1
|
Rothwell KA, ThomasArrigo LK, Kaegi R, Kretzschmar R. Low molecular weight organic acids stabilise siderite against oxidation and influence the composition of iron (oxyhydr)oxide oxidation products. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2025; 27:133-145. [PMID: 39611820 PMCID: PMC11606451 DOI: 10.1039/d4em00363b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 11/21/2024] [Indexed: 11/30/2024]
Abstract
Siderite (FeCO3) is an important reservoir of mineral-bound ferrous iron in non-sulfidic, reducing soils and sediments. It is redox sensitive, and its oxidation may facilitate the reduction of a range of pollutants, produce reactive oxygen species, or induce the formation of oxidation products with large surface areas for contaminant sorption. However, there is currently a limited understanding of the stability of siderite in complex environments such as soils and sediments. Here, we use a series of batch experiments complemented with thorough characterisation of mineral oxidation products to investigate the oxidation of siderite in the presence and absence of the low molecular weight organic acids (LMWOAs) citrate, tiron, salicylate, and EDTA as analogues for naturally occurring compounds or functional groups of natural organic matter that ubiquitously coexist with siderite. Our results show that siderite alone at pH 7.5 was completely oxidised to form ferrihydrite, nanocrystalline lepidocrocite, and nanocrystalline goethite in less than 6 hours. However, in the presence of LMWOAs, up to 48% of the siderite was preserved for more than 500 hours and the formation of goethite was inhibited in favour of ferrihydrite and lepidocrocite. Using experimental data from electron microscopy and chemical speciation modelling, we hypothesise that the siderite may be preserved through the formation of an Fe(III)-passivation layer at the siderite surface.
Collapse
Affiliation(s)
| | - Laurel K ThomasArrigo
- Environmental Chemistry Group, Institute of Chemistry, University of Neuchâtel, Avenue de Bellevaux 51, 2000 Neuchâtel, Switzerland
| | - Ralf Kaegi
- EAWAG, Swiss Federal Institute of Aquatic Science and Technology, Überlandstrasse 133, 8600 Dübendorf, Switzerland
| | - Ruben Kretzschmar
- Soil Chemistry Group, Institute of Biogeochemistry and Pollutant Dynamics, ETH Zurich, CHN, Universitätstrasse 16, 8092 Zurich, Switzerland
| |
Collapse
|
2
|
Klauke LR, Kampferbeck M, Holzapfel M, Feliu N, Sochor B, Koyiloth Vayalil S, Meyer A, Vossmeyer T. Supraparticles from Cubic Iron Oxide Nanoparticles: Synthesis, Polymer Encapsulation, Functionalization, and Magnetic Properties. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:22762-22772. [PMID: 39423348 PMCID: PMC11526376 DOI: 10.1021/acs.langmuir.4c02753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 10/08/2024] [Accepted: 10/09/2024] [Indexed: 10/21/2024]
Abstract
Supraparticles (SPs) consisting of superparamagnetic iron oxide nanoparticles (SPIONs) are of great interest for biomedical applications and magnetic separation. To enable their functionalization with biomolecules and to improve their stability in aqueous dispersion, polymer shells are grown on the SPs' surface. Robust polymer encapsulation and functionalization is achieved via atom transfer radical polymerization (ATRP), improving the reaction control compared to free radical polymerizations. This study presents the emulsion-based assembly of differently sized cubic SPIONs (12-30 nm) into SPs with diameters ranging from ∼200 to ∼400 nm using dodecyltrimethylammonium bromide (DTAB) as the surfactant. The successful formation of well-defined spherical SPs depends upon the method used for mixing the SPION dispersion with the surfactant solution and requires the precise adjustment of the surfactant concentration. After purification, the SPs are encapsulated by growing surface-grafted polystyrene shells via activators generated by electron transfer (AGET) ATRP. The polymer shell can be decorated with functional groups (azide and carboxylate) using monomer blends for the polymerization reaction. When the amount of the monomer is varied, the shell thickness as well as the interparticle distances between the encapsulated SPIONs can be tuned with nanometer-scale precision. Small-angle X-ray scattering (SAXS) reveals that cubic SPIONs form less ordered assemblies within the SPs than spherical SPIONs. As shown by vibrating sample magnetometer measurements, the encapsulated SPs feature the same superparamagnetic behavior as their SPION building blocks. The saturation magnetization ranges between 10 and 30 emu/g and depends upon the nanocubes' size and phase composition.
