1
|
Maruyama H, Maeda M, Fujimori A. Interfacial film conformation and its molecular arrangement of s-triazine derivatives containing three fluorocarbons without hydrophilic groups. J Fluor Chem 2021. [DOI: 10.1016/j.jfluchem.2021.109880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
2
|
Lv J, Cheng Y. Fluoropolymers in biomedical applications: state-of-the-art and future perspectives. Chem Soc Rev 2021; 50:5435-5467. [DOI: 10.1039/d0cs00258e] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Biomedical applications of fluoropolymers in gene delivery, protein delivery, drug delivery, 19F MRI, PDT, anti-fouling, anti-bacterial, cell culture, and tissue engineering.
Collapse
Affiliation(s)
- Jia Lv
- Shanghai Key Laboratory of Regulatory Biology
- School of Life Sciences
- East China Normal University
- Shanghai
- China
| | - Yiyun Cheng
- Shanghai Key Laboratory of Regulatory Biology
- School of Life Sciences
- East China Normal University
- Shanghai
- China
| |
Collapse
|
3
|
Demazeau M, Gibot L, Mingotaud AF, Vicendo P, Roux C, Lonetti B. Rational design of block copolymer self-assemblies in photodynamic therapy. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2020; 11:180-212. [PMID: 32082960 PMCID: PMC7006492 DOI: 10.3762/bjnano.11.15] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 12/04/2019] [Indexed: 05/10/2023]
Abstract
Photodynamic therapy is a technique already used in ophthalmology or oncology. It is based on the local production of reactive oxygen species through an energy transfer from an excited photosensitizer to oxygen present in the biological tissue. This review first presents an update, mainly covering the last five years, regarding the block copolymers used as nanovectors for the delivery of the photosensitizer. In particular, we describe the chemical nature and structure of the block copolymers showing a very large range of existing systems, spanning from natural polymers such as proteins or polysaccharides to synthetic ones such as polyesters or polyacrylates. A second part focuses on important parameters for their design and the improvement of their efficiency. Finally, particular attention has been paid to the question of nanocarrier internalization and interaction with membranes (both biomimetic and cellular), and the importance of intracellular targeting has been addressed.
Collapse
Affiliation(s)
- Maxime Demazeau
- Laboratoire des IMRCP, Université de Toulouse, CNRS UMR 5623, Université Toulouse III - Paul Sabatier, 118 route de Narbonne, 31062, Toulouse, France
| | - Laure Gibot
- Laboratoire des IMRCP, Université de Toulouse, CNRS UMR 5623, Université Toulouse III - Paul Sabatier, 118 route de Narbonne, 31062, Toulouse, France
| | - Anne-Françoise Mingotaud
- Laboratoire des IMRCP, Université de Toulouse, CNRS UMR 5623, Université Toulouse III - Paul Sabatier, 118 route de Narbonne, 31062, Toulouse, France
| | - Patricia Vicendo
- Laboratoire des IMRCP, Université de Toulouse, CNRS UMR 5623, Université Toulouse III - Paul Sabatier, 118 route de Narbonne, 31062, Toulouse, France
| | - Clément Roux
- Laboratoire des IMRCP, Université de Toulouse, CNRS UMR 5623, Université Toulouse III - Paul Sabatier, 118 route de Narbonne, 31062, Toulouse, France
| | - Barbara Lonetti
- Laboratoire des IMRCP, Université de Toulouse, CNRS UMR 5623, Université Toulouse III - Paul Sabatier, 118 route de Narbonne, 31062, Toulouse, France
| |
Collapse
|
4
|
Metelev VG, Bogdanov AA. Synthesis and applications of theranostic oligonucleotides carrying multiple fluorine atoms. Theranostics 2020; 10:1391-1414. [PMID: 31938071 PMCID: PMC6956824 DOI: 10.7150/thno.37936] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 10/17/2019] [Indexed: 12/17/2022] Open
Abstract
The use of various oligonucleotide (ON) syntheses and post-synthetic strategies for targeted chemical modification enables improving their efficacy as potent modulators of gene expression levels in eukaryotic cells. However, the search still continues for new approaches designed for increasing internalization, lysosomal escape, and tissue specific delivery of ON. In this review we emphasized all aspects related to the synthesis and properties of ON derivatives carrying multifluorinated (MF) groups. These MF groups have unique physico-chemical properties because of their simultaneous hydrophobicity and lipophobicity. Such unusual combination of properties results in the overall modification of ON mode of interaction with the cells and making multi-fluorination highly relevant to the goal of improving potency of ON as components of new therapies. The accumulated evidence so far is pointing to high potential of ON probes, RNAi components and ON imaging beacons carrying single or multiple MF groups for improving the stability, specificity of interaction with biological targets and delivery of ONs in vitro and potentially in vivo.
