1
|
Huang PH, Li ME, Lu CS, Huang CH, Wu HN, Tsai PC, Chen JJK, Lous B, Bresoli-Obach R, Rocha S, Hofkens J, Witek H, Li MC, Masuhara H. Morphology control of dynamic optical matter of gold nanoparticles fabricated by optical trapping in printed microchannels. Photochem Photobiol Sci 2025; 24:751-764. [PMID: 40332734 DOI: 10.1007/s43630-025-00723-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Accepted: 04/15/2025] [Indexed: 05/08/2025]
Abstract
Optical trapping at interfaces has emerged as a valuable research topic in the study of colloidal particles and soft matter. Objects are drawn from the irradiated cone-like region toward the laser focus, generating flow patterns beyond the focal area. Localized heating at the focus induces coupled effects on surface tension, capillary forces, and Marangoni convection. Furthermore, optical propagation and scattering of the trapping laser beyond the focus can lead to the formation of large assemblies along the interface, extending well beyond the laser beam itself. For gold nanoparticles, a single large swarming assembly forms, with individual nanoparticles exhibiting vivid fluctuations. In this study, we investigate the swarming assembly as a non-linearly evolving optical matter using a plastic microchannel. The original structure undergoes transformations into pressed, square, unidirectional, triangular, elongated rectangular, or even twisted assemblies. In addition, the photothermal effects of the optical matter are analyzed in the context of a local anisotropic heater. This phenomenon not only suggests potential applications but also offers valuable insights for advancing new technologies.
Collapse
Affiliation(s)
- Pin-Hsun Huang
- Department of Applied Chemistry and Center for Emergent Functional Matter Science, National Yang Ming Chiao Tung University, Hsinchu, 300093, Taiwan
| | - Mu-En Li
- Department of Applied Chemistry and Center for Emergent Functional Matter Science, National Yang Ming Chiao Tung University, Hsinchu, 300093, Taiwan
| | - Chi-Shan Lu
- Department of Biological Science and Technology, Institute of Molecular Medicine and Bioengineering, College of Engineering Bioscience, and Center For Intelligent Drug Systems and Smart Bio-Devices (IDS2B), National Yang Ming Chiao Tung University, Hsinchu, 300093, Taiwan
| | - Chih-Hao Huang
- Department of Applied Chemistry and Center for Emergent Functional Matter Science, National Yang Ming Chiao Tung University, Hsinchu, 300093, Taiwan
| | - Hsin-Ni Wu
- Department of Biological Science and Technology, Institute of Molecular Medicine and Bioengineering, College of Engineering Bioscience, and Center For Intelligent Drug Systems and Smart Bio-Devices (IDS2B), National Yang Ming Chiao Tung University, Hsinchu, 300093, Taiwan
| | - Peng-Chin Tsai
- Department of Biological Science and Technology, Institute of Molecular Medicine and Bioengineering, College of Engineering Bioscience, and Center For Intelligent Drug Systems and Smart Bio-Devices (IDS2B), National Yang Ming Chiao Tung University, Hsinchu, 300093, Taiwan
| | - Jim Jui-Kai Chen
- Laboratory for Photochemistry and Spectroscopy, Division for Molecular Imaging and Photonics, Department of Chemistry, Katholieke Universiteit Leuven, 3000, Louvain, Belgium
| | - Boris Lous
- Laboratory for Photochemistry and Spectroscopy, Division for Molecular Imaging and Photonics, Department of Chemistry, Katholieke Universiteit Leuven, 3000, Louvain, Belgium
| | - Roger Bresoli-Obach
- Laboratory for Photochemistry and Spectroscopy, Division for Molecular Imaging and Photonics, Department of Chemistry, Katholieke Universiteit Leuven, 3000, Louvain, Belgium
- AppLightChem, Institut Químic de Sarrià, Universitat Ramon Llull, 08017, Barcelona, Spain
| | - Suzana Rocha
- Laboratory for Photochemistry and Spectroscopy, Division for Molecular Imaging and Photonics, Department of Chemistry, Katholieke Universiteit Leuven, 3000, Louvain, Belgium
| | - Johan Hofkens
- Laboratory for Photochemistry and Spectroscopy, Division for Molecular Imaging and Photonics, Department of Chemistry, Katholieke Universiteit Leuven, 3000, Louvain, Belgium
- Max Planck Institute for Polymer Research, 55128, Mainz, Germany
| | - Henryk Witek
- Department of Applied Chemistry and Center for Emergent Functional Matter Science, National Yang Ming Chiao Tung University, Hsinchu, 300093, Taiwan.
| | - Ming-Chia Li
- Department of Biological Science and Technology, Institute of Molecular Medicine and Bioengineering, College of Engineering Bioscience, and Center For Intelligent Drug Systems and Smart Bio-Devices (IDS2B), National Yang Ming Chiao Tung University, Hsinchu, 300093, Taiwan.
| | - Hiroshi Masuhara
- Department of Applied Chemistry and Center for Emergent Functional Matter Science, National Yang Ming Chiao Tung University, Hsinchu, 300093, Taiwan.
| |
Collapse
|
2
|
Toyouchi S, Wang HY, Kudo T, Masuhara H. Reconfigurable optical matter of polystyrene microparticles fabricated by optical trapping at solution surface. Photochem Photobiol Sci 2025; 24:693-703. [PMID: 40338498 DOI: 10.1007/s43630-025-00703-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Accepted: 02/27/2025] [Indexed: 05/09/2025]
Abstract
Light-matter interactions are fundamental in materials fabrication and property control, with significant applications in broad fields. A notable phenomenon arises when optical forces are exerted among nanoparticles and microparticles, in which optical binding leads to the development of optical matters with a well-patterned structure. This work explores a dynamic optical matter of polystyrene microparticles (PS MPs) prepared at the air/solution interface under optical trapping, specifically focusing on the interactions between 1-µm and 20-µm PS MPs. We report the formation of an unprecedented three-dimensional (3D) bulky assembly where smaller particles form a necklace and belt assembly around the larger particle, created by multiple light scattering. The resulting assembly, which can exceed 50 µm in diameter, elongates light-matter interaction lengths and exhibits reconfigurability tuning optical conditions, forming a unique dynamic optical matter with a random and disordered structure. As a result, we demonstrate amplified spontaneous emissions in the 3D bulky assembly thanks to the feature of randomness and multiple light scattering. These findings present a new approach to the study of reconfigurable and tunable optical matter, opening avenues for novel applications in disordered photonics and material science.
