1
|
Wang HX, Zhu X, Liu M. Emergent chiral and topological nanoarchitectonics in self-assembled supramolecular systems. Chem Soc Rev 2025. [PMID: 40309872 DOI: 10.1039/d2cs00259k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2025]
Abstract
The fabrication of structures with designated topologies at the nanoscale is an intriguing issue, attributed to the possibility of both imparting unique properties to functional materials and unravelling the codes that lie in many natural systems. As a significant bottom-up approach, the self-assembly strategy is potent in formulating various exquisite structures. While the building of common types of miniaturized structures such as tubes, twists and spheres has been investigated in depth to gain insight into the intrinsic principles that dictate their formation and functions, the preparation of peculiar topological nanostructures is still scattered and unsystematic. In parallel, chirality is among the most ubiquitous phenomena of fundamental significance in nature and is in close relationship with the origin of life. Essentially, chirality represents a type of orderliness and thus may interplay with peculiar topologies in an orchestrated and serendipitous way. In this review, we describe the development of constructing emergent chiral and topological nanoarchitectures via the self-assembly method, mainly focusing on structures including toroids, catenanes, Möbius strips, spirals and fractals. In addition, other types involving toruloids/kebabs, trumpets and bamboos, screws, dendritic and lamellar twists are also exemplified. The design of building blocks and various self-assembling strategies towards these target architectures are highlighted in this review, in an effort to provide an overview of the feasible approaches that facilitate the tailored construction of mesoscopic structures.
Collapse
Affiliation(s)
- Han-Xiao Wang
- Beijing National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.
| | - Xuefeng Zhu
- Beijing National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.
| | - Minghua Liu
- Beijing National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
2
|
Jia Y, Guo X, Jia L, Zhao Z, Yang R, Zhang Y, Sun H. Novel asymmetrical bis-surfactants with naphthalene and two amide groups: Synthesis, foamability and foam stability. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115534] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
3
|
Choi YJ, Jung D, Lim SI, Yoon WJ, Kim DY, Jeong KU. Diacetylene-Functionalized Dendrons: Self-Assembled and Photopolymerized Three-Dimensional Networks for Advanced Self-Healing and Wringing Soft Materials. ACS APPLIED MATERIALS & INTERFACES 2020; 12:33239-33245. [PMID: 32602691 DOI: 10.1021/acsami.0c08137] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The physical properties of supramolecular soft materials strongly depend on the molecular packing structures constructed by thermodynamically and kinetically controlled molecular self-assembly. To investigate the relationship between molecular function and self-assembled molecular packing structure, a series of diacetylene (DA)-based supramolecules was synthesized by chemically connecting flexible dendrons to DA with amide (aDA-D) or ester (eDA-D) functions. The three-dimensional (3D) organogel network of amide-functionalized aDA-D was prepared in both polar and nonpolar solvents due to the intermolecular hydrogen bonding. 3D networks of aDA-D can be further stabilized by topochemical photopolymerization. The self-healing behavior of aDA-D was observed in the sheet-like structure formed in n-dodecane by the hydrophobic interaction between the gelator and solvent. The wringing behavior of aDA-D was also demonstrated using the dynamic interaction of amide function with n-butanol solvent. Kinetically controlled and photostabilized 3D networks can be a key component from biomedical devices to soft robotic applications.
Collapse
Affiliation(s)
- Yu-Jin Choi
- Department of Polymer-Nano Science and Technology, Department of Nanoconvergence Engineering, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Daseal Jung
- Department of Polymer-Nano Science and Technology, Department of Nanoconvergence Engineering, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Seok-In Lim
- Department of Polymer-Nano Science and Technology, Department of Nanoconvergence Engineering, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Won-Jin Yoon
- Department of Polymer-Nano Science and Technology, Department of Nanoconvergence Engineering, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Dae-Yoon Kim
- Functional Composite Materials Research Center, Korea Institute of Science and Technology, Bongdong 55324, Republic of Korea
| | - Kwang-Un Jeong
- Department of Polymer-Nano Science and Technology, Department of Nanoconvergence Engineering, Jeonbuk National University, Jeonju 54896, Republic of Korea
| |
Collapse
|
4
|
Liu Z, Jiang Y, Jiang J, Zhai D, Wang D, Liu M. Self-assembly of isomeric naphthalene appended glucono derivatives: nanofibers and nanotwists with circularly polarized luminescence emission. SOFT MATTER 2020; 16:4115-4120. [PMID: 32195501 DOI: 10.1039/c9sm02542a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Two isomeric naphthalene appended glucono derivatives substituted at the 1 or 2-naphthyl positions (Nap-1 and Nap-2) were designed and their self-assembly behaviors and optical properties were investigated. Nap-1 and Nap-2 were found to self-assemble into nanofibers and nanotwists, respectively. While the molecular chirality of the glucono moiety could not be effectively transferred to the naphthalene moiety in the Nap-1 system, this was achieved in the Nap-2 assembly. Thus, the Nap-2 assembly showed obvious circular dichroism (CD) and circularly polarized luminescence (CPL) signals. From the XRD patterns and IR spectra of the supramolecular assemblies, it was found that Nap-2 packed in a more orderly fashion than Nap-1, leading to a hierarchical assembly forming nanotwist structures. Moreover, a light-harvesting system based on Nap-2 supramolecular gels and dyes was established, in which an efficient energy transfer was demonstrated from Nap-2 to an acceptor Eosin Y. It was further found that both chirality and energy transfer enhanced the dissymmetry factor of Eosin Y CPL emission.