Collapse
Affiliation(s)
- Valeriy G. Metelev
- Laboratory of Molecular Imaging Probes, Department of Radiology, University of Massachusetts Medical School, Worcester MA, USA
- Department of Chemistry, Moscow State University, Moscow, Russian Federation
| | - Alexei A. Bogdanov
- Laboratory of Molecular Imaging Probes, Department of Radiology, University of Massachusetts Medical School, Worcester MA, USA
- Laboratory of Molecular Imaging, A.N. Bakh Institute of Biochemistry, Federal Research Center "Fundamentals of Biotechnology" of the Russian Academy of Sciences, Moscow
- Department of Bioengineering and Bioinformatics, Moscow State University, Moscow
| |
Collapse
|
5
|
Skrzypiec M, Weiss M, Dopierała K, Prochaska K. Langmuir-Blodgett films of membrane lipid in the presence of hybrid silsesquioxane, a promising component of biomaterials. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 105:110090. [PMID: 31546436 DOI: 10.1016/j.msec.2019.110090] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 08/01/2019] [Accepted: 08/14/2019] [Indexed: 12/11/2022]
Abstract
Functionalized polyhedral oligomeric silsesquioxanes (POSS) derivatives have great potential in biomedical applications such as tissue engineering, drug delivery, biosensors, dental composites and biomedical devices. Having the above in mind, in this paper, the study of the surface characteristics of binary Langmuir-Blodgett films consisting of an open cage silsesquioxane POSS-poly (ethylene glycol) (POSS-PEG) and 1,2-dimyristoyl-sn-glycero-3-phosphoethanolamine (DMPE), as a representative of phospholipid was conducted based on contact angle measurements of three liquids. The measured values of the contact angle (with water, formamide and diiodomethane as the wetting liquids) allowed to calculate surface free energy of the films from van Oss et al. approach. The film structure of the deposited layers was evaluated using an atomic force microscope. Analysis of the obtained results led to the conclusion, that the pure DMPE molecules create agglomerates onto a solid substrate, whereas the POSS-PEG molecules form a homogenous monolayer. After an addition of POSS-PEG to lipid film, changes in the surface properties are visible. The wettability as well as surface free energy depend on the molar ratio of both components. The AFM images shed more light on the changes of the DMPE monolayer topography caused by the POSS-PEG addition.
Collapse
Affiliation(s)
- Marta Skrzypiec
- Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo 4, 60-965 Poznań, Poland
| | - Marek Weiss
- Institute of Physics, Poznan University of Technology, Piotrowo 3, 60-965 Poznań, Poland
| | - Katarzyna Dopierała
- Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo 4, 60-965 Poznań, Poland
| | - Krystyna Prochaska
- Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo 4, 60-965 Poznań, Poland.
| |
Collapse
|
6
|
Detailed characterization of POSS-poly(ethylene glycol) interaction with model phospholipid membrane at the air/water interface. Colloids Surf B Biointerfaces 2018; 171:167-175. [DOI: 10.1016/j.colsurfb.2018.07.029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 06/23/2018] [Accepted: 07/13/2018] [Indexed: 12/11/2022]
|
7
|
Heinz D, Amado E, Kressler J. Polyphilicity-An Extension of the Concept of Amphiphilicity in Polymers. Polymers (Basel) 2018; 10:E960. [PMID: 30960885 PMCID: PMC6403972 DOI: 10.3390/polym10090960] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 08/23/2018] [Accepted: 08/23/2018] [Indexed: 12/12/2022] Open
Abstract
Recent developments in synthetic pathways as simple reversible-deactivation radical polymerization (RDRP) techniques and quantitative post-polymerization reactions, most notoriously 'click' reactions, leading to segmented copolymers, have broadened the molecular architectures accessible to polymer chemists as a matter of routine. Segments can be blocks, grafted chains, branchings, telechelic end-groups, covalently attached nanoparticles, nanodomains in networks, even sequences of random copolymers, and so on. In this review, we describe the variety of the segmented synthetic copolymers landscape from the point of view of their chemical affinity, or synonymous philicity, in bulk or with their surroundings, such as solvents, permeant gases, and solid surfaces. We focus on recent contributions, current trends, and perspectives regarding polyphilic copolymers, which have, in addition to hydrophilic and lipophilic segments, other philicities, for example, towards solvents, fluorophilic entities, ions, silicones, metals, nanoparticles, and liquid crystalline moieties.