Collapse
Affiliation(s)
- Shuichi Toyouchi
- Department of Applied Chemistry and Center for Emergent Functional Matter Science, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
- Research Institute for Light-Induced Acceleration System (RILACS), Osaka Metropolitan University, Sakai, Osaka, 599-8570, Japan
| | - Hsuan-Yin Wang
- Department of Applied Chemistry and Center for Emergent Functional Matter Science, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Tetsuhiro Kudo
- Department of Applied Chemistry and Center for Emergent Functional Matter Science, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
- Laser Science Laboratory, Toyota Technological Institute, 2-12-1 Hisakata Tempaku-Ku, Nagoya, 468-8511, Japan
| | - Hiroshi Masuhara
- Department of Applied Chemistry and Center for Emergent Functional Matter Science, National Yang Ming Chiao Tung University, Hsinchu, Taiwan.
| |
Collapse
|
3
|
Louis B, Huang CH, Melendez M, Sánchez-Iglesias A, Olmos-Trigo J, Seth S, Rocha S, Delgado-Buscalioni R, Liz-Marzán LM, Marqués MI, Masuhara H, Hofkens J, Bresolí-Obach R. Unconventional Optical Matter of Hybrid Metal-Dielectric Nanoparticles at Interfaces. ACS NANO 2024; 18:32746-32758. [PMID: 39552356 PMCID: PMC11614098 DOI: 10.1021/acsnano.4c10418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/30/2024] [Accepted: 11/05/2024] [Indexed: 11/19/2024]
Abstract
Optical matter, a transient arrangement formed by the interaction of light with micro/nanoscale objects, provides responsive and highly tunable materials that allow for controlling and manipulating light and/or matter. A combined experimental and theoretical exploration of optical matter is essential to advance our understanding of the phenomenon and potentially design applications. Most studies have focused on nanoparticles composed of a single material (either metallic or dielectric), representing two extreme regimes, one where the gradient force (dielectric) and one where the scattering force (metallic) dominates. To understand their role, it is important to investigate hybrid materials with different metallic-to-dielectric ratios. Here, we combine numerical calculations and experiments on hybrid metal-dielectric core-shell particles (200 nm gold spheres coated with silica shells with thicknesses ranging from 0 to 100 nm). We reveal how silica shell thickness critically influences the essential properties of optical binding, such as interparticle distance, reducing it below the anticipated optical binding length. Notably, for silica shells thicker than 50 nm, we observed a transition from a linear arrangement perpendicular to polarization to a hexagonal arrangement accompanied by a circular motion. Further, the dynamic swarming assembly changes from the conventional dumbbell-shaped to lobe-like morphologies. These phenomena, confirmed by both experimental observations and dynamic numerical calculations, demonstrate the complex dynamics of optical matter and underscore the potential for tuning its properties for applications.
Collapse
Affiliation(s)
- Boris Louis
- Laboratory
for Photochemistry and Spectroscopy, Division for Molecular Imaging
and Photonics, Department of Chemistry, Katholieke Universiteit Leuven, Leuven 3000, Belgium
| | - Chih-Hao Huang
- Department
of Applied Chemistry and Center for Emergent Functional Matter Science, National Yang Ming Chiao Tung University, Hsinchu 300093, Taiwan
| | - Marc Melendez
- Departamento
de Física de Materiales & Condensed Matter Physics
Center (IFIMAC) & Nicolás Cabrera Institute, Universidad Autónoma de Madrid, C. Francisco Tomás y Valiente,
7, 28049 Madrid, Spain
| | - Ana Sánchez-Iglesias
- CIC
biomaGUNE, Basque Research and Technology
Alliance (BRTA), 20014 Donostia-San Sebastián, Spain
- Center
for Materials Physics (CSIC-UPV), 20018 Donostia-San Sebastián, Spain
| | - Jorge Olmos-Trigo
- Departamento
de Física, Universidad de La Laguna, Apdo. 456., E-38200 San Cristóbal de La Laguna, Santa Cruz de Tenerife, Spain
| | - Sudipta Seth
- Laboratory
for Photochemistry and Spectroscopy, Division for Molecular Imaging
and Photonics, Department of Chemistry, Katholieke Universiteit Leuven, Leuven 3000, Belgium
| | - Susana Rocha
- Laboratory
for Photochemistry and Spectroscopy, Division for Molecular Imaging
and Photonics, Department of Chemistry, Katholieke Universiteit Leuven, Leuven 3000, Belgium
| | - Rafael Delgado-Buscalioni
- Departamento
de Física de Materiales & Condensed Matter Physics
Center (IFIMAC) & Nicolás Cabrera Institute, Universidad Autónoma de Madrid, C. Francisco Tomás y Valiente,
7, 28049 Madrid, Spain
| | - Luis M. Liz-Marzán
- CIC
biomaGUNE, Basque Research and Technology
Alliance (BRTA), 20014 Donostia-San Sebastián, Spain
- Ikerbasque, Basque Foundation
for Science, 48009 Bilbao, Spain
- CINBIO,
Universidade de Vigo, Departamento de Química
Física, Campus
Universitario As Lagoas, 36310 Marcosende Vigo, Spain
| | - Manuel I. Marqués
- Departamento
de Física de Materiales & Condensed Matter Physics
Center (IFIMAC) & Nicolás Cabrera Institute, Universidad Autónoma de Madrid, C. Francisco Tomás y Valiente,
7, 28049 Madrid, Spain
| | - Hiroshi Masuhara
- Department
of Applied Chemistry and Center for Emergent Functional Matter Science, National Yang Ming Chiao Tung University, Hsinchu 300093, Taiwan
| | - Johan Hofkens
- Laboratory
for Photochemistry and Spectroscopy, Division for Molecular Imaging
and Photonics, Department of Chemistry, Katholieke Universiteit Leuven, Leuven 3000, Belgium
- Max
Planck Institute for Polymer Research, Mainz 55128, Germany
| | - Roger Bresolí-Obach
- Laboratory
for Photochemistry and Spectroscopy, Division for Molecular Imaging
and Photonics, Department of Chemistry, Katholieke Universiteit Leuven, Leuven 3000, Belgium
- AppLightChem,
Institut Químic de Sarrià, Universitat Ramon Llull, Barcelona 08017, Spain
| |
Collapse
|
4
|
Yuzu K, Lin CY, Yi PW, Huang CH, Masuhara H, Chatani E. Spatiotemporal formation of a single liquid-like condensate and amyloid fibrils of α-synuclein by optical trapping at solution surface. Proc Natl Acad Sci U S A 2024; 121:e2402162121. [PMID: 39292741 PMCID: PMC11441557 DOI: 10.1073/pnas.2402162121] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 08/14/2024] [Indexed: 09/20/2024] Open
Abstract
Liquid-like protein condensates have recently attracted much attention due to their critical roles in biological phenomena. They typically show high fluidity and reversibility for exhibiting biological functions, while occasionally serving as sites for the formation of amyloid fibrils. To comprehend the properties of protein condensates that underlie biological function and pathogenesis, it is crucial to study them at the single-condensate level; however, this is currently challenging due to a lack of applicable methods. Here, we demonstrate that optical trapping is capable of inducing the formation of a single liquid-like condensate of α-synuclein in a spatiotemporally controlled manner. The irradiation of tightly focused near-infrared laser at an air/solution interface formed a condensate under conditions coexisting with polyethylene glycol. The fluorescent dye-labeled imaging showed that the optically induced condensate has a gradient of protein concentration from the center to the edge, suggesting that it is fabricated through optical pumping-up of the α-synuclein clusters and the expansion along the interface. Furthermore, Raman spectroscopy and thioflavin T fluorescence analysis revealed that continuous laser irradiation induces structural transition of protein molecules inside the condensate to β-sheet rich structure, ultimately leading to the condensate deformation and furthermore, the formation of amyloid fibrils. These observations indicate that optical trapping is a powerful technique for examining the microscopic mechanisms of condensate appearance and growth, and furthermore, subsequent aging leading to amyloid fibril formation.