Collapse
Affiliation(s)
- Lea R. Klauke
- Institute
of Physical Chemistry, University of Hamburg, Grindelallee 117, 20146 Hamburg, Germany
| | - Michael Kampferbeck
- Institute
of Physical Chemistry, University of Hamburg, Grindelallee 117, 20146 Hamburg, Germany
| | - Malte Holzapfel
- Center
for Applied Nanotechnology (CAN), Fraunhofer
Institute for Applied Polymer Research (IAP), Grindelallee 117, 20146 Hamburg, Germany
| | - Neus Feliu
- Center
for Applied Nanotechnology (CAN), Fraunhofer
Institute for Applied Polymer Research (IAP), Grindelallee 117, 20146 Hamburg, Germany
| | - Benedikt Sochor
- Deutsches
Elektron Synchrotron (DESY), Notkestraße 85, 20607 Hamburg, Germany
| | - Sarathlal Koyiloth Vayalil
- Deutsches
Elektron Synchrotron (DESY), Notkestraße 85, 20607 Hamburg, Germany
- Applied
Science Cluster, University of Petroleum
and Energy Studies (UPES), Dehradun 248007, India
| | - Andreas Meyer
- Institute
of Physical Chemistry, University of Hamburg, Grindelallee 117, 20146 Hamburg, Germany
| | - Tobias Vossmeyer
- Institute
of Physical Chemistry, University of Hamburg, Grindelallee 117, 20146 Hamburg, Germany
| |
Collapse
|
3
|
Choi J, Kim BH. Ligands of Nanoparticles and Their Influence on the Morphologies of Nanoparticle-Based Films. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1685. [PMID: 39453021 PMCID: PMC11510505 DOI: 10.3390/nano14201685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/18/2024] [Accepted: 10/19/2024] [Indexed: 10/26/2024]
Abstract
Nanoparticle-based thin films are increasingly being used in various applications. One of the key factors that determines the properties and performances of these films is the type of ligands attached to the nanoparticle surfaces. While long-chain surfactants, such as oleic acid, are commonly employed to stabilize nanoparticles and ensure high monodispersity, these ligands often hinder charge transport due to their insulating nature. Although thermal annealing can remove the long-chain ligands, the removal process often introduces defects such as cracks and voids. In contrast, the use of short-chain organic or inorganic ligands can minimize interparticle distance, improving film conductivity, though challenges such as incomplete ligand exchange and residual barriers remain. Polymeric ligands, especially block copolymers, can also be employed to create films with tailored porosity. This review discusses the effects of various ligand types on the morphology and performance of nanoparticle-based films, highlighting the trade-offs between conductivity, structural integrity, and functionality.
Collapse
Affiliation(s)
- Jungwook Choi
- Department of Materials Science and Engineering, Soongsil University, Seoul 06978, Republic of Korea;
| | - Byung Hyo Kim
- Department of Materials Science and Engineering, Soongsil University, Seoul 06978, Republic of Korea;
- Department of Green Chemistry and Materials Engineering, Soongsil University, Seoul 06978, Republic of Korea
| |
Collapse
|
4
|
Handali PR, Webb LJ. Quantifying Bound Proteins on Pegylated Gold Nanoparticles Using Infrared Spectroscopy. ACS APPLIED BIO MATERIALS 2024; 7:2338-2345. [PMID: 38502099 DOI: 10.1021/acsabm.4c00012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Protein-nanoparticle (NP) complexes are nanomaterials that have numerous potential uses ranging from biosensing to biomedical applications such as drug delivery and nanomedicine. Despite their extensive use quantifying the number of bound proteins per NP remains a challenging characterization step that is crucial for further developments of the conjugate, particularly for metal NPs that often interfere with standard protein quantification techniques. In this work, we present a method for quantifying the number of proteins bound to pegylated thiol-capped gold nanoparticles (AuNPs) using an infrared (IR) spectrometer, a readily available instrument. This method takes advantage of the strong IR bands present in proteins and the capping ligands to quantify protein-NP ratios and circumvents the need to degrade the NPs prior to analysis. We show that this method is generalizable where calibration curves made using inexpensive and commercially available proteins such as bovine serum albumin (BSA) can be used to quantify protein-NP ratios for proteins of different sizes and structures.
