different structures were prepared to ensure the bioavailability of bioactive components. With the electrostatic interaction between CS and anionic crosslinkers, the structure of the CS-based hydrogel changed and influenced the swelling ability, which was beneficial for maintaining bioactive ingredients in the hydrogel. Compared with sodium hexametaphosphate, hydrogels crosslinked by sodium tripolyphosphate (STPP) had a higher swelling capacity and more stable release profile (no more than 10% BSA in the upper gastrointestinal tract), which could deliver bioactive ingredients to the colon. Moreover, due to electrostatic interactions, the surface of the CS-based hydrogel became hydrophilic, which helped Caco2 cells to grow on it. 118.86%-147.22% cell viability was found on the CS-based hydrogel. Furthermore, with different crosslinkers and concentrations in the crosslinking process, the release properties and safety of the hydrogels were varied, but the STPP-crosslinked CS hydrogel presented good cell adhesivity for bioactive components to the colon.
Collapse
Affiliation(s)
- Jingwen Yang
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Gangqiang Liang
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Tuo Xiang
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Wenbei Situ
- College of Food Science, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
8
|
Zhang A, Sun W, Liang X, Chen X, Li Y, Liu X, Chen H. The role of carboxylic groups in heparin-mimicking polymer-functionalized surfaces for blood compatibility: Enhanced vascular cell selectivity. Colloids Surf B Biointerfaces 2021; 201:111653. [PMID: 33667866 DOI: 10.1016/j.colsurfb.2021.111653] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/15/2021] [Accepted: 02/20/2021] [Indexed: 10/22/2022]
Abstract
Blood compatibility is an eternal topic of biomedical materials. The effect of heparin-mimicking polymers (HMPs) on blood compatibility has been well studied, especially the synergistic effect of sugar unit and sulfonate/sulfate unit. However, carboxylic groups also play an important role in HMPs. In this work, copolymers of sodium 4-vinyl-benzenesulfonate (SS) and 2-methacrylamido glucopyranose (MAG) (poly(SS-co-MAG)) and poly(acrylate acid) (PAA) were self-assembled on Au surfaces with different feed ratios. When self-assembly of poly(SS-co-MAG) alone, the optimized feed ratio of SS and MAG for vascular cell selectivity was 1:1 (PS1M1); at this ratio the Au-PS1M1 surface showed the highest human umbilical vein endothelial cells (HUVECs) density and the lowest human umbilical vein smooth muscle cells (HUVSMCs) density. When self-assembly of PAA alone (surface designated as Au-PAA), the proliferation of both HUVECs and HUVSMCs was inhibited. Compared with either PS1M1 or PAA alone, the surfaces modified with both PAA and PS1M1 at the feed ratio of 1:1 (material designated as Au-PSM/PAA-2) showed enhanced promoting effect on HUVECs as well as enhanced inhibiting effect on HUVSMCs, indicating stronger vascular cell selectivity of carboxylic groups in the presence of sugar and sulfonate units.
Collapse
Affiliation(s)
- Aiyang Zhang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou 215123, PR China
| | - Wei Sun
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou 215123, PR China
| | - Xinyi Liang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou 215123, PR China
| | - Xianshuang Chen
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou 215123, PR China
| | - Yuepeng Li
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou 215123, PR China
| | - Xiaoli Liu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou 215123, PR China.
| | - Hong Chen
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou 215123, PR China.
| |
Collapse
|
9
|
Gruening M, Neuber S, Nestler P, Lehnfeld J, Dubs M, Fricke K, Schnabelrauch M, Helm CA, Müller R, Staehlke S, Nebe JB. Enhancement of Intracellular Calcium Ion Mobilization by Moderately but Not Highly Positive Material Surface Charges. Front Bioeng Biotechnol 2020; 8:1016. [PMID: 33015006 PMCID: PMC7505933 DOI: 10.3389/fbioe.2020.01016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 08/03/2020] [Indexed: 12/17/2022] Open
Abstract
Electrostatic forces at the cell interface affect the nature of cell adhesion and function; but there is still limited knowledge about the impact of positive or negative surface charges on cell-material interactions in regenerative medicine. Titanium surfaces with a variety of zeta potentials between −90 mV and +50 mV were generated by functionalizing them with amino polymers, extracellular matrix proteins/peptide motifs and polyelectrolyte multilayers. A significant enhancement of intracellular calcium mobilization was achieved on surfaces with a moderately positive (+1 to +10 mV) compared with a negative zeta potential (−90 to −3 mV). Dramatic losses of cell activity (membrane integrity, viability, proliferation, calcium mobilization) were observed on surfaces with a highly positive zeta potential (+50 mV). This systematic study indicates that cells do not prefer positive charges in general, merely moderately positive ones. The cell behavior of MG-63s could be correlated with the materials’ zeta potential; but not with water contact angle or surface free energy. Our findings present new insights and provide an essential knowledge for future applications in dental and orthopedic surgery.
