1
|
Nishizawa Y, Sato Y, Namioka R, Suzuki D. Interfacial Electrokinetic Phenomena of Thermoresponsive Microgels with a Spatial Gradient of Charged Groups. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:5647-5656. [PMID: 39989224 DOI: 10.1021/acs.langmuir.5c00047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
When functional microgels are synthesized via radical copolymerization, spatial gradients of functional groups often form due to a difference in reactivity ratios between monomer and comonomer. In this study, we systematically investigated the effect of a decreasing gradient of charged groups from the core to the shell of microgels on their surface properties, which are crucial for colloidal particles, through the analysis of interfacial electrokinetic phenomena using Ohshima's equation. A series of electrophoretic analyses combined with dynamic light scattering revealed that the surface of the microgels undergoes a multistep collapse during the particle-size reduction due to dehydration upon increasing the temperature. Furthermore, the more complicated hierarchical gradient of charged groups within the microgels was elucidated by quantitatively evaluating changes in surface properties during precipitation polymerization based on interfacial electrokinetic phenomena.
Collapse
Affiliation(s)
- Yuichiro Nishizawa
- Graduate School of Environmental, Life, Natural Sciences and Technology, Okayama University, 3-1-1 Tsushimanaka, Kita-ku, Okayama 700-8530, Japan
- Graduate School of Textile Science & Technology, Shinshu University, 3-15-1 Tokida, Ueda, Nagano 386-8567, Japan
| | - Yuji Sato
- Graduate School of Environmental, Life, Natural Sciences and Technology, Okayama University, 3-1-1 Tsushimanaka, Kita-ku, Okayama 700-8530, Japan
- Graduate School of Textile Science & Technology, Shinshu University, 3-15-1 Tokida, Ueda, Nagano 386-8567, Japan
| | - Ryuji Namioka
- Graduate School of Textile Science & Technology, Shinshu University, 3-15-1 Tokida, Ueda, Nagano 386-8567, Japan
| | - Daisuke Suzuki
- Graduate School of Environmental, Life, Natural Sciences and Technology, Okayama University, 3-1-1 Tsushimanaka, Kita-ku, Okayama 700-8530, Japan
- Graduate School of Textile Science & Technology, Shinshu University, 3-15-1 Tokida, Ueda, Nagano 386-8567, Japan
| |
Collapse
|
2
|
Minato H, Ushida S, Yokouchi K, Suzuki D. Multi-layer core/shell microgels with internal complexity and their nanocomposites. Chem Commun (Camb) 2024; 60:1630-1633. [PMID: 38234227 DOI: 10.1039/d3cc05579e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
In this study, we show that core/shell (CS) microgels with multiple layers can be created via a one-pot precipitation polymerization, in which monomers are added to the reaction flask multiple times once most of the previous monomer has been consumed. The complex internal structures of the microgels were examined using a combination of scattering and microscopy techniques.
Collapse
Affiliation(s)
- Haruka Minato
- Graduate School of Textile Science & Technology, Shinshu University, 3-15-1 Tokida, Ueda, Nagano 386-8567, Japan.
| | - Satoki Ushida
- Graduate School of Textile Science & Technology, Shinshu University, 3-15-1 Tokida, Ueda, Nagano 386-8567, Japan.
| | - Kentaro Yokouchi
- Graduate School of Textile Science & Technology, Shinshu University, 3-15-1 Tokida, Ueda, Nagano 386-8567, Japan.
| | - Daisuke Suzuki
- Graduate School of Textile Science & Technology, Shinshu University, 3-15-1 Tokida, Ueda, Nagano 386-8567, Japan.
- Research Initiative for Supra-Materials, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, 3-15-1 Tokida, Ueda, Nagano 386-8567, Japan
| |
Collapse
|
3
|
Nishizawa Y, Inui T, Namioka R, Uchihashi T, Watanabe T, Suzuki D. Clarification of Surface Deswelling of Thermoresponsive Microgels by Electrophoresis. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:16084-16093. [PMID: 36441944 DOI: 10.1021/acs.langmuir.2c02742] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Although many investigations of thermoresponsive microgels have been reported, their surface properties, which are crucial in colloid science, are still not fully understood. In this study, microgels with surface-localized charged groups were synthesized by precipitation polymerization, and their electrophoretic behaviors were analyzed using a modified version of Ohshima's equation to obtain two surface properties of the soft particles: the softness parameter and the surface charge density. This systematic evaluation allows us to discuss the thermoresponsiveness of the overall microgels and their surfaces separately. Furthermore, the validity of the surface properties obtained from electrophoresis was verified by comparing them with the results of seeded emulsion polymerization in the presence of the microgels and the force-indentation curves obtained via high-speed atomic force microscopy (HS-AFM).