Collapse
Affiliation(s)
- Daniel Heinz
- Department of Chemistry, Martin Luther University Halle-Wittenberg, D-06099 Halle (Saale), Germany.
| | - Elkin Amado
- Department of Chemistry, Martin Luther University Halle-Wittenberg, D-06099 Halle (Saale), Germany.
| | - Jörg Kressler
- Department of Chemistry, Martin Luther University Halle-Wittenberg, D-06099 Halle (Saale), Germany.
| |
Collapse
|
8
|
Wójcik A, Perczyk P, Wydro P, Flasiński M, Broniatowski M. Interactions of Long-Chain Perfluorotelomer Alcohol and Perfluorinated Hydrocarbons with Model Decomposer Membranes. J Phys Chem B 2018; 122:7340-7352. [DOI: 10.1021/acs.jpcb.8b05194] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
9
|
Binding of the GTPase Sar1 to a Lipid Membrane Monolayer: Insertion and Orientation Studied by Infrared Reflection⁻Absorption Spectroscopy. Polymers (Basel) 2017; 9:polym9110612. [PMID: 30965916 PMCID: PMC6418733 DOI: 10.3390/polym9110612] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 10/26/2017] [Accepted: 11/06/2017] [Indexed: 01/15/2023] Open
Abstract
Membrane-interacting proteins are polyphilic polymers that engage in dynamic protein–protein and protein–lipid interactions while undergoing changes in conformation, orientation and binding interfaces. Predicting the sites of interactions between such polypeptides and phospholipid membranes is still a challenge. One example is the small eukaryotic GTPase Sar1, which functions in phospholipid bilayer remodeling and vesicle formation as part of the multimeric coat protein complex (COPII). The membrane interaction of Sar1 is strongly dependent on its N-terminal 23 amino acids. By monolayer adsorption experiments and infrared reflection-absorption spectroscopy (IRRAS), we elucidate the role of lipids in inducing the amphipathicity of this N-terminal stretch, which inserts into the monolayer as an amphipathic helix (AH). The AH inserting angle is determined and is consistent with the philicities and spatial distribution of the amino acid monomers. Using an advanced method of IRRAS data evaluation, the orientation of Sar1 with respect to the lipid layer prior to the recruitment of further COPII proteins is determined. The result indicates that only a slight reorientation of the membrane-bound Sar1 is needed to allow coat assembly. The time-course of the IRRAS analysis corroborates a role of slow GTP hydrolysis in Sar1 desorption from the membrane.
Collapse
|
10
|
Shah SWH, Schwieger C, Li Z, Kressler J, Blume A. Effect of Perfluoroalkyl Endgroups on the Interactions of Tri-Block Copolymers with Monofluorinated F-DPPC Monolayers. Polymers (Basel) 2017; 9:polym9110555. [PMID: 30965858 PMCID: PMC6418721 DOI: 10.3390/polym9110555] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 10/20/2017] [Accepted: 10/21/2017] [Indexed: 12/16/2022] Open
Abstract
We studied the interaction of amphiphilic and triphilic polymers with monolayers prepared from F-DPPC (1-palmitoyl-2-(16-fluoropalmitoyl)-sn-glycero-3-phosphocholine), a phospholipid with a single fluorine atom at the terminus of the sn-2 chain, an analogue of dipalmitoyl-phosphatidylcholine (DPPC). The amphiphilic block copolymers contained a hydrophobic poly(propylene oxide) block flanked by hydrophilic poly(glycerol monomethacrylate) blocks (GP). F-GP was derived from GP by capping both termini with perfluoro-n-nonyl segments. We first studied the adsorption of GP and F-GP to lipid monolayers of F-DPPC. F-GP was inserted into the monolayer up to a surface pressure Π of 42.4 mN m−1, much higher than GP (32.5 mN m−1). We then studied isotherms of lipid-polymer mixtures co-spread at the air-water interface. With increasing polymer content in the mixture a continuous shift of the onset of the liquid-expanded (LE) to liquid-condensed (LC) transition towards higher molecular and higher area per lipid molecule was observed. F-GP had a larger effect than GP indicating that it needed more space. At a Π-value of 32 mN m−1, GP was excluded from the mixed monolayer, whereas F-GP stayed in F-DPPC monolayers up to 42 mN m−1. F-GP is thus more stably anchored in the monolayer up to higher surface pressures. Images of mixed monolayers were acquired using different fluorescent probes and showed the presence of perfluorinated segments of F-GP at LE-LC domain boundaries.