Collapse
Affiliation(s)
- Zongwen Liu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, Jiangsu, P. R. China.
| | | | | | | | | | | |
Collapse
|
5
|
Effect of hydrogen bonding and hydrophobicity on gel emulsions by benzenesulphonamide moiety-based amphiphiles: entrapment and release of vitamin B12. CHEMICAL PAPERS 2020. [DOI: 10.1007/s11696-020-01102-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
6
|
Yang G, Lin C, Feng X, Wang T, Jiang J. Multi-component supramolecular gels induce protonation of a porphyrin exciplex to achieve improved collective optical properties for effective photocatalytic hydrogen generation. Chem Commun (Camb) 2020; 56:527-530. [DOI: 10.1039/c9cc08060k] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Two-porphyrin supramolecular gels induce exciplex formation, protonation and J-aggregation of porphyrins, which render a smaller bandgap, charge separation and good photocatalytic properties.
Collapse
Affiliation(s)
- Gengxiang Yang
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials
- Department of Chemistry
- University of Science and Technology Beijing
- Beijing 100083
- China
| | - Chenxiang Lin
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials
- Department of Chemistry
- University of Science and Technology Beijing
- Beijing 100083
- China
| | - Xuenan Feng
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials
- Department of Chemistry
- University of Science and Technology Beijing
- Beijing 100083
- China
| | - Tianyu Wang
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials
- Department of Chemistry
- University of Science and Technology Beijing
- Beijing 100083
- China
| | - Jianzhuang Jiang
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials
- Department of Chemistry
- University of Science and Technology Beijing
- Beijing 100083
- China
| |
Collapse
|
7
|
AIE active TPE mesogens with p6mm columnar and Im3m cubic mesophases and white light emission property. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2019.112079] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
8
|
Nuthanakanti A, Walunj MB, Torris A, Badiger MV, Srivatsan SG. Self-assemblies of nucleolipid supramolecular synthons show unique self-sorting and cooperative assembling process. NANOSCALE 2019; 11:11956-11966. [PMID: 31188377 DOI: 10.1039/c9nr01863h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The inherent control of the self-sorting and co-assembling process that has evolved in multi-component biological systems is not easy to emulate in vitro using synthetic supramolecular synthons. Here, using the basic component of nucleic acids and lipids, we describe a simple platform to build hierarchical assemblies of two component systems, which show an interesting self-sorting and co-assembling behavior. The assembling systems are made of a combination of amphiphilic purine and pyrimidine ribonucleoside-fatty acid conjugates (nucleolipids), which were prepared by coupling fatty acid acyl chains of different lengths at the 2'-O- and 3'-O-positions of the ribose sugar. Individually, the purine and pyrimidine nucleolipids adopt a distinct morphology, which either supports or does not support the gelation process. Interestingly, due to the subtle difference in the order of formation and stability of individual assemblies, different mixtures of supramolecular synthons and complementary ribonucleosides exhibit a cooperative and disruptive self-sorting and co-assembling behavior. A systematic morphological analysis combined with single crystal X-ray crystallography, powder X-ray diffraction (PXRD), NMR, CD, rheological and 3D X-ray microtomography studies provided insights into the mechanism of the self-sorting and co-assembling process. Taken together, this approach has enabled the construction of assemblies with unique higher ordered architectures and gels with remarkably enhanced mechanical strength that cannot be derived from the respective single component systems.