Collapse
Affiliation(s)
- Keisuke Yuzu
- Department of Chemistry, Graduate School of Science, Kobe University, Kobe657-8501, Japan
| | - Ching-Yang Lin
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu300093, Taiwan
| | - Po-Wei Yi
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu300093, Taiwan
| | - Chih-Hao Huang
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu300093, Taiwan
| | - Hiroshi Masuhara
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu300093, Taiwan
| | - Eri Chatani
- Department of Chemistry, Graduate School of Science, Kobe University, Kobe657-8501, Japan
| |
Collapse
|
5
|
Akter M, Kabir AMR, Keya JJ, Sada K, Asanuma H, Kakugo A. Localized Control of the Swarming of Kinesin-Driven Microtubules Using Light. ACS OMEGA 2024; 9:37748-37753. [PMID: 39281908 PMCID: PMC11391547 DOI: 10.1021/acsomega.4c03216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 08/07/2024] [Accepted: 08/13/2024] [Indexed: 09/18/2024]
Abstract
The swarming of self-propelled cytoskeletal filaments has emerged as a new aspect in the field of molecular machines or robotics, as it has overcome one of the major challenges of controlling the mutual interaction of a large number of individuals at a time. Recently, we reported on the photoregulated swarming of kinesin-driven cytoskeletal microtubule filaments in which visible (VIS) and ultraviolet (UV) light triggered the association and dissociation of the swarm, respectively. However, systematic control of this potential system has yet to be achieved to optimize swarming for further applications in molecular machines or robotics. Here, we demonstrate the precise and localized control of a biomolecular motor-based swarm system by varying different parameters related to photoirradiation. We control the reversibility of the swarming by changing the wavelength or intensity of light and the number of azobenzenes in DNA. In addition, we regulate the swarming in local regions by introducing different-sized or shaped patterns in the UV light system. Such a detailed study of the precise control of swarming would provide new perspectives for developing a molecular swarm system for further applications in engineering systems.
Collapse
Affiliation(s)
- Mousumi Akter
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, 48108, Michigan United States
| | | | - Jakia Jannat Keya
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States
| | - Kazuki Sada
- Faculty of Science, Hokkaido University, Sapporo, 060-0810, Japan
| | - Hiroyuki Asanuma
- Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
| | - Akira Kakugo
- Department of Physics, Kyoto University, Kyoto 606-8224, Japan
| |
Collapse
|
6
|
Goswami J, Nalupurackal G, Lokesh M, Roy S, Chakraborty S, Bhattacharya A, Mahapatra PS, Roy B. Formation of Two-Dimensional Magnetically Responsive Clusters Using Hematite Particles Self-Assembled via Particle-Induced Heating at an Interface. J Phys Chem B 2023; 127:8487-8495. [PMID: 37733383 DOI: 10.1021/acs.jpcb.3c02229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
Hematite particles, which exhibit a high magnetic moment, are used to apply large forces on physical and biological systems under magnetic fields to investigate various phenomena, such as those of rheology and micromanipulation. However, the magnetic confinement of these particles requires complicated field configurations. On the other hand, laser-assisted optical confinement of single hematite particles results in thermophoresis and subsequent ejection of the particle from the laser spot. Herein, we explore an alternative strategy to induce the self-assembly of hematite. In this strategy, with indirect influence from an optically confined and heated upconverting particle (UCP) at an air-water interface, there is the generation of convection currents that facilitate assembly. We also show that the assembly remains at the interface even after removal of the laser light. The hematite particle assemblies can then be moved using magnetic fields and employed to perform interfacial rheology.
Collapse
Affiliation(s)
- Jayesh Goswami
- Department of Physics, Quantum Centres in Diamond and Emergent Materials (QuCenDiEM)-Group, IIT Madras, Chennai 600036, India
| | - Gokul Nalupurackal
- Department of Physics, Quantum Centres in Diamond and Emergent Materials (QuCenDiEM)-Group, IIT Madras, Chennai 600036, India
| | - Muruga Lokesh
- Department of Physics, Quantum Centres in Diamond and Emergent Materials (QuCenDiEM)-Group, IIT Madras, Chennai 600036, India
| | - Srestha Roy
- Department of Physics, Quantum Centres in Diamond and Emergent Materials (QuCenDiEM)-Group, IIT Madras, Chennai 600036, India
| | - Snigdhadev Chakraborty
- Department of Physics, Quantum Centres in Diamond and Emergent Materials (QuCenDiEM)-Group, IIT Madras, Chennai 600036, India
| | - Arijit Bhattacharya
- Department of Mechanical Engineering, Indian Institute of Technology Madras, Chennai 600036, India
| | - Pallab Sinha Mahapatra
- Department of Mechanical Engineering, Indian Institute of Technology Madras, Chennai 600036, India
| | - Basudev Roy
- Department of Physics, Quantum Centres in Diamond and Emergent Materials (QuCenDiEM)-Group, IIT Madras, Chennai 600036, India
| |
Collapse
|
7
|
Minamimoto H, Oyamada N, Murakoshi K. Toward room-temperature optical manipulation of small molecules. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C: PHOTOCHEMISTRY REVIEWS 2023. [DOI: 10.1016/j.jphotochemrev.2023.100582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
|
8
|
Lokesh M, Nalupurackal G, Roy S, Chakraborty S, Goswami J, Gunaseelan M, Chowdhury IU, Bhallamudi VP, Sinha Mahapatra P, Roy B. Accelerated self assembly of particles at the air-water interface with optically assisted heating due to an upconverting particle. OPTICS EXPRESS 2023; 31:5075-5086. [PMID: 36785459 DOI: 10.1364/oe.481722] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 01/03/2023] [Indexed: 06/18/2023]
Abstract
Particles can be assembled at the air-water interface due to optically induced local heating. This induces convection currents in the water which brings particles to the surface. We improve the technique by employing an upconverting particle (UCP), which, when illuminated with 975 nm light, not only emits visible emission but also generates heat owing to the poor efficiency of the upconversion process. This induces strong convection currents which makes particles dispersed in the suspension assemble at the interface and immediately under the UCP. We show assembly of polystyrene particles of 1 μm diameter and diamonds of 500 nm diameter bearing Nitrogen-Vacancy (NV) centers around the UCP. We also show, for the first time, that the microdiamonds are assembled within about 30 nm at the bottom of the UCP by utilizing non-radiative energy transfer that reduces the lifetime of the 550 nm emission from about 90 μs to about 50 μs.