Collapse
Affiliation(s)
- Syed W H Shah
- Institute of Chemistry, Martin-Luther University Halle-Wittenberg, D 06099 Halle, Germany.
- Chemistry Department, Hazara University, 21120 Mansehra, Pakistan.
| | - Christian Schwieger
- Institute of Chemistry, Martin-Luther University Halle-Wittenberg, D 06099 Halle, Germany.
| | - Zheng Li
- Institute of Chemistry, Martin-Luther University Halle-Wittenberg, D 06099 Halle, Germany.
| | - Jörg Kressler
- Institute of Chemistry, Martin-Luther University Halle-Wittenberg, D 06099 Halle, Germany.
| | - Alfred Blume
- Institute of Chemistry, Martin-Luther University Halle-Wittenberg, D 06099 Halle, Germany.
| |
Collapse
|
11
|
Barres AR, Wimmer MR, Mecozzi S. Multicompartment Theranostic Nanoemulsions Stabilized by a Triphilic Semifluorinated Block Copolymer. Mol Pharm 2017; 14:3916-3926. [PMID: 28945386 DOI: 10.1021/acs.molpharmaceut.7b00624] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The presence of a perfluorocarbon block in a multiblock polymer has been shown to be an additional driving force toward nanoparticle assembly. In the preparation of nanoemulsions, this perfluorocarbon block also provides enhanced particle stability. Herein, the synthesis of a new triphilic, semifluorinated copolymer, M2F8H18, is introduced. This ABC type block copolymer can be used to formulate extremely stable nanoemulsions, assembled around a lipophilic droplet, with lifetimes of one year or more. The central oil droplet can stably solubilize high concentrations of hydrophobic drugs, making this system an ideal drug delivery vehicle. The incorporation of the perfluorocarbon block modulates drug release from the lipophilic core via the surrounding fluorous shell. Fluorous imaging agents incorporated into the fluorous shell prolong drug release even further as well as provide potent 19F-MRI contrast ability. In vitro studies show that these nanoemulsions efficiently inhibit cancer cell growth, thus providing a theranostic drug delivery system.
Collapse
Affiliation(s)
- Alexa R Barres
- Department of Chemistry and ‡School of Pharmacy, University of Wisconsin-Madison , Madison, Wisconsin 53705, United States
| | - Megan R Wimmer
- Department of Chemistry and ‡School of Pharmacy, University of Wisconsin-Madison , Madison, Wisconsin 53705, United States
| | - Sandro Mecozzi
- Department of Chemistry and ‡School of Pharmacy, University of Wisconsin-Madison , Madison, Wisconsin 53705, United States
| |
Collapse
|
12
|
Poellmann MJ, Lee RC. Repair and Regeneration of the Wounded Cell Membrane. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2017. [DOI: 10.1007/s40883-017-0031-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
13
|
Kato R, Nakahara H, Shibata O. Interfacial Properties of Binary Systems Composed of DPPC and Perfluorinated Double Long-Chain Salts with Divalent Counterions of Separate Electric Charge. J Oleo Sci 2017; 66:479-489. [DOI: 10.5650/jos.ess16208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Riku Kato
- Department of Biophysical Chemistry, Graduate School & Faculty of Pharmaceutical Sciences, Nagasaki International University
| | - Hiromichi Nakahara
- Department of Biophysical Chemistry, Graduate School & Faculty of Pharmaceutical Sciences, Nagasaki International University
| | - Osamu Shibata
- Department of Biophysical Chemistry, Graduate School & Faculty of Pharmaceutical Sciences, Nagasaki International University
| |
Collapse
|