Collapse
Affiliation(s)
- Martina Gruening
- Department of Cell Biology, Rostock University Medical Center, Rostock, Germany
| | - Sven Neuber
- Soft Matter and Biophysics, Institute of Physics, University of Greifswald, Greifswald, Germany
| | - Peter Nestler
- Soft Matter and Biophysics, Institute of Physics, University of Greifswald, Greifswald, Germany
| | - Jutta Lehnfeld
- Colloid and Interface Chemistry, Institute of Physical and Theoretical Chemistry, University of Regensburg, Regensburg, Germany
| | - Manuela Dubs
- Department of Biomaterials, INNOVENT e.V., Jena, Germany
| | - Katja Fricke
- Leibniz Institute for Plasma Science and Technology e.V. (INP), Greifswald, Germany
| | | | - Christiane A Helm
- Soft Matter and Biophysics, Institute of Physics, University of Greifswald, Greifswald, Germany
| | - Rainer Müller
- Colloid and Interface Chemistry, Institute of Physical and Theoretical Chemistry, University of Regensburg, Regensburg, Germany
| | - Susanne Staehlke
- Department of Cell Biology, Rostock University Medical Center, Rostock, Germany
| | - J Barbara Nebe
- Department of Cell Biology, Rostock University Medical Center, Rostock, Germany.,Department Science and Technology of Life, Light and Matter, Faculty of Interdisciplinary, University of Rostock, Rostock, Germany
| |
Collapse
|
10
|
Sun W, Jin S, Zhang A, Huang J, Li Y, Liu X, Chen H. Vascular cell responses to silicone surfaces grafted with heparin-like polymers: surface chemical composition vs. topographic patterning. J Mater Chem B 2020; 8:9151-9161. [PMID: 32945818 DOI: 10.1039/d0tb01000f] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
Heparin-like polymers are promising synthetic materials with biological functionalities, such as anticoagulant ability, growth factor binding to regulate cellular functions, and inflammation mediation, similar to heparin. The biocompatibility of heparin-like polymers with well-defined chemical structures has inspired many researchers to design heparin-like surfaces to explore their biological applications. The concept of the recombination of functional heparin structural units (sulfonate- and glyco-containing units) was proven to be successful in designing heparin-mimicking surfaces. However, besides surface structural units, topographic patterning is also an important contributor to the biological activity of the surfaces modified with heparin-like polymers. In this work, both surface structural units and topographic patterning were taken into account to investigate the vascular cell behaviors on the silicone surfaces. A facile method for the production of patterned bromine-containing polydimethylsiloxane surface (PDMS-Br) was developed from a one-step multicomponent thermocuring procedure and replica molding using a nanohole-arrayed silicon template. Different structural units of heparin-like polymers, i.e. homopolymer of sulfonate-containing sodium 4-vinylbenzenesulfonate (pSS), homopolymer of glyco-containing 2-(methacrylamido)glucopyranose (pMAG), and copolymers of MAG and SS (pSG), were then introduced on the flat and patterned PDMS-Br surface using visible light-induced graft polymerization. For the flat surfaces, compared with the PDMS-Br surface, pSS-grafted and pSG-grafted surfaces significantly increased cell densities of both human umbilical vein endothelial cells (HUVECs) and human umbilical vein smooth muscle cells (HUVSMCs), indicating that they are "vascular cell-friendly". In contrast, the pMAG-grafted surface showed decreased cell attachment of both HUVECs and HUVSMCs, indicating that the pMAG-grafted surface is "vascular cell-resistant". Moreover, surface topographic patterning enhanced the cell responses to the corresponding flat surfaces. That is to say, surface patterning can make the "vascular cell-friendly" surface still friendly, and the "vascular cell-resistant" surface much more resistant. The combination of surface structural units and topographic patterning shows promise in the preparation of new heparin-like surfaces with improved cell compatibility that is suitable for blood-compatible biomaterials.