Collapse
Affiliation(s)
- Paul R Handali
- Department of Chemistry, The University of Texas at Austin, 105 E 24th St. STOP A5300, Austin, Texas 78712-1224, United States
| | - Lauren J Webb
- Department of Chemistry, Texas Materials Institute, and Interdisciplinary Life Sciences Program, The University of Texas at Austin, 105 E 24th St. STOP A5300, Austin, Texas 78712-1224, United States
| |
Collapse
|
5
|
Tomitaka A, Vashist A, Kolishetti N, Nair M. Machine learning assisted-nanomedicine using magnetic nanoparticles for central nervous system diseases. NANOSCALE ADVANCES 2023; 5:4354-4367. [PMID: 37638161 PMCID: PMC10448356 DOI: 10.1039/d3na00180f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 07/24/2023] [Indexed: 08/29/2023]
Abstract
Magnetic nanoparticles possess unique properties distinct from other types of nanoparticles developed for biomedical applications. Their unique magnetic properties and multifunctionalities are especially beneficial for central nervous system (CNS) disease therapy and diagnostics, as well as targeted and personalized applications using image-guided therapy and theranostics. This review discusses the recent development of magnetic nanoparticles for CNS applications, including Alzheimer's disease, Parkinson's disease, epilepsy, multiple sclerosis, and drug addiction. Machine learning (ML) methods are increasingly applied towards the processing, optimization and development of nanomaterials. By using data-driven approach, ML has the potential to bridge the gap between basic research and clinical research. We review ML approaches used within the various stages of nanomedicine development, from nanoparticle synthesis and characterization to performance prediction and disease diagnosis.
Collapse
Affiliation(s)
- Asahi Tomitaka
- Department of Computer and Information Sciences, College of Natural and Applied Science, University of Houston-Victoria Texas 77901 USA
| | - Arti Vashist
- Department of Immunology and Nano-Medicine, Herbert Wertheim College of Medicine, Florida International University Miami Florida 33199 USA
- Institute of NeuroImmune Pharmacology, Centre for Personalized Nanomedicine, Herbert Wertheim College of Medicine, Florida International University Miami Florida 33199 USA
| | - Nagesh Kolishetti
- Department of Immunology and Nano-Medicine, Herbert Wertheim College of Medicine, Florida International University Miami Florida 33199 USA
- Institute of NeuroImmune Pharmacology, Centre for Personalized Nanomedicine, Herbert Wertheim College of Medicine, Florida International University Miami Florida 33199 USA
| | - Madhavan Nair
- Department of Immunology and Nano-Medicine, Herbert Wertheim College of Medicine, Florida International University Miami Florida 33199 USA
- Institute of NeuroImmune Pharmacology, Centre for Personalized Nanomedicine, Herbert Wertheim College of Medicine, Florida International University Miami Florida 33199 USA
| |
Collapse
|
6
|
Rudel HE, Zimmerman JB. Elucidating the Role of Capping Agents in Facet-Dependent Adsorption Performance of Hematite Nanostructures. ACS APPLIED MATERIALS & INTERFACES 2023; 15:34829-34837. [PMID: 37441746 PMCID: PMC10502695 DOI: 10.1021/acsami.3c05104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/15/2023]
Abstract
Organic capping agents are a ubiquitous and crucial part of preparing reproducible and homogeneous batches of nanomaterials, particularly nanocrystals with well-defined facets. Despite studies reporting surface ligands (e.g., capping agents) having a non-negligible role in catalytic behavior, their impact is less understood in contaminant adsorption, an important consideration given their potential to obfuscate facet-dependent trends in performance. To ascribe observed behaviors to the facet or the ligand, this report evaluates the impact of poly(N-vinyl-2-pyrrolidone) (PVP), a commonly utilized capping agent, on the adsorption performance of nanohematite particles of varying prevailing facet in the removal of selenite (Se(IV)) as a model system. The PVP capping agent reduces the available surface area for contaminant binding, thus resulting in a reduction in overall Se(IV) adsorbed. However, accounting for the effects of surface area, {012}-faceted nanohematite demonstrates a significantly higher sorption capacity for Se(IV) compared with that of {001}-faceted nanohematite. Notably, chemical treatment is minimally effective in removing strongly bound PVP, indicating that complete removal of surface ligands remains challenging.