Collapse
|
9
|
Tao Y, Yokoyama T, Ishihara H. Rotational dynamics of indirect optical bound particle assembly under a single tightly focused laser. OPTICS EXPRESS 2023; 31:3804-3820. [PMID: 36785364 DOI: 10.1364/oe.479643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 12/28/2022] [Indexed: 06/18/2023]
Abstract
The optical binding of many particles has the potential to achieve the wide-area formation of a "crystal" of small materials. Unlike conventional optical binding, where the entire assembly of targeted particles is directly irradiated with light, if remote particles can be indirectly manipulated using a single trapped particle through optical binding, the degrees of freedom to create ordered structures can be enhanced. In this study, we theoretically investigate the dynamics of the assembly of gold nanoparticles that are manipulated using a single trapped particle by a focused laser. We demonstrate the rotational motion of particles through an indirect optical force and analyze it in terms of spin-orbit coupling and the angular momentum generation of light. The rotational direction of bound particles can be switched by the numerical aperture. These results pave the way for creating and manipulating ordered structures with a wide area and controlling local properties using scanning laser beams.
Collapse
|
10
|
Kishimoto T, Masui K, Minoshima W, Hosokawa C. Recent advances in optical manipulation of cells and molecules for biological science. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C: PHOTOCHEMISTRY REVIEWS 2022. [DOI: 10.1016/j.jphotochemrev.2022.100554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
11
|
Zhou LM, Shi Y, Zhu X, Hu G, Cao G, Hu J, Qiu CW. Recent Progress on Optical Micro/Nanomanipulations: Structured Forces, Structured Particles, and Synergetic Applications. ACS NANO 2022; 16:13264-13278. [PMID: 36053722 DOI: 10.1021/acsnano.2c05634] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Optical manipulation has achieved great success in the fields of biology, micro/nano robotics and physical sciences in the past few decades. To date, the optical manipulation is still witnessing substantial progress powered by the growing accessibility of the complex light field, advanced nanofabrication and developed understandings of light-matter interactions. In this perspective, we highlight recent advancements of optical micro/nanomanipulations in cutting-edge applications, which can be fostered by structured optical forces enabled with diverse auxiliary multiphysical field/forces and structured particles. We conclude with our vision of ongoing and futuristic directions, including heat-avoided and heat-utilized manipulation, nonlinearity-mediated trapping and manipulation, metasurface/two-dimensional material based optical manipulation, as well as interface-based optical manipulation.
Collapse
Affiliation(s)
- Lei-Ming Zhou
- Department of Optical Engineering, School of Physics, Hefei University of Technology, Hefei 230601, China
| | - Yuzhi Shi
- Institute of Precision Optical Engineering, School of Physics Science and Engineering, Tongji University, Shanghai 200092, China
- MOE Key Laboratory of Advanced Micro-Structured Materials, Shanghai 200092, China
| | - Xiaoyu Zhu
- Department of Optical Engineering, School of Physics, Hefei University of Technology, Hefei 230601, China
| | - Guangwei Hu
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
| | - Guangtao Cao
- School of Physics and Electronic Sciences, Changsha University of Science and Technology, Changsha 410004, China
| | - Jigang Hu
- Department of Optical Engineering, School of Physics, Hefei University of Technology, Hefei 230601, China
| | - Cheng-Wei Qiu
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
| |
Collapse
|
12
|
Suzuki Y, Nagashita T, Ikeda A, Ishii K, Iwai T, Nakato T, Kawamata J. Formation of a Giant Anisotropically Ordered Assembled Structure of Inorganic Nanosheets through an Optically Induced Stream. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:6647-6652. [PMID: 35579556 DOI: 10.1021/acs.langmuir.2c00528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Formation of a desirable submillimeter-scaled assembled structure of particles in the colloid is a difficult subject in colloidal chemistry. Herein, a submillimeter-scaled ordered assembled structure consisting of highly anisotropic two-dimensional plate-like particles, niobate nanosheets, was obtained through an optical manipulation technique that was assisted by a scattering-force-induced stream. A 532 nm continuous wave laser beam with a power of 400 mW was used to illuminate a liquid crystalline niobate nanosheet colloid from the bottom side of a sample cell, inducing the stream of oriented nanosheets toward the upper side of the sample cell. As a result, a 200 μm ordered assembled structure consisting of oriented nanosheets was formed. The assembled structure was also characterized by two-dimensional anisotropy, reflecting that the highly anisotropic morphologies of each nanosheet and the shape of that structure were dependent on the polarization of incident illumination. This study has revealed a new noncontact and on-demand way to obtain submillimeter-scaled ordered anisotropic colloidal assembled structures of nanosized particles such as nanosheets, contributing to fundamental materials science and expanding the utilities of nanosheets.