Collapse
Affiliation(s)
- Ashok Nuthanakanti
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune, Dr Homi Bhabha Road, Pashan, Pune 411008, India.
| | | | | | | | | |
Collapse
|
9
|
Induced Aggregation of Epoxy Polysiloxane Grafted Gelatin by Organic Solvent and Green Application. Molecules 2019; 24:molecules24122264. [PMID: 31216672 PMCID: PMC6630429 DOI: 10.3390/molecules24122264] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 06/17/2019] [Accepted: 06/17/2019] [Indexed: 12/13/2022] Open
Abstract
In this paper, we studied the aggregation of amphiphilic polymer epoxy-terminated polydimethylsiloxane (PDMS-E) grafted gelatin (PGG) in water induced by methanol, ethanol, 2-propanol, acetone, tetrahydrofuran (THF), and 1,4-dioxane. The aggregation pattern of the polymer was monitored by infrared spectroscopy, X-ray diffraction, transmission electron microscopy, and scanning electron microscopy. It was revealed that the aggregate morphology showed clear dependence on the solvent polarity. The PGG aggregates had regular spherical morphology in polar solvents, including water, methanol, ethanol, 2-propanol, and acetone. The coating performance was evaluated by X-ray photoelectron spectroscopy and friction experiment, and PGG and acetone coating exhibited excellent coating performance on the surface of pigskin. Gel was formed in acetone and tetrahydrofuran (THF) with the slow evaporation of solvent, and this property can possibly be applied to industrial sewage treatment. White precipitate and soft film were formed in non-polar 1,4-dioxane.
Collapse
|
10
|
Jin X, Yang D, Jiang Y, Duan P, Liu M. Light-triggered self-assembly of a cyanostilbene-conjugated glutamide from nanobelts to nanotoroids and inversion of circularly polarized luminescence. Chem Commun (Camb) 2018; 54:4513-4516. [DOI: 10.1039/c8cc00893k] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
UV irradiation regulated transformation of chiral nanostructures and inversion of circularly polarized luminescence.
Collapse
Affiliation(s)
- Xue Jin
- CAS Center for Excellence in Nanoscience
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication
- Division of Nanophotonics
- National Center for Nanoscience and Technology (NCNST)
- Beijing 100190
| | - Dong Yang
- Beijing National Laboratory for Molecular Science
- CAS Key Laboratory of Colloid Interface and Chemical Thermodynamics
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
| | - Yuqian Jiang
- CAS Center for Excellence in Nanoscience
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication
- Division of Nanophotonics
- National Center for Nanoscience and Technology (NCNST)
- Beijing 100190
| | - Pengfei Duan
- CAS Center for Excellence in Nanoscience
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication
- Division of Nanophotonics
- National Center for Nanoscience and Technology (NCNST)
- Beijing 100190
| | - Minghua Liu
- CAS Center for Excellence in Nanoscience
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication
- Division of Nanophotonics
- National Center for Nanoscience and Technology (NCNST)
- Beijing 100190
| |
Collapse
|
11
|
Chen S, An Z, Tong X, Chen Y, Ma M, Shi Y, Wang X. Stronger Intermolecular Forces or Closer Molecular Spacing? Key Impact Factor Research of Gelator Self-Assembly Mechanism. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:14389-14395. [PMID: 29172526 DOI: 10.1021/acs.langmuir.7b03873] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The benzene ring of low-molecular-weight gelators provides strong intermolecular forces but increases molecular spacing during self-assembly. To explore both of the above influences on the gel properties, we synthesize two gelators (Glu-CBZ and Glu-DPA) consisting of the same terminal long side chain but different aliphatic functional groups. The aliphatic functional groups are carbobenzoxy group and diphenyl phosphate group. The self-assembly driving forces, self-organization patterns, network morphologies, rheological properties, and the influences of solvents are researched through 1H NMR spectra, Fourier transform infrared spectra, field-emission scanning electron microscopy images, rheological characterizations curves, tube-inversion experiment, and calculation of van't Hoff plots. The results show that the carbobenzoxy group of Glu-CBZ makes molecules pack more tightly such that it improves the gel properties during static equilibrium. Whereas the diphenyl phosphate group of Glu-DPA provides stronger intermolecular forces, performing outstandingly during dynamic equilibrium. It is advantageous to further investigate the competitive relationship in gel system between the increased number of functional groups and the consequent steric effect.