Collapse
Affiliation(s)
- Holly E. Rudel
- Department of Chemical and Environmental Engineering, Yale University, New Haven, CT 06511
- Center for Green Chemistry and Green Engineering, Yale University, New Haven, CT 06511
| | - Julie B. Zimmerman
- Department of Chemical and Environmental Engineering, Yale University, New Haven, CT 06511
- Center for Green Chemistry and Green Engineering, Yale University, New Haven, CT 06511
- School of the Environment, Yale University, New Haven, CT 06511
| |
Collapse
|
7
|
Delille F, Pu Y, Lequeux N, Pons T. Designing the Surface Chemistry of Inorganic Nanocrystals for Cancer Imaging and Therapy. Cancers (Basel) 2022; 14:2456. [PMID: 35626059 PMCID: PMC9139368 DOI: 10.3390/cancers14102456] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/10/2022] [Accepted: 05/12/2022] [Indexed: 12/27/2022] Open
Abstract
Inorganic nanocrystals, such as gold, iron oxide and semiconductor quantum dots, offer promising prospects for cancer diagnostics, imaging and therapy, due to their specific plasmonic, magnetic or fluorescent properties. The organic coating, or surface ligands, of these nanoparticles ensures their colloidal stability in complex biological fluids and enables their functionalization with targeting functions. It also controls the interactions of the nanoparticle with biomolecules in their environment. It therefore plays a crucial role in determining nanoparticle biodistribution and, ultimately, the imaging or therapeutic efficiency. This review summarizes the various strategies used to develop optimal surface chemistries for the in vivo preclinical and clinical application of inorganic nanocrystals. It discusses the current understanding of the influence of the nanoparticle surface chemistry on its colloidal stability, interaction with proteins, biodistribution and tumor uptake, and the requirements to develop an optimal surface chemistry.
Collapse
Affiliation(s)
- Fanny Delille
- Laboratoire de Physique et d’Etude des Matériaux, Ecole Supérieure de Physique et Chimie Industrielle, Université PSL (Paris Sciences & Lettres), Centre National de Recherche Scientifique, 75005 Paris, France; (F.D.); (Y.P.); (N.L.)
- Laboratoire de Physique et d’Etude des Matériaux, Centre National de Recherche Scientifique, Sorbonne Université, 75005 Paris, France
| | - Yuzhou Pu
- Laboratoire de Physique et d’Etude des Matériaux, Ecole Supérieure de Physique et Chimie Industrielle, Université PSL (Paris Sciences & Lettres), Centre National de Recherche Scientifique, 75005 Paris, France; (F.D.); (Y.P.); (N.L.)
- Laboratoire de Physique et d’Etude des Matériaux, Centre National de Recherche Scientifique, Sorbonne Université, 75005 Paris, France
| | - Nicolas Lequeux
- Laboratoire de Physique et d’Etude des Matériaux, Ecole Supérieure de Physique et Chimie Industrielle, Université PSL (Paris Sciences & Lettres), Centre National de Recherche Scientifique, 75005 Paris, France; (F.D.); (Y.P.); (N.L.)
- Laboratoire de Physique et d’Etude des Matériaux, Centre National de Recherche Scientifique, Sorbonne Université, 75005 Paris, France
| | - Thomas Pons
- Laboratoire de Physique et d’Etude des Matériaux, Ecole Supérieure de Physique et Chimie Industrielle, Université PSL (Paris Sciences & Lettres), Centre National de Recherche Scientifique, 75005 Paris, France; (F.D.); (Y.P.); (N.L.)