Collapse
Affiliation(s)
- Wei Sun
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou 215123, P. R. China.
| | - Sheng Jin
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou 215123, P. R. China.
| | - Aiyang Zhang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou 215123, P. R. China.
| | - Jialei Huang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou 215123, P. R. China.
| | - Yuepeng Li
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou 215123, P. R. China.
| | - Xiaoli Liu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou 215123, P. R. China.
| | - Hong Chen
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou 215123, P. R. China.
| |
Collapse
|
11
|
Guzmán E, Rubio RG, Ortega F. A closer physico-chemical look to the Layer-by-Layer electrostatic self-assembly of polyelectrolyte multilayers. Adv Colloid Interface Sci 2020; 282:102197. [PMID: 32579951 DOI: 10.1016/j.cis.2020.102197] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/06/2020] [Accepted: 06/08/2020] [Indexed: 01/08/2023]
Abstract
The fabrication of polyelectrolyte multilayer films (PEMs) using the Layer-by-Layer (LbL) method is one of the most versatile approaches for manufacturing functional surfaces. This is the result of the possibility to control the assembly process of the LbL films almost at will, by changing the nature of the assembled materials (building blocks), the assembly conditions (pH, ionic strength, temperature, etc.) or even by changing some other operational parameters which may impact in the structure and physico-chemical properties of the obtained multi-layered films. Therefore, the understanding of the impact of the above mentioned parameters on the assembly process of LbL materials plays a critical role in the potential use of the LbL method for the fabrication of new functional materials with technological interest. This review tries to provide a broad physico-chemical perspective to the study of the fabrication process of PEMs by the LbL method, which allows one to take advantage of the many possibilities offered for this approach on the fabrication of new functional nanomaterials.
Collapse
|
12
|
Lysozyme uptake into pharmaceutical grade fucoidan/chitosan polyelectrolyte multilayers under physiological conditions. J Colloid Interface Sci 2020; 565:555-566. [DOI: 10.1016/j.jcis.2020.01.030] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 01/10/2020] [Accepted: 01/12/2020] [Indexed: 01/28/2023]
|
13
|
Frauenlob M, King DR, Guo H, Ishihara S, Tsuda M, Kurokawa T, Haga H, Tanaka S, Gong JP. Modulation and Characterization of the Double Network Hydrogel Surface-Bulk Transition. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b01399] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
| | - Daniel R. King
- Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo, Hokkaido 001-0021, Japan
| | - Honglei Guo
- Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo, Hokkaido 001-0021, Japan
| | - Seiichiro Ishihara
- Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo, Hokkaido 001-0021, Japan
| | - Masumi Tsuda
- Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo, Hokkaido 001-0021, Japan
- Department of Cancer Pathology, Faculty of Medicine, Hokkaido University, N15W7, Kita-ku, Sapporo 060-8638, Japan
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, N21W10, Kita-ku, Sapporo 001-0021, Japan
| | - Takayuki Kurokawa
- Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo, Hokkaido 001-0021, Japan
| | - Hisashi Haga
- Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo, Hokkaido 001-0021, Japan
| | - Shinya Tanaka
- Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo, Hokkaido 001-0021, Japan
- Department of Cancer Pathology, Faculty of Medicine, Hokkaido University, N15W7, Kita-ku, Sapporo 060-8638, Japan
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, N21W10, Kita-ku, Sapporo 001-0021, Japan
| | - Jian Ping Gong
- Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo, Hokkaido 001-0021, Japan
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, N21W10, Kita-ku, Sapporo 001-0021, Japan
| |
Collapse
|
14
|
Layer-by-layer assembly as a robust method to construct extracellular matrix mimic surfaces to modulate cell behavior. Prog Polym Sci 2019. [DOI: 10.1016/j.progpolymsci.2019.02.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
15
|
Delgado JD, Surmaitis RL, Abou Shaheen S, Schlenoff JB. Engineering Thiolated Surfaces with Polyelectrolyte Multilayers. ACS APPLIED MATERIALS & INTERFACES 2019; 11:3524-3535. [PMID: 30620554 DOI: 10.1021/acsami.8b15514] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Interfaces bearing firmly attached thiol groups are useful for many applications requiring the versatile and facile chemistry of the -SH functionality. In this work, rugged ultrathin films were prepared on substrates using layer-by-layer assembly. The surface of these smooth films was capped with a co-polymer containing benzyl mercaptan units. The utility of this coating was illustrated by three applications. First, thiol-ene "click" chemistry was used to introduce the Arg-Gly-Asp (RGD) adhesive peptide sequence on a surface that otherwise resisted good adhesion of fibroblasts. This treatment promoted cell adhesion and spreading. Similar Michael addition chemistry was employed to attach poly(ethylene glycol) to the surface, which reduced fouling by (adhesion of) serum albumin. Finally, the affinity of gold for -SH was exploited by depositing a layer of gold nanoparticles on the thiolated surface or by evaporating a tenacious film of gold without using the classical chromium "primer" layer.