Collapse
Affiliation(s)
- Yasutaka Suzuki
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, 1677-1 Yoshida, Yamaguchi, Yamaguchi 753-8512, Japan
| | - Takashi Nagashita
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, 1677-1 Yoshida, Yamaguchi, Yamaguchi 753-8512, Japan
| | - Akira Ikeda
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, 1677-1 Yoshida, Yamaguchi, Yamaguchi 753-8512, Japan
| | - Katsuhiro Ishii
- The Graduate School for the Creation of New Photonics Industries, 1955-1 Kurematsu, Hamamatsu, Shizuoka 431-1202, Japan
| | - Toshiaki Iwai
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Teruyuki Nakato
- Department of Applied Chemistry, Strategic Research Unit for Innovative Multiscale Materials, Kyushu Institute of Technology, 1-1 Sensui-cho, Tobata, Kitakyu-shu, Fukuoka 804-8550, Japan
| | - Jun Kawamata
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, 1677-1 Yoshida, Yamaguchi, Yamaguchi 753-8512, Japan
| |
Collapse
|
13
|
Pradhan S, Whitby CP, Williams MAK, Chen JLY, Avci E. Interfacial colloidal assembly guided by optical tweezers and tuned via surface charge. J Colloid Interface Sci 2022; 621:101-109. [PMID: 35452924 DOI: 10.1016/j.jcis.2022.04.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 04/05/2022] [Accepted: 04/07/2022] [Indexed: 10/18/2022]
Abstract
HYPOTHESIS The size, shape and dynamics of assemblies of colloidal particles optically-trapped at an air-water interface can be tuned by controlling the optical potential, particle concentration, surface charge density and wettability of the particles and the surface tension of the solution. EXPERIMENTS The assembly dynamics of different colloidal particle types (silica, polystyrene and carboxyl coated polystyrene particles) at an air-water interface in an optical potential were systematically explored allowing the effect of surface charge on assembly dynamics to be investigated. Additionally, the pH of the solutions were varied in order to modulate surface charge in a controllable fashion. The effect of surface tension on these assemblies was also explored by reducing the surface tension of the supporting solution by mixing ethanol with water. FINDINGS Silica, polystyrene and carboxyl coated polystyrene particles showed distinct assembly behaviours at the air-water interface that could be rationalised taking into account changes in surface charge (which in addition to being different between the particles could be modified systematically by changing the solution pH). Additionally, this is the first report showing that wettability of the colloidal particles and the surface tension of the solution are critical in determining the resulting assembly at the solution surface.
Collapse
Affiliation(s)
- Susav Pradhan
- School of Fundamental Sciences, Massey University, Palmerston North 4410, New Zealand; Department of Mechanical and Electrical Engineering, Massey University, Palmerston North 4410, New Zealand; The MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington 6140, New Zealand
| | - Catherine P Whitby
- School of Fundamental Sciences, Massey University, Palmerston North 4410, New Zealand; The MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington 6140, New Zealand.
| | - Martin A K Williams
- School of Fundamental Sciences, Massey University, Palmerston North 4410, New Zealand; The MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington 6140, New Zealand.
| | - Jack L Y Chen
- Centre for Biomedical and Chemical Sciences, Auckland University of Technology, Auckland 1010, New Zealand; Department of Biotechnology, Chemistry and Pharmaceutical Sciences, Universitá degli Studi di Siena, Siena 53100, Italy; The MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington 6140, New Zealand
| | - Ebubekir Avci
- Department of Mechanical and Electrical Engineering, Massey University, Palmerston North 4410, New Zealand; The MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington 6140, New Zealand.
| |
Collapse
|
14
|
Abstract
When an intense 1,064-nm continuous-wave laser is tightly focused at solution surfaces, it exerts an optical force on molecules, polymers, and nanoparticles (NPs). Initially, molecules and NPs are gathered into a single assembly inside the focus, and the laser is scattered and propagated through the assembly. The expanded laser further traps them at the edge of the assembly, producing a single assembly much larger than the focus along the surface. Amino acids and inorganic ionic compounds undergo crystallization and crystal growth, polystyrene NPs form periodic arrays and disklike structures with concentric circles or hexagonal packing, and Au NPs demonstrate assembling and swarming, in which the NPs fluctuate like a group of bees. These phenomena that depend on laser polarization are called optically evolved assembling at solution surfaces, and their dynamics and mechanisms are elucidated in this review. As a promising application in materials science, the optical trapping assembly of lead halide perovskites, supramolecules, and aggregation-induced emission enhancement-active molecules is demonstrated and future directions for fundamental study are discussed.
Collapse
Affiliation(s)
- Hiroshi Masuhara
- Department of Applied Chemistry and Center for Emergent Functional Matter Science, National Chiao Tung University, Hsinchu 30010, Taiwan;
| | - Ken-Ichi Yuyama
- Department of Chemistry, Osaka City University, Osaka 558-8585, Japan;
| |
Collapse
|
15
|
Jui-Kai Chen J, Chiang WY, Kudo T, Usman A, Masuhara H. Nanoparticle Assembling Dynamics Induced by Pulsed Optical Force. CHEM REC 2021; 21:1473-1488. [PMID: 33661570 DOI: 10.1002/tcr.202100005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/23/2021] [Accepted: 02/24/2021] [Indexed: 11/06/2022]
Abstract
Femtosecond (fs) laser trapping dynamics is summarized for silica, hydrophobically modified silica, and polystyrene nanoparticles (NPs) in aqueous solution, highlighting their distinct optical trapping dynamics under CW laser. Mutually repulsive silica nanoparticles are tightly confined under fs laser compared to CW laser trapping and, upon increasing laser power, they are ejected from the focus as an assembly. Hydrophobically modified silica and polystyrene (PS) NPs are sequentially ejected just like a stream or ablated, giving bubbles. The ejection and bubbling take place with the direction perpendicular to laser polarization and its direction is randomly switched from one to the other. These characteristic features are interpreted from the viewpoint of single assembly formation of NPs at an asymmetric position in the optical potential. Temporal change in optical forces map is prepared for a single PS NP by calculating scattering, gradient, and temporal forces. The relative contribution of the forces changes with the volume increase of the assembly and, when the pushing force along the trapping pulse propagation overcome the gradient in the focal plane, the assembly undergoes the ejection. Further fs multiphoton absorption is induced for the larger assembly leading to bubble generation. The assembling, ejection, and bubbling dynamics of NPs are characteristic features of pulsed optical force and are considered as a new platform for developing new material fabrication method.