- Laboratoire de Physique et d’Etude des Matériaux, Centre National de Recherche Scientifique, Sorbonne Université, 75005 Paris, France
| |
Collapse
|
8
|
Abdelmonem AM, Zámbó D, Rusch P, Schlosser A, Klepzig LF, Bigall NC. Versatile Route for Multifunctional Aerogels Including Flaxseed Mucilage and Nanocrystals. Macromol Rapid Commun 2022; 43:e2100794. [PMID: 35085414 DOI: 10.1002/marc.202100794] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/14/2022] [Indexed: 11/05/2022]
Abstract
Preparation of low density monolithic and free-standing organic-inorganic hybrid aerogels of various properties is demonstrated using green chemistry from a biosafe natural source (flaxseed mucilage) and freeze-casting and subsequent freeze drying. Bio-aerogels, luminescent aerogels and magneto-responsive aerogels were obtained by combination of the flaxseed mucilage with different types of nanoparticles. Moreover, the aerogels are investigated as possible drug release system using curcumin as a model. Various characterization techniques like thermogravimetric analysis, nitrogen physisorption, electron microscopy, UV/Vis absorption and emission spectroscopy, bulk density and mechanical measurements as well as in vitro release profile measurements are employed to investigate the obtained materials. The flaxseed-inspired organic-inorganic hybrid aerogels exhibit ultra-low densities of as low as 5.6 mg/cm3 for 0.5% (w/v) mucilage polymer, a specific surface area of 4 to 20 m2 /g, high oil absorption capacity (23 g/g) and prominent compressibility. The natural biopolymer technique leads to low cost and biocompatible functional lightweight materials with tunable properties (physicochemical and mechanical) and significant potential for applications as supporting or stimuli responsive materials, carriers, reactors, microwave, and electromagnetic radiation protective (absorbing) material as well as in drug delivery and oil absorption. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Abuelmagd M Abdelmonem
- Institute of Physical Chemistry and Electrochemistry, Leibniz Universität Hannover, Callinstr. 3a, Hannover, 30167, Germany.,Laboratory of Nano and Quantum Engineering, Leibniz Universität Hannover, Schneiderberg 39, Hannover, 30167, Germany.,Food Technology Research Institute, Agricultural Research Center, 9 Cairo University St., Giza, 12619, Egypt
| | - Dániel Zámbó
- Institute of Physical Chemistry and Electrochemistry, Leibniz Universität Hannover, Callinstr. 3a, Hannover, 30167, Germany.,Laboratory of Nano and Quantum Engineering, Leibniz Universität Hannover, Schneiderberg 39, Hannover, 30167, Germany.,Institute of Technical Physics and Materials Science, Centre for Energy Research, Konkoly-Thege M. str. 29-33, Budapest, H-1121, Hungary
| | - Pascal Rusch
- Institute of Physical Chemistry and Electrochemistry, Leibniz Universität Hannover, Callinstr. 3a, Hannover, 30167, Germany.,Laboratory of Nano and Quantum Engineering, Leibniz Universität Hannover, Schneiderberg 39, Hannover, 30167, Germany
| | - Anja Schlosser
- Institute of Physical Chemistry and Electrochemistry, Leibniz Universität Hannover, Callinstr. 3a, Hannover, 30167, Germany.,Laboratory of Nano and Quantum Engineering, Leibniz Universität Hannover, Schneiderberg 39, Hannover, 30167, Germany
| | - Lars F Klepzig
- Institute of Physical Chemistry and Electrochemistry, Leibniz Universität Hannover, Callinstr. 3a, Hannover, 30167, Germany.,Laboratory of Nano and Quantum Engineering, Leibniz Universität Hannover, Schneiderberg 39, Hannover, 30167, Germany
| | - Nadja C Bigall
- Institute of Physical Chemistry and Electrochemistry, Leibniz Universität Hannover, Callinstr. 3a, Hannover, 30167, Germany.,Laboratory of Nano and Quantum Engineering, Leibniz Universität Hannover, Schneiderberg 39, Hannover, 30167, Germany.,Cluster of Excellence PhoenixD (Photonics, Optics, and Engineering - Innovation Across Disciplines), Leibniz Universität Hannover, Hannover, 30167, Germany
| |
Collapse
|
9
|
Hu B, Liu R, Liu Q, Lin Z, Shi Y, Li J, Wang L, Li L, Xiao X, Wu Y. Engineering surface patterns on nanoparticles: New insights on nano-bio interactions. J Mater Chem B 2022; 10:2357-2383. [DOI: 10.1039/d1tb02549j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The surface properties of nanoparticles affect their fates in biological systems. Based on nanotechnology and methodology, pioneering works have explored the effects of chemical surface patterns on the behavior of...
Collapse
|
10
|
Mourdikoudis S, Kostopoulou A, LaGrow AP. Magnetic Nanoparticle Composites: Synergistic Effects and Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2004951. [PMID: 34194936 PMCID: PMC8224446 DOI: 10.1002/advs.202004951] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Indexed: 05/17/2023]
Abstract
Composite materials are made from two or more constituent materials with distinct physical or chemical properties that, when combined, produce a material with characteristics which are at least to some degree different from its individual components. Nanocomposite materials are composed of different materials of which at least one has nanoscale dimensions. Common types of nanocomposites consist of a combination of two different elements, with a nanoparticle that is linked to, or surrounded by, another organic or inorganic material, for example in a core-shell or heterostructure configuration. A general family of nanoparticle composites concerns the coating of a nanoscale material by a polymer, SiO2 or carbon. Other materials, such as graphene or graphene oxide (GO), are used as supports forming composites when nanoscale materials are deposited onto them. In this Review we focus on magnetic nanocomposites, describing their synthetic methods, physical properties and applications. Several types of nanocomposites are presented, according to their composition, morphology or surface functionalization. Their applications are largely due to the synergistic effects that appear thanks to the co-existence of two different materials and to their interface, resulting in properties often better than those of their single-phase components. Applications discussed concern magnetically separable catalysts, water treatment, diagnostics-sensing and biomedicine.