Collapse
Affiliation(s)
- Yuichiro Nishizawa
- Graduate School of Textile Science & Technology, Shinshu University, 3-15-1 Tokida, Ueda, Nagano386-8567, Japan
| | - Takumi Inui
- Graduate School of Textile Science & Technology, Shinshu University, 3-15-1 Tokida, Ueda, Nagano386-8567, Japan
| | - Ryuji Namioka
- Graduate School of Textile Science & Technology, Shinshu University, 3-15-1 Tokida, Ueda, Nagano386-8567, Japan
| | - Takayuki Uchihashi
- Department of Physics and Structural Biology Research Center, Graduate School of Science, Nagoya University, Furo-cho, Chiksusa-ku, Nagoya, Aichi464-8602, Japan
- Exploratory Research Center on Life and Living Systems, National Institutes of Natural Science, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi444-8787, Japan
| | - Takumi Watanabe
- Graduate School of Textile Science & Technology, Shinshu University, 3-15-1 Tokida, Ueda, Nagano386-8567, Japan
| | - Daisuke Suzuki
- Graduate School of Textile Science & Technology, Shinshu University, 3-15-1 Tokida, Ueda, Nagano386-8567, Japan
- Research Initiative for Supra-Materials, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, 3-15-1 Tokida, Ueda, Nagano386-8567, Japan
| |
Collapse
|
4
|
Preparation of poly (acrylic acid) microgels by alcohol type cross-linkers and a comparison with other cross-linking methods. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-021-03878-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
5
|
Hussain I, Shahid M, Ali F, Irfan A, Farooqi ZH, Begum R. Methacrylic acid based microgels and hybrid microgels. REV CHEM ENG 2022. [DOI: 10.1515/revce-2021-0075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Methacrylic acid based microgels have got much consideration in the last two decades because of their potential uses in different fields owing to their responsive behaviour towards external stimuli. Synthesis, properties and uses of methacrylic acid based microgels and their hybrids have been critically reviewed in this article. With minute change in external stimuli such as pH and ionic strength of medium, these microgels show quick swelling/deswelling reversibly. The methacrylic acid based microgels have been widely reported for applications in the area of nanotechnology, drug delivery, sensing and catalysis due to their responsive behaviour. A critical review of current research development in this field along with upcoming perception is presented here. This discussion is concluded with proposed probable future studies for additional growth in this field of research.
Collapse
Affiliation(s)
- Iftikhar Hussain
- School of Chemistry , University of the Punjab , New Campus , Lahore 54590 , Pakistan
| | - Muhammad Shahid
- School of Chemistry , University of the Punjab , New Campus , Lahore 54590 , Pakistan
| | - Faisal Ali
- School of Chemistry , University of the Punjab , New Campus , Lahore 54590 , Pakistan
- Department of Chemistry , The University of Lahore , 1-KM Defence road , Main Campus , Lahore 53700 , Pakistan
| | - Ahmad Irfan
- Research Center for Advanced Materials Science , King Khalid University , P.O. Box 9004 , Abha 61413 , Saudi Arabia
- Department of Chemistry, Faculty of Science , King Khalid University , P.O. Box 9004 , Abha 61413 , Saudi Arabia
| | - Zahoor H. Farooqi
- School of Chemistry , University of the Punjab , New Campus , Lahore 54590 , Pakistan
| | - Robina Begum
- School of Chemistry , University of the Punjab , New Campus , Lahore 54590 , Pakistan
| |
Collapse
|
6
|
|
7
|
Nishizawa Y, Watanabe T, Noguchi T, Takizawa M, Song C, Murata K, Minato H, Suzuki D. Durable gelfoams stabilized by compressible nanocomposite microgels. Chem Commun (Camb) 2022; 58:12927-12930. [DOI: 10.1039/d2cc04993g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Compressible nanocomposite microgels can stabilize the air/water interfaces of gas bubbles for several months, which affords durable gelfoams.