Collapse
Affiliation(s)
- Si Chen
- College of Materials Science and Engineering, Zhejiang University of Technology , Hangzhou 310014, China
| | - Zhihang An
- College of Materials Science and Engineering, Zhejiang University of Technology , Hangzhou 310014, China
| | - Xiaoqian Tong
- College of Materials Science and Engineering, Zhejiang University of Technology , Hangzhou 310014, China
| | - Yining Chen
- College of Materials Science and Engineering, Zhejiang University of Technology , Hangzhou 310014, China
| | - Meng Ma
- College of Materials Science and Engineering, Zhejiang University of Technology , Hangzhou 310014, China
| | - Yanqin Shi
- College of Materials Science and Engineering, Zhejiang University of Technology , Hangzhou 310014, China
| | - Xu Wang
- College of Materials Science and Engineering, Zhejiang University of Technology , Hangzhou 310014, China
| |
Collapse
|
12
|
Solvent-dependent self-assembly and morphological transition of low-molecular-weight azobenzene organogel. Tetrahedron 2017. [DOI: 10.1016/j.tet.2017.05.027] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
13
|
Nuthanakanti A, Srivatsan SG. Surface-Tuned and Metal-Ion-Responsive Supramolecular Gels Based on Nucleolipids. ACS APPLIED MATERIALS & INTERFACES 2017; 9:22864-22874. [PMID: 28614659 DOI: 10.1021/acsami.7b06037] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Supramolecular synthons based on nucleic acid components, nucleobases and nucleosides, and their derivatives have been highly useful in constructing wide varieties of nanoarchitectures. While most of the design strategies have focused on developing biocompatible delivery vehicles, the potential of nucleoside hybrids in assembling smart materials with tunable and sensing properties, though challenging, is gaining significant attention. Here, we describe the development of novel functional materials with surface tunability and metal-ion responsiveness by using simple nucleolipid supramolecular synthons derived by attaching various fatty acids to the 3'-O or 3',5'-O positions of the sugar residue of thymidine nucleoside. 3',5'-O-Difatty acid-substituted thymidines formed typical organogels in pure organic solvents, whereas, 3'-O-monofatty acid-substituted thymidine nucleolipids formed water-induced gels. A detailed morphological and structural analysis using microscopy, single-crystal and powder X-ray diffraction, and NMR techniques clearly revealed the molecular interactions invoked by nucleobase, sugar, fatty acid chain, and water in setting up the path for hierarchical self-assembly and gelation of thymidine nucleolipids. Interestingly, the surface property of the xerogel film fabricated using 3'-O-monosubstituted nucleolipid gels could be switched from highly hydrophobic to hydrophilic and vice versa depending on the nature of the organic solvent-water mixture used in the gelation process. On the contrary, the gelation process of disubstituted thymidine nucleolipids was highly sensitive to the presence of Hg2+ ions as the metal ion formed a T-Hg-T base pair, thereby disrupting the H-bonding interactions that favored the gelation. Taken together, straightforward synthesis and modification-dependent gelation behavior, surface tunability, and metal-ion responsiveness underscore the potential of these supramolecular nucleolipid synthons in constructing novel functional materials.
Collapse
Affiliation(s)
- Ashok Nuthanakanti
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) , Pune Dr. Homi Bhabha Road, Pashan, Pune 411008, India
| | - Seergazhi G Srivatsan
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) , Pune Dr. Homi Bhabha Road, Pashan, Pune 411008, India
| |
Collapse
|
14
|
Liu Y, Jia Y, Zhu E, Liu L, Qiao Y, Che G, Yin B. Supramolecular helical nanofibers formed by an achiral monopyrrolotetrathiafulvalene derivative: water-triggered gelation and chiral evolution. NEW J CHEM 2017. [DOI: 10.1039/c7nj02215h] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An achiral MPTTF-based gelator could form left- and right-handed supramolecular assemblies in pure DMF, whereas it turned into an opaque gel with right-handed nanofibers after adding small amounts of water.
Collapse
Affiliation(s)
- Yucun Liu
- Key Laboratory of Preparation and Application of Environmental Friendly Materials (Jilin Normal University)
- Ministry of Education
- Changchun
- China
- College of Chemistry
| | - Yu Jia
- Key Laboratory of Preparation and Application of Environmental Friendly Materials (Jilin Normal University)
- Ministry of Education
- Changchun
- China
- College of Chemistry
| | - Enwei Zhu
- Key Laboratory of Preparation and Application of Environmental Friendly Materials (Jilin Normal University)
- Ministry of Education
- Changchun
- China
- College of Chemistry
| | - Lihui Liu
- Key Laboratory of Preparation and Application of Environmental Friendly Materials (Jilin Normal University)
- Ministry of Education
- Changchun
- China
- College of Chemistry
| | - Yu Qiao
- Key Laboratory of Preparation and Application of Environmental Friendly Materials (Jilin Normal University)
- Ministry of Education
- Changchun
- China
- College of Chemistry
| | - Guangbo Che
- Key Laboratory of Preparation and Application of Environmental Friendly Materials (Jilin Normal University)
- Ministry of Education
- Changchun
- China
- College of Chemistry
| | - Bingzhu Yin
- Key Laboratory of Natural Resources of Changbai Mountain & Functional Molecules
- Yanbian University
- Ministry of Education
- Yanji
- China
| |
Collapse
|