Collapse
Affiliation(s)
- Stefanos Mourdikoudis
- Biophysics GroupDepartment of Physics and AstronomyUniversity College LondonLondonWC1E 6BTUK
- UCL Healthcare Biomagnetic and Nanomaterials Laboratories21 Albemarle StreetLondonW1S 4BSUK
| | - Athanasia Kostopoulou
- Institute of Electronic Structure and Laser (IESL)Foundation for Research and Technology‐Hellas (FORTH)100 Nikolaou PlastiraHeraklionCrete70013Greece
| | - Alec P. LaGrow
- International Iberian Nanotechnology LaboratoryBraga4715‐330Portugal
| |
Collapse
|
11
|
Fertig AA, Rabbani SMG, Koch MD, Brennessel WW, Miró P, Matson EM. Physicochemical implications of surface alkylation of high-valent, Lindqvist-type polyoxovanadate-alkoxide clusters. NANOSCALE 2021; 13:6162-6173. [PMID: 33734254 DOI: 10.1039/d0nr09201k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
We report a rare example of the direct alkylation of the surface of a plenary polyoxometalate cluster by leveraging the increased nucleophilicity of vanadium oxide assemblies. Addition of methyl trifluoromethylsulfonate (MeOTf) to the parent polyoxovanadate cluster, [V6O13(TRIOLR)2]2- (TRIOL = tris(hydroxymethyl)methane; R = Me, NO2) results in functionalisation of one or two bridging oxide ligands of the cluster core to generate [V6O12(OMe)(TRIOLR)2]1- and [V6O11(OMe)2(TRIOLR)2]2-, respectively. Comparison of the electronic absorption spectra of the functionalised and unfunctionalised derivatives indicates the decreased overall charge of the complex results in a decrease in the energy required for ligand to metal charge transfer events to occur, while simultaneously mitigating the inductive effects imposed by the capping TRIOL ligand. Electrochemical analysis of the family of organofunctionalised polyoxovanadate clusters reveals the relationship of ligand environment and the redox properties of the cluster core: increased organofunctionalisation of the surface of the vanadium oxide assembly translates to anodic shifts in the reduction events of the Lindqvist ion. Overall, this work provides insight into the electronic effects induced upon atomically precise modifications to the surface structure of nanoscopic, redox-active metal oxide assemblies.
Collapse
Affiliation(s)
- Alex A Fertig
- Department of Chemistry, University of Rochester, Rochester, NY 14627, USA.
| | | | | | | | | | | |
Collapse
|
12
|
He S, Kickelbick G. Reversible Diels-Alder Reactions with a Fluorescent Dye on the Surface of Magnetite Nanoparticles. Molecules 2021; 26:molecules26040877. [PMID: 33562273 PMCID: PMC7916023 DOI: 10.3390/molecules26040877] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/03/2021] [Accepted: 02/04/2021] [Indexed: 01/01/2023] Open
Abstract
Diels–Alder reactions on the surface of nanoparticles allow a thermoreversible functionalization of the nanosized building blocks. We report the synthesis of well-defined magnetite nanoparticles by thermal decomposition reaction and their functionalization with maleimide groups. Attachment of these dienophiles was realized by the synthesis of organophosphonate coupling agents and a partial ligand exchange of the original carboxylic acid groups. The functionalized iron oxide particles allow a covalent surface attachment of a furfuryl-functionalized rhodamine B dye by a Diels–Alder reaction at 60 °C. The resulting particles showed the typical fluorescence of rhodamine B. The dye can be cleaved off the particle surface by a retro-Diels–Alder reaction. The study showed that organic functions can be thermoreversibly attached onto inorganic nanoparticles.