Collapse
Affiliation(s)
- Yuichiro Nishizawa
- Graduate School of Textile Science & Technology, Shinshu University, Japan
| | - Takumi Watanabe
- Graduate School of Textile Science & Technology, Shinshu University, Japan
| | - Tetsuya Noguchi
- Graduate School of Textile Science & Technology, Shinshu University, Japan
| | - Masaya Takizawa
- Graduate School of Textile Science & Technology, Shinshu University, Japan
| | - Chihong Song
- National Institute for Physiological Sciences and Exploratory Research Center on Life and Living Systems, National Institutes of Natural Sciences, Japan
| | - Kazuyoshi Murata
- National Institute for Physiological Sciences and Exploratory Research Center on Life and Living Systems, National Institutes of Natural Sciences, Japan
| | - Haruka Minato
- Graduate School of Textile Science & Technology, Shinshu University, Japan
| | - Daisuke Suzuki
- Graduate School of Textile Science & Technology, Shinshu University, Japan
- Research Initiative for Supra-Materials, Interdisciplinary Cluster for Cutting Edge Research Institution, Shinshu University, Japan
| |
Collapse
|
8
|
Affiliation(s)
- Yuichiro Nishizawa
- Graduate School of Textile Science & Technology, Shinshu University, 3-15-1 Tokida, Ueda, Nagano 386-8567, Japan
| | - Kenshiro Honda
- Graduate School of Textile Science & Technology, Shinshu University, 3-15-1 Tokida, Ueda, Nagano 386-8567, Japan
| | - Daisuke Suzuki
- Graduate School of Textile Science & Technology, Shinshu University, 3-15-1 Tokida, Ueda, Nagano 386-8567, Japan
- Research Initiative for Supra-Materials, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, 3-15-1 Tokida, Ueda, Nagano 386-8567, Japan
| |
Collapse
|
9
|
Watanabe T, Nishizawa Y, Minato H, Song C, Murata K, Suzuki D. Hydrophobic Monomers Recognize Microenvironments in Hydrogel Microspheres during Free-Radical-Seeded Emulsion Polymerization. Angew Chem Int Ed Engl 2020; 59:8849-8853. [PMID: 32232936 DOI: 10.1002/anie.202003493] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 03/25/2020] [Indexed: 11/10/2022]
Abstract
The three-dimensional structure of nanocomposite microgels was precisely determined by cryo-electron micrography. Several nanocomposite microgels that differ with respect to their nanocomposite structure, which were obtained from seeded emulsion polymerization in the presence of microgels, were used as model nanocomposite materials for cryo-electron micrography. The obtained three-dimensional segmentation images of these nanocomposite microgels provide important insights into the interactions between the hydrophobic monomers and the microgels, that is, hydrophobic styrene monomers recognize molecular-scale differences in polarity within the microgels during the emulsion polymerization. This result led to the formation of unprecedented multi-layered nanocomposite microgels, which promise substantial potential in colloidal applications.
Collapse
Affiliation(s)
- Takumi Watanabe
- Graduate School of Textile Science & Technology, Shinshu University, 3-15-1 Tokida Ueda, Nagano, 386-8567, Japan
| | - Yuichiro Nishizawa
- Graduate School of Textile Science & Technology, Shinshu University, 3-15-1 Tokida Ueda, Nagano, 386-8567, Japan
| | - Haruka Minato
- Graduate School of Textile Science & Technology, Shinshu University, 3-15-1 Tokida Ueda, Nagano, 386-8567, Japan
| | - Chihong Song
- Department National Institute for Physiological Sciences, 38 Nishigonaka, Okazaki, Aichi, 444-8585, Japan
| | - Kazuyoshi Murata
- Department National Institute for Physiological Sciences, 38 Nishigonaka, Okazaki, Aichi, 444-8585, Japan
| | - Daisuke Suzuki
- Graduate School of Textile Science & Technology, Shinshu University, 3-15-1 Tokida Ueda, Nagano, 386-8567, Japan.,Research Initiative for Supra-Materials, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, 3-15-1 Tokida Ueda, Nagano, 386-8567, Japan
| |
Collapse
|
10
|
Minami S, Yamamoto A, Oura S, Watanabe T, Suzuki D, Urayama K. Criteria for colloidal gelation of thermo-sensitive poly(N-isopropylacrylamide) based microgels. J Colloid Interface Sci 2020; 568:165-175. [PMID: 32088447 DOI: 10.1016/j.jcis.2020.02.047] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 02/12/2020] [Accepted: 02/13/2020] [Indexed: 11/24/2022]
|
11
|
Watanabe T, Nishizawa Y, Minato H, Song C, Murata K, Suzuki D. Hydrophobic Monomers Recognize Microenvironments in Hydrogel Microspheres during Free‐Radical‐Seeded Emulsion Polymerization. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202003493] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Takumi Watanabe
- Graduate School of Textile Science & Technology Shinshu University 3-15-1 Tokida Ueda Nagano 386-8567 Japan
| | - Yuichiro Nishizawa