Collapse
Affiliation(s)
- Jim Jui-Kai Chen
- Department of Applied Chemistry, National Chiao Tung University, 1001, Ta Hsueh Rd., Hsinchu, 30010, Taiwan
| | - Wei-Yi Chiang
- Department of Applied Chemistry, National Chiao Tung University, 1001, Ta Hsueh Rd., Hsinchu, 30010, Taiwan.,Department of Chemistry, Rice University, 6100 Main St., Space Science and Technology Building, Houston, TX 77005, USA
| | - Tetsuhiro Kudo
- Department of Applied Chemistry, National Chiao Tung University, 1001, Ta Hsueh Rd., Hsinchu, 30010, Taiwan
| | - Anwar Usman
- Department of Chemistry, Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong, BE1410, Negara Brunei Darussalam
| | - Hiroshi Masuhara
- Department of Applied Chemistry, National Chiao Tung University, 1001, Ta Hsueh Rd., Hsinchu, 30010, Taiwan.,Center for Emergent Functional Matter Science, National Chiao Tung University, 1001 Ta Hsueh Rd., Hsinchu, 30010, Taiwan
| |
Collapse
|
16
|
Wu CL, Wang SF, Kudo T, Yuyama KI, Sugiyama T, Masuhara H. Anomalously Large Assembly Formation of Polystyrene Nanoparticles by Optical Trapping at the Solution Surface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:14234-14242. [PMID: 33197315 DOI: 10.1021/acs.langmuir.0c02349] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
We demonstrated the optical trapping-induced formation of a single large disc-like assembly (∼50 μm in diameter) of polystyrene (PS) nanoparticles (NPs) (100 nm in diameter) at a solution surface. Different from the conventional trapping behavior in solution, the assembly grows from the focus to the outside along the surface and contains needle structures expanding radially in all directions. Upon switching off the trapping laser, the assembly disperses and needle structures disappear, while the highly concentrated domain of the NPs is left for a while. The single assembly is quickly restored by switching on the laser again, where the needle structures are also reproduced but in a different way. When a single 10 μm PS microparticle (MP) is trapped in the NP solution, a single disc-like assembly containing needle structures is similarly prepared outside the MP. Based on backscattering imaging and tracking analyses of the MP at the solution surface, it is proposed that scattering and propagation of the trapping laser from the central part of the NP assembly or the MP lead to this new phenomenon.
Collapse
Affiliation(s)
- Chi-Lung Wu
- Department of Applied Chemistry, National Chiao Tung University, 1001 University Road, Hsinchu 30010, Taiwan
| | - Shun-Fa Wang
- Department of Applied Chemistry, National Chiao Tung University, 1001 University Road, Hsinchu 30010, Taiwan
| | - Tetsuhiro Kudo
- Department of Applied Chemistry, National Chiao Tung University, 1001 University Road, Hsinchu 30010, Taiwan
| | - Ken-Ichi Yuyama
- Department of Chemistry, Osaka City University, Sugimoto-cho, Osaka 558-8585, Japan
| | - Teruki Sugiyama
- Department of Applied Chemistry, National Chiao Tung University, 1001 University Road, Hsinchu 30010, Taiwan
- Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma 630-0192, Japan
- Center for Emergent Functional Matter Science, National Chiao Tung University, 1001 University Road, Hsinchu 30010, Taiwan
| | - Hiroshi Masuhara
- Department of Applied Chemistry, National Chiao Tung University, 1001 University Road, Hsinchu 30010, Taiwan
- Center for Emergent Functional Matter Science, National Chiao Tung University, 1001 University Road, Hsinchu 30010, Taiwan
| |
Collapse
|
17
|
Huang CH, Kudo T, Bresolí-Obach R, Hofkens J, Sugiyama T, Masuhara H. Surface plasmon resonance effect on laser trapping and swarming of gold nanoparticles at an interface. OPTICS EXPRESS 2020; 28:27727-27735. [PMID: 32988060 DOI: 10.1364/oe.401158] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 08/28/2020] [Indexed: 06/11/2023]
Abstract
Laser trapping at an interface is a unique platform for aligning and assembling nanomaterials outside the focal spot. In our previous studies, Au nanoparticles form a dynamically evolved assembly outside the focus, leading to the formation of an antenna-like structure with their fluctuating swarms. Herein, we unravel the role of surface plasmon resonance on the swarming phenomena by tuning the trapping laser wavelength concerning the dipole mode for Au nanoparticles of different sizes. We clearly show that the swarm is formed when the laser wavelength is near to the resonance peak of the dipole mode together with an increase in the swarming area. The interpretation is well supported by the scattering spectra and the spatial light scattering profiles from single nanoparticle simulations. These findings indicate that whether the first trapped particle is resonant with trapping laser or not essentially determines the evolution of the swarming.
Collapse
|
18
|
Lu JS, Wang HY, Kudo T, Masuhara H. Large Submillimeter Assembly of Microparticles with Necklace-like Patterns Formed by Laser Trapping at Solution Surface. J Phys Chem Lett 2020; 11:6057-6062. [PMID: 32658483 DOI: 10.1021/acs.jpclett.0c01602] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In colloidal solution, nanoparticles can be optically trapped by a tightly focused laser beam, and they are assembled in a focal spot whose diameter is typically about one micrometer. We herein report that a large submillimeter sized assembly of polystyrene microparticles with necklace-like patterns are prepared by laser trapping at a solution surface. The light propagation outside the focal spot is directly confirmed by 1064 nm backscattering images, and finite difference time domain simulation well supports the idea that an optical potential is expanded outside the focal spot based on light propagation through whispering gallery mode. This demonstration opens a new method for fabrication of a millimeter-order huge assembly by a single tightly focused laser beam.
Collapse
Affiliation(s)
- Jia-Syun Lu
- Department of Applied Chemistry, College of Science, National Chiao Tung University, Hsinchu 30010, Taiwan
| | - Hsuan-Yin Wang
- Department of Applied Chemistry, College of Science, National Chiao Tung University, Hsinchu 30010, Taiwan
| | - Tetsuhiro Kudo
- Department of Applied Chemistry, College of Science, National Chiao Tung University, Hsinchu 30010, Taiwan
| | - Hiroshi Masuhara
- Department of Applied Chemistry, College of Science, National Chiao Tung University, Hsinchu 30010, Taiwan
- Center for Emergent Functional Matter Science, National Chiao Tung University, Hsinchu 30010, Taiwan
| |
Collapse
|
19
|
Sharma V, Paul D, Chaubey SK, Tiwari S, Kumar GVP. Large-scale optothermal assembly of colloids mediated by a gold microplate. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2020; 32:324002. [PMID: 32235046 DOI: 10.1088/1361-648x/ab8552] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 03/19/2020] [Indexed: 06/11/2023]
Abstract
Light-activated colloidal assembly and swarming can act as model systems to explore non-equilibrium state of matter. In this context, creating new experimental platforms to facilitate and control two-dimensional assembly of colloidal crystals are of contemporary interest. In this paper, we present an experimental study of assembly of colloidal silica microparticles in the vicinity of a single-crystalline gold microplate evanescently excited by a 532 nm laser beam. The gold microplate acts as a source of heat and establishes a thermal gradient in the system. The created optothermal potential assembles colloids to form a two-dimensional poly-crystal, and we quantify the coordination number and hexagonal packing order of the assembly in such a driven system. Our experimental investigation shows that for a given particle size, the variation in assembly can be tuned as a function of excitation-polarization and surface to volume ratio of the gold microplates. Furthermore, we observe that the assembly is dependent on size of the particle and its material composition. Specifically, silica colloids assemble but polystyrene colloids do not, indicating an intricate behaviour of the forces under play. Our work highlights a promising direction in utilizing metallic microstructures that can be harnessed for optothermal colloidal crystal assembly and swarming studies. Our experimental system can be utilized to explore optically driven matter and photophoretic interactions in soft-matter including biological systems such as cells and micro organisms.