Collapse
|
13
|
Cheah P, Brown P, Qu J, Tian B, Patton DL, Zhao Y. Versatile Surface Functionalization of Water-Dispersible Iron Oxide Nanoparticles with Precisely Controlled Sizes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:1279-1287. [PMID: 33434432 DOI: 10.1021/acs.langmuir.0c03314] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The synthesis of highly water-dispersible iron oxide nanoparticles with surface functional groups and precisely controlled sizes is essential for biomedical application. In this paper, we report a one-pot strategy for versatile surface functionalization. The iron oxide nanoparticles are first synthesized by thermal decomposition of iron(III) acetylacetonate (Fe(acac)3) in diethylene glycol (DEG), and their surfaces are modified by adding the surface ligands at the end of the reaction. The size of iron oxide nanoparticles can be precisely controlled in nanometer scale by continuous growth. This facile synthesis method enables the surface modification with different coating materials such as dopamine (DOPA), polyethylene glycol with thiol end group (thiol-PEG), and poly(acrylic acid) (PAA) onto the iron oxide nanoparticles, introducing new surface functionalities for future biomedical application. From transmission electron microscopy (TEM) and X-ray diffraction (XRD), the morphology and crystal structure are not changed during surface functionalization. The attachment of surface ligands is studied by Fourier transform infrared spectroscopy (FTIR) and Thermogravimetric Analysis (TGA). The surface functional groups are confirmed by X-ray Photoelectron Spectroscopy (XPS). In correlation with the change of hydrodynamic size, PAA coated nanoparticles are found to exhibit outstanding stability in aqueous solution. Furthermore, we demonstrate that the functional groups are available for conjugating with other molecules such as fluorescent dye, showing potential biological applications. Lastly, the magnetic resonance phantom studies demonstrate that iron oxide nanoparticles with PAA coating can be used as T1 and T2 dual-modality contrast agents. Both r1 and r2 relaxivities significantly increase after surface functionalization with PAA, indicating improved sensitivity.
Collapse
Affiliation(s)
- Pohlee Cheah
- Department of Chemistry, Physics, and Atmospheric Science, Jackson State University, Jackson, Mississippi 39217, United States
| | - Paul Brown
- Department of Chemistry, Physics, and Atmospheric Science, Jackson State University, Jackson, Mississippi 39217, United States
| | - Jing Qu
- Department of Chemistry, Physics, and Atmospheric Science, Jackson State University, Jackson, Mississippi 39217, United States
| | - Bin Tian
- Department of Chemistry, Physics, and Atmospheric Science, Jackson State University, Jackson, Mississippi 39217, United States
| | - Derek L Patton
- School of Polymer Science and Engineering, University of Southern Mississippi, Hattiesburg, Mississippi 39406, United States
| | - Yongfeng Zhao
- Department of Chemistry, Physics, and Atmospheric Science, Jackson State University, Jackson, Mississippi 39217, United States
| |
Collapse
|
14
|
Liu M, Shu M, Yan J, Liu X, Wang R, Hou Z, Lin J. Luminescent net-like inorganic scaffolds with europium-doped hydroxyapatite for enhanced bone reconstruction. NANOSCALE 2021; 13:1181-1194. [PMID: 33404034 DOI: 10.1039/d0nr05608a] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Bone reconstruction is an urgent problem during clinical treatment. In the past few decades, the construction of composite scaffolds has been a hot spot in the research field of bone tissue engineering (BTE). However, the disadvantages of composite materials raise our awareness to explore the potential application of hydroxyapatite (HAp) in bone substitutes due to the closest properties of HAp to natural bone tissue. In our study, we synthesized Eu3+-doped HAp (HAp:Eu3+) ultralong nanowires, which can be transformed to hydrophilic net-like scaffolds via a thiol-ene click reaction. The property of luminescence of HAp from Eu3+ is beneficial for identifying the relative position of materials and bone marrow mesenchymal stem cells (BMSCs). HAp:Eu3+ scaffolds with excellent cell biocompatibility could promote the expression of early bone formation markers (ALP and ARS) and enhance the expression of genes and proteins associated with osteogenesis (Runx 2, OCN, and OPN). In the end, the results of the in vivo osteogenesis experiment showed that pure HAp scaffolds presented different effects of bone tissue reconstruction compared with the composite scaffolds with HAp nanorods and polymer materials. The superior osteogenic effect could be observed in net-like pure HAp scaffold groups. Furthermore, the absorption of HAp:Eu3+ scaffolds could be monitored due to the luminescence property of Eu3+. This strategy based on ultralong HAp nanowires proved to be a new method for the construction of simple reticular scaffolds for potential osteogenic applications.