- Graduate School of Textile Science & Technology Shinshu University 3-15-1 Tokida Ueda Nagano 386-8567 Japan
| | - Haruka Minato
- Graduate School of Textile Science & Technology Shinshu University 3-15-1 Tokida Ueda Nagano 386-8567 Japan
| | - Chihong Song
- Department National Institute for Physiological Sciences 38 Nishigonaka Okazaki Aichi 444-8585 Japan
| | - Kazuyoshi Murata
- Department National Institute for Physiological Sciences 38 Nishigonaka Okazaki Aichi 444-8585 Japan
| | - Daisuke Suzuki
- Graduate School of Textile Science & Technology Shinshu University 3-15-1 Tokida Ueda Nagano 386-8567 Japan
- Research Initiative for Supra-Materials Interdisciplinary Cluster for Cutting Edge Research Shinshu University 3-15-1 Tokida Ueda Nagano 386-8567 Japan
| |
Collapse
|
12
|
Abstract
The strategies used for the preparation of raspberry-like polymer composite particles are summarized comprehensively.
Collapse
Affiliation(s)
- Hua Zou
- School of Materials Science and Engineering
- University of Shanghai for Science and Technology
- Shanghai 200093
- China
| | - Shuxia Zhai
- School of Materials Science and Engineering
- University of Shanghai for Science and Technology
- Shanghai 200093
- China
| |
Collapse
|
13
|
Minami S, Suzuki D, Urayama K. Rheological aspects of colloidal gels in thermoresponsive microgel suspensions: formation, structure, and linear and nonlinear viscoelasticity. Curr Opin Colloid Interface Sci 2019. [DOI: 10.1016/j.cocis.2019.04.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
14
|
Minato H, Takizawa M, Hiroshige S, Suzuki D. Effect of Charge Groups Immobilized in Hydrogel Microspheres during the Evaporation of Aqueous Sessile Droplets. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:10412-10423. [PMID: 31299157 DOI: 10.1021/acs.langmuir.9b01933] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In contrast to conventional dispersions of solid microspheres, dilute dispersions containing soft hydrogel microspheres (microgels) exhibit unique drying behavior due to their selective adsorption at the air/water interface of sessile droplets. So far, the impact of the size, chemical composition, and softness (degree of cross-linking) of microgels has been investigated. In the present study, we present the impact of charged groups introduced in the microgels on the adsorption and assembly behavior of these microgels at the air/water interface using a series of microgels with different amounts and distribution of charged groups. A series of experiments under different conditions (pH value and ionic strength) afforded information that clarified the adsorption, interpenetration, and deformation behavior of such charged microgels at the air/water interface. The results indicate that the adsorption and the deformation of charged microgels at the air/water interface are suppressed by the presence of charged groups. Moreover, charged microgels adsorbed at the interface are more dynamic and not highly entangled with each other; i.e., even though the more dynamic charged microgels are arranged at the interface, these arranged structures are disrupted upon transferring onto the solid substrates. Our findings of this study can be expected to promote the further development of applications, e.g., foams and emulsions stabilized by microgels, that crucially requires an in-depth understanding of the adsorption behavior of charged microgels at the air/water interface such as coatings.
Collapse
|
15
|
OURA S, WATANABE T, MINATO H, SUZUKI D. Impact of Particle Softness on Segregation of Binary Colloidal Suspensions Flowing in a Microchannel. KOBUNSHI RONBUNSHU 2019. [DOI: 10.1295/koron.2019-0003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Shun OURA
- Graduate School of Textile Science & Technology, Shinshu University
| | - Takumi WATANABE
- Graduate School of Textile Science & Technology, Shinshu University
| | - Haruka MINATO
- Graduate School of Textile Science & Technology, Shinshu University
| | - Daisuke SUZUKI
- Graduate School of Textile Science & Technology, Shinshu University
- Division of Smart Textiles, Institute for Fiber Engineering, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University
| |
Collapse
|
16
|
Watanabe T, Takizawa M, Jiang H, Ngai T, Suzuki D. Hydrophobized nanocomposite hydrogel microspheres as particulate stabilizers for water-in-oil emulsions. Chem Commun (Camb) 2019; 55:5990-5993. [DOI: 10.1039/c9cc01497g] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Hydrophobized nanocomposite microgels can serve as particulate emulsifiers for water-in-oil (W/O) emulsions with different types of oils, including non-polar oils, which usually do not form W/O emulsions with conventional microgels.