Collapse
Affiliation(s)
- Jose D Delgado
- Department of Chemistry and Biochemistry , The Florida State University , Tallahassee , Florida 32306 , United States
| | - Richard L Surmaitis
- Department of Chemistry and Biochemistry , The Florida State University , Tallahassee , Florida 32306 , United States
| | - Samir Abou Shaheen
- Department of Chemistry and Biochemistry , The Florida State University , Tallahassee , Florida 32306 , United States
| | - Joseph B Schlenoff
- Department of Chemistry and Biochemistry , The Florida State University , Tallahassee , Florida 32306 , United States
| |
Collapse
|
16
|
Liu R, Yao X, Liu X, Ding J. Proliferation of Cells with Severe Nuclear Deformation on a Micropillar Array. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:284-299. [PMID: 30513205 DOI: 10.1021/acs.langmuir.8b03452] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Cellular responses on a topographic surface are fundamental topics about interfaces and biology. Herein, a poly(lactide- co-glycolide) (PLGA) micropillar array was prepared and found to trigger significant self-deformation of cell nuclei. The time-dependent cell viability and thus cell proliferation was investigated. Despite significant nuclear deformation, all of the examined cell types (Hela, HepG2, MC3T3-E1, and NIH3T3) could survive and proliferate on the micropillar array yet exhibited different proliferation abilities. Compared to the corresponding groups on the smooth surface, the cell proliferation abilities on the micropillar array were decreased for Hela and MC3T3-E1 cells and did not change significantly for HepG2 and NIH3T3 cells. We also found that whether the proliferation ability changed was related to whether the nuclear sizes decreased in the micropillar array, and thus the size deformation of cell nuclei should, besides shape deformation, be taken into consideration in studies of cells on topological surfaces.
Collapse
Affiliation(s)
- Ruili Liu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science , Fudan University , Shanghai 200438 , China
| | - Xiang Yao
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science , Fudan University , Shanghai 200438 , China
| | - Xiangnan Liu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science , Fudan University , Shanghai 200438 , China
| | - Jiandong Ding
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science , Fudan University , Shanghai 200438 , China
| |
Collapse
|
17
|
Delgado JD, Surmaitis RL, Arias CJ, Schlenoff JB. Surface sulfonates lock serum albumin into a “hard” corona. Biomater Sci 2019; 7:3213-3225. [DOI: 10.1039/c9bm00475k] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Albumin is more easily displaced on a surface bearing carboxylate compared to sulfonate functionality, which controls the composition of the eventual protein corona.