Collapse
Affiliation(s)
- Vandana Sharma
- Department of Physics, Indian Institute of Science Education and Research, Pune-411008, India
| | - Diptabrata Paul
- Department of Physics, Indian Institute of Science Education and Research, Pune-411008, India
| | - Shailendra K Chaubey
- Department of Physics, Indian Institute of Science Education and Research, Pune-411008, India
| | - Sunny Tiwari
- Department of Physics, Indian Institute of Science Education and Research, Pune-411008, India
| | - G V Pavan Kumar
- Department of Physics, Indian Institute of Science Education and Research, Pune-411008, India
- Center for Energy Science, Indian Institute of Science Education and Research, Pune-411008, India
| |
Collapse
|
20
|
Wang SF, Lin JR, Ishiwari F, Fukushima T, Masuhara H, Sugiyama T. Spatiotemporal Dynamics of Aggregation-Induced Emission Enhancement Controlled by Optical Manipulation. Angew Chem Int Ed Engl 2020; 59:7063-7068. [PMID: 32067329 DOI: 10.1002/anie.201916240] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 01/21/2020] [Indexed: 02/03/2023]
Abstract
We present spatiotemporal control of aggregation-induced emission enhancement (AIEE) of a protonated tetraphenylethene derivative by optical manipulation. A single submicrometer-sized aggregate is initially confined by laser irradiation when its fluorescence is hardly detectable. The continuous irradiation of the formed aggregate leads to sudden and rapid growth, resulting in bright yellow fluorescence emission. The fluorescence intensity at the peak wavelength of 540 nm is tremendously enhanced with growth, meaning that AIEE is activated by optical manipulation. Amazingly, the switching on/off of the activation of AIEE is arbitrarily controlled by alternating the laser power. This result means that optical manipulation increases the local concentration, which overcomes the electrostatic repulsion between the protonated molecules, namely, optical manipulation changes the aggregate structure. The dynamics and mechanism in AIEE controlled by optical manipulation will be discussed from the viewpoint of molecular conformation and association depending on the laser power.
Collapse
Affiliation(s)
- Shun-Fa Wang
- Department of Applied Chemistry, National Chiao Tung University, 1001 University Road, Hsinchu, 30010, Taiwan
| | - Jhao-Rong Lin
- Department of Applied Chemistry, National Chiao Tung University, 1001 University Road, Hsinchu, 30010, Taiwan
| | - Fumitaka Ishiwari
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, 226-8503, Japan
| | - Takanori Fukushima
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, 226-8503, Japan
| | - Hiroshi Masuhara
- Department of Applied Chemistry, National Chiao Tung University, 1001 University Road, Hsinchu, 30010, Taiwan.,Center for Emergent Functional Matter Science, National Chiao Tung University, Taiwan
| | - Teruki Sugiyama
- Department of Applied Chemistry, National Chiao Tung University, 1001 University Road, Hsinchu, 30010, Taiwan.,Center for Emergent Functional Matter Science, National Chiao Tung University, Taiwan.,Division of Materials Science, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, Nara, 630-0192, Japan
| |
Collapse
|
21
|
Wang S, Lin J, Ishiwari F, Fukushima T, Masuhara H, Sugiyama T. Spatiotemporal Dynamics of Aggregation‐Induced Emission Enhancement Controlled by Optical Manipulation. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201916240] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Shun‐Fa Wang
- Department of Applied Chemistry National Chiao Tung University 1001 University Road Hsinchu 30010 Taiwan
| | - Jhao‐Rong Lin
- Department of Applied Chemistry National Chiao Tung University 1001 University Road Hsinchu 30010 Taiwan
| | - Fumitaka Ishiwari
- Laboratory for Chemistry and Life Science Institute of Innovative Research Tokyo Institute of Technology Yokohama 226-8503 Japan
| | - Takanori Fukushima
- Laboratory for Chemistry and Life Science Institute of Innovative Research Tokyo Institute of Technology Yokohama 226-8503 Japan
| | - Hiroshi Masuhara
- Department of Applied Chemistry National Chiao Tung University 1001 University Road Hsinchu 30010 Taiwan
- Center for Emergent Functional Matter Science National Chiao Tung University Taiwan
| | - Teruki Sugiyama
- Department of Applied Chemistry National Chiao Tung University 1001 University Road Hsinchu 30010 Taiwan
- Center for Emergent Functional Matter Science National Chiao Tung University Taiwan
- Division of Materials Science Nara Institute of Science and Technology 8916-5 Takayama-cho, Ikoma Nara 630-0192 Japan
| |
Collapse
|
22
|
Nan F, Yan Z. Creating Multifunctional Optofluidic Potential Wells for Nanoparticle Manipulation. NANO LETTERS 2018; 18:7400-7406. [PMID: 30351963 DOI: 10.1021/acs.nanolett.8b03844] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Optical forces have enabled various nanomanipulation in microfluidics such as optical trapping, sorting, and transporting of nanoparticles (NPs), but the manipulation is usually specific with a certain optical field. Tightly focused Gaussian beams can trap NPs but not sort them; moderately focused Gaussian beams allow sorting microparticles in a flow but not NPs; quasi-Bessel beams can sort NPs in a flow but cannot control their positions due to low trapping stiffness. All these methods rely on the axial variation of laser intensity. Here we show that multifunctional and tunable optofluidic potential wells can be created for nanomanipulation by synchronizing optical phase gradient force with fluid drag force. We demonstrate controlled trapping and transporting of 150 nm Ag NPs over 10 μm and sorting of 80 and 100 nm Au NPs using optical line traps with tunable phase gradients in experiments. Our simulations further predict that simultaneous sorting and trapping of sub-50 nm Au NPs can be achieved with a sorting resolution of 1 nm using optimized optical fields. Our method provides great freedom and flexibility for nanomanipulation in optofluidics with potential applications in nanophotonics and biomedicine.