Collapse
Affiliation(s)
- Takumi Watanabe
- Graduate School of Textile Science & Technology, Shinshu University
- Nagano 386-8567
- Japan
| | - Masaya Takizawa
- Graduate School of Textile Science & Technology, Shinshu University
- Nagano 386-8567
- Japan
| | - Hang Jiang
- Department of Chemistry, The Chinese University of Hong Kong
- Shatin
- Hong Kong
| | - To Ngai
- Department of Chemistry, The Chinese University of Hong Kong
- Shatin
- Hong Kong
| | - Daisuke Suzuki
- Graduate School of Textile Science & Technology, Shinshu University
- Nagano 386-8567
- Japan
- Division of Smart Textiles, Institute for Fiber Engineering, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University
- Nagano 386-8567
| |
Collapse
|
17
|
Matsui S, Inui K, Kumai Y, Yoshida R, Suzuki D. Autonomously Oscillating Hydrogel Microspheres with High-Frequency Swelling/Deswelling and Dispersing/Flocculating Oscillations. ACS Biomater Sci Eng 2018; 5:5615-5622. [DOI: 10.1021/acsbiomaterials.8b00850] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Shusuke Matsui
- Graduate School of Textile Science and Technology, Shinshu University, 3-15-1 Tokida, Ueda, Nagano 386-8567, Japan
| | - Kohei Inui
- Graduate School of Textile Science and Technology, Shinshu University, 3-15-1 Tokida, Ueda, Nagano 386-8567, Japan
| | - Yuki Kumai
- Graduate School of Textile Science and Technology, Shinshu University, 3-15-1 Tokida, Ueda, Nagano 386-8567, Japan
| | - Ryo Yoshida
- Department of Materials Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku 113-8656, Japan
| | - Daisuke Suzuki
- Graduate School of Textile Science and Technology, Shinshu University, 3-15-1 Tokida, Ueda, Nagano 386-8567, Japan
- Division of Smart Textiles, Institute for Fiber Engineering, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, 3-15-1 Tokida, Ueda, Nagano 386-8567, Japan
| |
Collapse
|
18
|
Watanabe T, Song C, Murata K, Kureha T, Suzuki D. Seeded Emulsion Polymerization of Styrene in the Presence of Water-Swollen Hydrogel Microspheres. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:8571-8580. [PMID: 29957963 DOI: 10.1021/acs.langmuir.8b01047] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
In a previous study, we have ascertained that the charge distribution in hydrogel microspheres (microgels) plays a crucial role in controlling the nanocomposite structure of the polystyrene obtained from the seeded emulsion polymerization (SEP) of styrene in the presence of microgels. However, all these polymerizations were conducted at high temperature, where most of these microgels were dehydrated and deswollen. In the present study, we initially verified that the nanocomposite microgels can be synthesized even when the seed microgels are swollen and hydrated during the SEP of styrene. These highly swollen microgels were used as the nucleation sites for the polystyrene, and subsequently the propagation of the hydrophobic polystyrenes proceeded within water-swollen microgels.