Collapse
Affiliation(s)
- Jose D. Delgado
- Department of Chemistry and Biochemistry
- Florida State University
- Tallahassee
- USA
| | | | - Carlos J. Arias
- Department of Chemistry and Biochemistry
- Florida State University
- Tallahassee
- USA
| | - Joseph B. Schlenoff
- Department of Chemistry and Biochemistry
- Florida State University
- Tallahassee
- USA
| |
Collapse
|
18
|
Muzzio NE, Pasquale MA, Marmisollé WA, von Bilderling C, Cortez ML, Pietrasanta LI, Azzaroni O. Self-assembled phosphate-polyamine networks as biocompatible supramolecular platforms to modulate cell adhesion. Biomater Sci 2018; 6:2230-2247. [PMID: 29978861 DOI: 10.1039/c8bm00265g] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The modulation of cell adhesion via biologically inspired materials plays a key role in the development of realistic platforms to envisage not only mechanistic descriptions of many physiological and pathological processes but also new biointerfacial designs compatible with the requirements of biomedical devices. In this work, we show that the cell adhesion and proliferation of three different cell lines can be easily manipulated by using a novel biologically inspired supramolecular coating generated via dip coating of the working substrates in an aqueous solution of polyallylamine in the presence of phosphate anions-a simple one-step modification procedure. Our results reveal that selective cell adhesion can be controlled by varying the deposition time of the coating. Cell proliferation experiments showed a cell type-dependent quasi-exponential growth demonstrating the nontoxic properties of the supramolecular platform. After reaching a certain surface coverage, the supramolecular films based on phosphate-polyamine networks displayed antiadhesive activity towards cells, irrespective of the cell type. However and most interestingly, these antiadherent substrates developed strong adhesive properties after thermal annealing at 37 °C for 3 days. These results were interpreted based on the changes in the coating hydrophilicity, topography and stiffness, with the latter being assessed by atomic force microscopy imaging and indentation experiments. The reported approach is simple, robust and flexible, and would offer opportunities for the development of tunable, biocompatible interfacial architectures to control cell attachment for various biomedical applications.
Collapse
Affiliation(s)
- Nicolás E Muzzio
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), (UNLP, CONICET), Sucursal 4, Casilla de Correo 16, 1900 La Plata, Argentina.
| | | | | | | | | | | | | |
Collapse
|
19
|
Dai B, Wang L, Wang Y, Yu G, Huang X. Single-Cell Nanometric Coating Towards Whole-Cell-Based Biodevices and Biosensors. ChemistrySelect 2018. [DOI: 10.1002/slct.201800963] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Bing Dai
- School of Technology; Harbin University; Harbin 150086 China
| | - Lei Wang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage; School of Chemistry and Chemical Engineering; Harbin Institute of Technology; Harbin 150001 China
| | - Yan Wang
- Departament de Química Inorgànica; Facultat de Química; Universitat de Barcelona, C/Martí i Franquès 1-11; Barcelona 08028 Spain
| | - Guangbin Yu
- School of Mechanical and Power Engineering; Harbin University of Science and Technology; Harbin 150080 China
| | - Xin Huang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage; School of Chemistry and Chemical Engineering; Harbin Institute of Technology; Harbin 150001 China
| |
Collapse
|
20
|
Surmaitis RL, Arias CJ, Schlenoff JB. Stressful Surfaces: Cell Metabolism on a Poorly Adhesive Substrate. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:3119-3125. [PMID: 29457460 DOI: 10.1021/acs.langmuir.7b04172] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The adhesion and proliferation of cells are exquisitely sensitive to the nature of the surface to which they attach. Aside from cell counting, cell "health" on surfaces is typically established by measuring the metabolic rate with dyes that participate in the metabolic pathway or using "live/dead" assays with combinations of membrane permeable/impermeable dyes. The binary information gleaned from these tests-whether cells are attached or not, and whether they are living or dead-provides an incomplete picture of cell health. In the present work, proliferation rates and net metabolism of 3T3 fibroblasts seeded on "biocompatible" ultrathin polyelectrolyte multilayer films and on control tissue culture plastic were compared. Cells adhered to, and proliferated on, both surfaces, which were shown to be nontoxic according to live/dead assays. However, adhesion was poorer on the multilayer surface, illustrated by diffuse organization of the actin cytoskeleton and less-developed focal adhesions. Proliferation was also slower on the multilayer. When normalized for the total number of cells, it was shown that cells on multilayers experienced a five-day burst of metabolic stress, after which the metabolic rate approached that of the control surface. This initial state of high stress has not been reported or appreciated in studies of cell growth on multilayers, although the observation period for this system is usually a few days.