Collapse
Affiliation(s)
- Fan Nan
- Department of Chemical and Biomolecular Engineering , Clarkson University , Potsdam , New York 13699 , United States
| | - Zijie Yan
- Department of Chemical and Biomolecular Engineering , Clarkson University , Potsdam , New York 13699 , United States
| |
Collapse
|
23
|
Kudo T, Yang SJ, Masuhara H. A Single Large Assembly with Dynamically Fluctuating Swarms of Gold Nanoparticles Formed by Trapping Laser. NANO LETTERS 2018; 18:5846-5853. [PMID: 30071730 DOI: 10.1021/acs.nanolett.8b02519] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Laser trapping has been utilized as tweezers to three-dimensionally trap nanoscale objects and has provided significant impacts in nanoscience and nanotechnology. The objects are immobilized at the position where the tightly focused laser beam is irradiated. Here, we report the swarming of gold nanoparticles in which component nanoparticles dynamically interact with each other, keeping their long interparticle distance around the trapping laser focus at a glass/solution interface. A pair of swarms are directionally extended outside the focal spot perpendicular to the linear polarization like a radiation pattern of dipole scattering, while a doughnut-shaped swarm is prepared by circularly polarized trapping laser. The light field is expanded as scattered light through trapped nanoparticles; this modified light field further traps the nanoparticles, and scattering and trapping cooperatively develop. Due to these nonlinear dynamic processes, the dynamically fluctuating swarms are evolved up to tens of micrometers. This finding will open the way to create various swarms of nanoscale objects that interact and bind through the scattered light depending on the properties of the laser beam and the nanomaterials.
Collapse
Affiliation(s)
- Tetsuhiro Kudo
- Department of Applied Chemistry, College of Science , National Chiao Tung University , Hsinchu 30010 , Taiwan
| | - Shang-Jan Yang
- Department of Applied Chemistry, College of Science , National Chiao Tung University , Hsinchu 30010 , Taiwan
| | - Hiroshi Masuhara
- Department of Applied Chemistry, College of Science , National Chiao Tung University , Hsinchu 30010 , Taiwan
- Center for Emergent Functional Matter Science , National Chiao Tung University , Hsinchu 30010 , Taiwan
| |
Collapse
|
24
|
Light-Controlled Swarming and Assembly of Colloidal Particles. MICROMACHINES 2018; 9:mi9020088. [PMID: 30393364 PMCID: PMC6187466 DOI: 10.3390/mi9020088] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Revised: 02/04/2018] [Accepted: 02/11/2018] [Indexed: 12/02/2022]
Abstract
Swarms and assemblies are ubiquitous in nature and they can perform complex collective behaviors and cooperative functions that they cannot accomplish individually. In response to light, some colloidal particles (CPs), including light active and passive CPs, can mimic their counterparts in nature and organize into complex structures that exhibit collective functions with remote controllability and high temporospatial precision. In this review, we firstly analyze the structural characteristics of swarms and assemblies of CPs and point out that light-controlled swarming and assembly of CPs are generally achieved by constructing light-responsive interactions between CPs. Then, we summarize in detail the recent advances in light-controlled swarming and assembly of CPs based on the interactions arisen from optical forces, photochemical reactions, photothermal effects, and photoisomerizations, as well as their potential applications. In the end, we also envision some challenges and future prospects of light-controlled swarming and assembly of CPs. With the increasing innovations in mechanisms and control strategies with easy operation, low cost, and arbitrary applicability, light-controlled swarming and assembly of CPs may be employed to manufacture programmable materials and reconfigurable robots for cooperative grasping, collective cargo transportation, and micro- and nanoengineering.
Collapse
|
25
|
Iwata K, Terazima M, Masuhara H. Novel physical chemistry approaches in biophysical researches with advanced application of lasers: Detection and manipulation. Biochim Biophys Acta Gen Subj 2017; 1862:335-357. [PMID: 29108958 DOI: 10.1016/j.bbagen.2017.11.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 10/30/2017] [Accepted: 11/01/2017] [Indexed: 10/18/2022]
Abstract
Novel methodologies utilizing pulsed or intense CW irradiation obtained from lasers have a major impact on biological sciences. In this article, recent development in biophysical researches fully utilizing the laser irradiation is described for three topics, time-resolved fluorescence spectroscopy, time-resolved thermodynamics, and manipulation of the biological assemblies by intense laser irradiation. First, experimental techniques for time-resolved fluorescence spectroscopy are concisely explained in Section 2. As an example of the recent application of time-resolved fluorescence spectroscopy to biological systems, evaluation of the viscosity of lipid bilayer membranes is described. The results of the spectroscopic experiments strongly suggest the presence of heterogeneous membrane structure with two different viscosity values in liposomes formed by a single phospholipid. Section 3 covers the time-resolved thermodynamics. Thermodynamical properties are important to characterize biomolecules. However, measurement of these quantities for short-lived intermediate species has been impossible by traditional thermodynamical techniques. Recently, development of a spectroscopic method based on the transient grating method enables us to measure these quantities and also to elucidate reaction kinetics which cannot be detected by other spectroscopic methods. The principle of the measurements and applications to some protein reactions are reviewed. Manipulation and fabrication of supramolecues, amino acids, proteins, and living cells by intense laser irradiation are described in Section 4. Unconventional assembly, crystallization and growth, amyloid fibril formation, and living cell manipulation are achieved by CW laser trapping and femtosecond laser-induced cavitation bubbling. Their spatio-temporal controllability is opening a new avenue in the relevant molecular and bioscience research fields. This article is part of a Special Issue entitled "Biophysical Exploration of Dynamical Ordering of Biomolecular Systems" edited by Dr. Koichi Kato.
Collapse
Affiliation(s)
- Koichi Iwata
- Department of Chemistry, Faculty of Science, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, Tokyo 171-8588, Japan.
| | - Masahide Terazima
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan.
| | - Hiroshi Masuhara
- Department of Applied Chemistry, National Chiao Tung University, 1001 Ta Hsueh Rd., Hsinchu 30010, Taiwan.
| |
Collapse
|