Collapse
Affiliation(s)
| | - Chihong Song
- National Institute for Physiological Sciences , 38 Nishigonaka , Okazaki , Aichi 444-8585 , Japan
| | - Kazuyoshi Murata
- National Institute for Physiological Sciences , 38 Nishigonaka , Okazaki , Aichi 444-8585 , Japan
| | | | | |
Collapse
|
19
|
Takizawa M, Sazuka Y, Horigome K, Sakurai Y, Matsui S, Minato H, Kureha T, Suzuki D. Self-Organization of Soft Hydrogel Microspheres during the Evaporation of Aqueous Droplets. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:4515-4525. [PMID: 29558799 DOI: 10.1021/acs.langmuir.8b00230] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The unique drying behavior of aqueous droplets that contain soft hydrogel microspheres (microgels) upon evaporation was systematically investigated. Compared to the ring-shaped deposits that are obtained from drying solid microsphere dispersions, we have previously reported that uniformly ordered thin films are obtained from drying ∼1.2 μm-sized poly( N-isopropyl acrylamide) microgel dispersions. In the present study, we thoroughly investigated several hitherto unexplored aspects of this self-organization, such as the effect of the size, chemical structure, and "softness" of the microgels (or rigid microspheres). For the macro- and microscopic observation of the drying behavior of various microsphere dispersions, an optical microscope and a digital camera were employed. The results suggested that the convection in the aqueous droplets plays an important role for the transportation of the microgels to the air/water interface, where the softness and surface activity of the microgels strongly affects the adsorption of the microgels. On the basis of these discoveries, a design concept for the rapid formation of uniform thin films of soft microgels was proposed.
Collapse
|
20
|
Chen R, Ren N, Jin X, Zhu X. Role Transformation of Poly( N-isopropylacrylamide) Microgels from Stabilizer to Seed in Dispersion Polymerization by Controlling the Water Content in Methanol-Water Mixture. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:3420-3425. [PMID: 29125305 DOI: 10.1021/acs.langmuir.7b03381] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Poly( N-isopropylacrylamide) (PNIPAM)-based ionic microgels with different diameters were first prepared and then used as particulate stabilizer or seed in dispersion polymerization of styrene. The role of PNIPAM-based ionic microgels could be transformed from particulate stabilizer to seed by controlling the water content in methanol-water mixture. Generally, PNIPAM-based ionic microgels served as particulate stabilizer in methanol in the absence of water, leading to the formation of spherical polystyrene nanoparticles. However, they turned into seeds when water was added into the methanol solution, with the formation of octopus-like nanoparticles. Further study demonstrated that the mechanism for this role transition was related to the special thermosensitivity of PNIPAM microgels in methanol-water mixture. They lost their thermosensitivity in pure methanol solution but restored their thermosensitivity when increasing the water content in methanol-water mixture.
Collapse
Affiliation(s)
- Rui Chen
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites , Shanghai Jiao Tong University , 800 Dongchuan Road , Shanghai 200240 , China
| | - Ning Ren
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites , Shanghai Jiao Tong University , 800 Dongchuan Road , Shanghai 200240 , China
| | - Xin Jin
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites , Shanghai Jiao Tong University , 800 Dongchuan Road , Shanghai 200240 , China
| | - Xinyuan Zhu
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites , Shanghai Jiao Tong University , 800 Dongchuan Road , Shanghai 200240 , China
| |
Collapse
|
21
|
Kureha T, Suzuki D. Nanocomposite Microgels for the Selective Separation of Halogen Compounds from Aqueous Solution. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:837-846. [PMID: 28618227 DOI: 10.1021/acs.langmuir.7b01485] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Nanocomposite microgels that selectively adsorb and release halogen compounds were developed. These nanocomposite microgels consist of poly(2-methoxyethyl acrylate) (pMEA) and a poly(oligo ethylene glycol methacrylate) hydrogel matrix. Therefore, the methoxy groups of the former are crucial for the halogen bonding, while the presence of the latter adds colloidal stability and allows controlled uptake/release of the halogen compounds. Such nanocomposite microgels may not only be used as dispersed carriers, but also in films and columnar formations. Thus, these unprecedented polymer/polymer nanocomposite microgels resolve a variety of problems associated with, e.g., the removal of halogen compounds from wastewater, or with the delivery of halogen-containing drugs.
Collapse
Affiliation(s)
- Takuma Kureha
- Graduate School of Textile Science & Technology, Shinshu University , 3-15-1 Tokida, Ueda 386-8567, Japan
| | - Daisuke Suzuki
- Graduate School of Textile Science & Technology, Shinshu University , 3-15-1 Tokida, Ueda 386-8567, Japan
- Division of Smart Textiles, Institute for Fiber Engineering, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University , 3-15-1 Tokida, Ueda 386-8567, Japan
| |
Collapse
|
22
|
Suzuki D, Horigome K, Kureha T, Matsui S, Watanabe T. Polymeric hydrogel microspheres: design, synthesis, characterization, assembly and applications. Polym J 2017. [DOI: 10.1038/pj.2017.39] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|