Collapse
Affiliation(s)
- Richard L Surmaitis
- Department of Chemistry & Biochemistry , The Florida State University , Tallahassee , Florida 32306 , United States
| | - Carlos J Arias
- Department of Chemistry & Biochemistry , The Florida State University , Tallahassee , Florida 32306 , United States
| | - Joseph B Schlenoff
- Department of Chemistry & Biochemistry , The Florida State University , Tallahassee , Florida 32306 , United States
| |
Collapse
|
21
|
Wang Y, Yao H, Zhou J, Hong Y, Chen B, Zhang B, Smith TA, Wong WWH, Zhao Z. A water-soluble, AIE-active polyelectrolyte for conventional and fluorescence lifetime imaging of mouse neuroblastoma neuro-2A cells. ACTA ACUST UNITED AC 2018. [DOI: 10.1002/pola.28943] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Yinan Wang
- College of Material, Chemistry and Chemical Engineering; Hangzhou Normal University; Hangzhou 310036 People's Republic of China
| | - Hongming Yao
- College of Material, Chemistry and Chemical Engineering; Hangzhou Normal University; Hangzhou 310036 People's Republic of China
| | - Jian Zhou
- College of Material, Chemistry and Chemical Engineering; Hangzhou Normal University; Hangzhou 310036 People's Republic of China
| | - Yuning Hong
- Department of Chemistry and Physics; La Trobe University; Victoria 3086 Australia
| | - Bin Chen
- State Key Laboratory of Luminescent Materials and Devices; South China University of Technology; Guangzhou 510640 People's Republic of China
| | - Bolong Zhang
- School of Chemistry; The University of Melbourne; Victoria 3010 Australia
| | - Trevor A. Smith
- School of Chemistry; The University of Melbourne; Victoria 3010 Australia
| | - Wallace W. H. Wong
- School of Chemistry; The University of Melbourne; Victoria 3010 Australia
| | - Zujin Zhao
- State Key Laboratory of Luminescent Materials and Devices; South China University of Technology; Guangzhou 510640 People's Republic of China
| |
Collapse
|
22
|
He T, Jańczewski D, Guo S, Man SM, Jiang S, Tan WS. Stable pH responsive layer-by-layer assemblies of partially hydrolysed poly(2-ethyl-2-oxazoline) and poly(acrylic acid) for effective prevention of protein, cell and bacteria surface attachment. Colloids Surf B Biointerfaces 2018; 161:269-278. [DOI: 10.1016/j.colsurfb.2017.10.031] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 09/05/2017] [Accepted: 10/10/2017] [Indexed: 12/21/2022]
|
23
|
Kerch G. Polymer hydration and stiffness at biointerfaces and related cellular processes. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2018; 14:13-25. [DOI: 10.1016/j.nano.2017.08.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 08/14/2017] [Accepted: 08/16/2017] [Indexed: 01/15/2023]
|
24
|
Pahal S, Gakhar R, Raichur AM, Varma MM. Polyelectrolyte multilayers for bio-applications: recent advancements. IET Nanobiotechnol 2017; 11:903-908. [PMID: 29155388 PMCID: PMC8676474 DOI: 10.1049/iet-nbt.2017.0007] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 06/09/2017] [Accepted: 07/17/2017] [Indexed: 11/25/2023] Open
Abstract
The synergistic relationship between structure and the bulk properties of polyelectrolyte multilayer (PEM) films has generated tremendous interest in their application for loading and release of bioactive species. Layer-by-layer assembly is the simplest, cost effective process for fabrication of such PEMs films, leading to one of the most widely accepted platforms for incorporating biological molecules with nanometre precision. The bulk reservoir properties of PEM films render them a potential candidate for applications such as biosensing, drug delivery and tissue engineering. Various biomolecules such as proteins, DNA, RNA or other desired molecules can be incorporated into the PEM stack via electrostatic interactions and various other secondary interactions such as hydrophobic interactions. The location and availability of the biological molecules within the PEM stack mediates its applicability in various fields of biomedical engineering such as programmed drug delivery. The development of advanced technologies for biomedical applications using PEM films has seen rapid progress recently. This review briefly summarises the recent successes of PEM being utilised for diverse bio-applications.
Collapse
Affiliation(s)
- Suman Pahal
- Centre for Nano Science and Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Ruchi Gakhar
- Department of Engineering Physics, University of Wisconsin, Madison, WI 53706, USA
| | - Ashok M Raichur
- Nanotechnology and Water Sustainability Unit, University of South Africa, Florida 1710, Johannesburg, South Africa
| | - Manoj M Varma
- Centre for Nano Science and Engineering, Indian Institute of Science, Bangalore 560012, India.
| |
Collapse
|
25
|
Michna A. Macroion adsorption-electrokinetic and optical methods. Adv Colloid Interface Sci 2017; 250:95-131. [PMID: 29055493 DOI: 10.1016/j.cis.2017.09.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 09/22/2017] [Accepted: 09/24/2017] [Indexed: 01/03/2023]
Abstract
Recent studies on macroion adsorption at solid/liquid interfaces evaluated by electrokinetic and optical methods are reviewed. In the first section a description of electrokinetic phenomena at a solid surface is briefly outlined. Various methods for determining both static and dynamic properties of the electrical double layer, such as the appropriate location of the slip plane, are presented. Theoretical approaches are discussed concerning quantitative interpretation of streaming potential/current measurements of homogeneous macroscopic interfaces. Experimental results are presented, involving electrokinetic characteristics of bare surfaces, such as mica, silicon, glass etc. obtained from various types of electrokinetic cells. The surface conductivity effect on zeta potential is underlined. In the next section, various theoretical approaches, proposed to determine a distribution of electrostatic potential and flow distribution within macroion layers, are presented. Accordingly, the influence of the uniform as well as non-uniform distribution of charges within macroion layer, the dissociation degree, and the surface conductance on electrokinetic parameters are discussed. The principles, the advantages and limits of optical techniques as well as AFM are briefly outlined in Section 4. The last section is devoted to the discussion of experimental data obtained by streaming potential/current measurements and optical methods, such as reflectometry, ellipsometry, surface plasmon resonance (SPR), optical waveguide lightmode spectroscopy (OWLS), colloid enhancement, and fluorescence technique, for mono- and multilayers of macroions. Results of polycations (PEI, PAMAM dendrimers, PAH, PDADMAC) and polyanions (PAA, PSS) adsorption on mica, silicon, gold, and PTFE are quantitatively interpreted in terms of theoretical approaches postulating the three dimensional charge distribution or the random sequential adsorption model (RSA). Macroion bilayer formation, experimentally examined by streaming current measurements, and theoretically interpreted in terms of the comprehensive formalism is also reviewed. The utility of electrokinetic measurements, combined with optical methods, for a precise, in situ characteristics of macroion mono- and multilayer formation at solid/liquid interfaces is pointed out.
Collapse
|
26
|
Muzzio NE, Pasquale MA, Diamanti E, Gregurec D, Moro MM, Azzaroni O, Moya SE. Enhanced antiadhesive properties of chitosan/hyaluronic acid polyelectrolyte multilayers driven by thermal annealing: Low adherence for mammalian cells and selective decrease in adhesion for Gram-positive bacteria. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 80:677-687. [DOI: 10.1016/j.msec.2017.07.016] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 05/30/2017] [Accepted: 07/07/2017] [Indexed: 01/02/2023]
|
27
|
Guzmán E, Mateos-Maroto A, Ruano M, Ortega F, Rubio RG. Layer-by-Layer polyelectrolyte assemblies for encapsulation and release of active compounds. Adv Colloid Interface Sci 2017; 249:290-307. [PMID: 28455094 DOI: 10.1016/j.cis.2017.04.009] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 04/18/2017] [Accepted: 04/18/2017] [Indexed: 10/19/2022]
Abstract
Soft assemblies obtained following the Layer-by-Layer (LbL) approach are accounted among the most interesting systems for designing biomaterials and drug delivery platforms. This is due to the extraordinary versatility and flexibility offered by the LbL method, allowing for the fabrication of supramolecular multifunctional materials using a wide range of building blocks through different types of interactions (electrostatic, hydrogen bonds, acid-base or coordination interactions, or even covalent bonds). This provides the bases for the building of materials with different sizes, shapes, compositions and morphologies, gathering important possibilities for tuning and controlling the physico-chemical properties of the assembled materials with precision in the nanometer scale, and consequently creating important perspective for the application of these multifunctional materials as cargo systems in many areas of technological interest. This review studies different physico - chemical aspects associated with the assembly of supramolecular materials by the LbL method, paying special attention to the description of these aspects playing a central role in the application of these materials as cargo platforms for encapsulation and release of active compounds.
Collapse
|
28
|
Tailored polyelectrolyte thin film multilayers to modulate cell adhesion. Biointerphases 2017; 12:04E403. [DOI: 10.1116/1.5000588] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|