Collapse
Affiliation(s)
- Min Liu
- Department of Periodontology, Stomatological Hospital, Jilin University, Changchun 130021, P. R. China.
| | | | | | | | | | | | | |
Collapse
|
15
|
Leitner NS, Schroffenegger M, Reimhult E. Polymer Brush-Grafted Nanoparticles Preferentially Interact with Opsonins and Albumin. ACS APPLIED BIO MATERIALS 2020; 4:795-806. [PMID: 33490885 PMCID: PMC7818653 DOI: 10.1021/acsabm.0c01355] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 12/13/2020] [Indexed: 12/18/2022]
Abstract
![]()
Nanoparticles
find increasing applications in life science and
biomedicine. The fate of nanoparticles in a biological system is determined
by their protein corona, as remodeling of their surface properties
through protein adsorption triggers specific recognition such as cell
uptake and immune system clearance and nonspecific processes such
as aggregation and precipitation. The corona is a result of nanoparticle–protein
and protein–protein interactions and is influenced by particle
design. The state-of-the-art design of biomedical nanoparticles is
the core–shell structure exemplified by superparamagnetic iron
oxide nanoparticles (SPIONs) grafted with dense, well-hydrated polymer
shells used for biomedical magnetic imaging and therapy. Densely grafted
polymer chains form a polymer brush, yielding a highly repulsive barrier
to the formation of a protein corona via nonspecific
particle–protein interactions. However, recent studies showed
that the abundant blood serum protein albumin interacts with dense
polymer brush-grafted SPIONs. Herein, we use isothermal titration
calorimetry to characterize the nonspecific interactions between human
serum albumin, human serum immunoglobulin G, human transferrin, and
hen egg lysozyme with monodisperse poly(2-alkyl-2-oxazoline)-grafted
SPIONs with different grafting densities and core sizes. These particles
show similar protein interactions despite their different “stealth”
capabilities in cell culture. The SPIONs resist attractive interactions
with lysozymes and transferrins, but they both show a significant
exothermic enthalpic and low exothermic entropic interaction with
low stoichiometry for albumin and immunoglobulin G. Our results highlight
that protein size, flexibility, and charge are important to predict
protein corona formation on polymer brush-stabilized nanoparticles.
Collapse
Affiliation(s)
- Nikolaus Simon Leitner
- Institute for Biologically Inspired Materials, Department of Nanobiotechnology, University of Natural Resources and Life Sciences, Vienna A-1190, Vienna, Austria
| | - Martina Schroffenegger
- Institute for Biologically Inspired Materials, Department of Nanobiotechnology, University of Natural Resources and Life Sciences, Vienna A-1190, Vienna, Austria
| | - Erik Reimhult
- Institute for Biologically Inspired Materials, Department of Nanobiotechnology, University of Natural Resources and Life Sciences, Vienna A-1190, Vienna, Austria
| |
Collapse
|
16
|
Brennan G, Bergamino S, Pescio M, Tofail SAM, Silien C. The Effects of a Varied Gold Shell Thickness on Iron Oxide Nanoparticle Cores in Magnetic Manipulation, T 1 and T 2 MRI Contrasting, and Magnetic Hyperthermia. NANOMATERIALS 2020; 10:nano10122424. [PMID: 33291591 PMCID: PMC7761797 DOI: 10.3390/nano10122424] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/24/2020] [Accepted: 12/02/2020] [Indexed: 12/22/2022]
Abstract
Fe3O4–Au core–shell magnetic-plasmonic nanoparticles are expected to combine both magnetic and light responsivity into a single nanosystem, facilitating combined optical and magnetic-based nanotheranostic (therapeutic and diagnostic) applications, for example, photothermal therapy in conjunction with magnetic resonance imaging (MRI) imaging. To date, the effects of a plasmonic gold shell on an iron oxide nanoparticle core in magnetic-based applications remains largely unexplored. For this study, we quantified the efficacy of magnetic iron oxide cores with various gold shell thicknesses in a number of popular magnetic-based nanotheranostic applications; these included magnetic sorting and targeting (quantifying magnetic manipulability and magnetophoresis), MRI contrasting (quantifying benchtop nuclear magnetic resonance (NMR)-based T1 and T2 relaxivity), and magnetic hyperthermia therapy (quantifying alternating magnetic-field heating). We observed a general decrease in magnetic response and efficacy with an increase of the gold shell thickness, and herein we discuss possible reasons for this reduction. The magnetophoresis speed of iron oxide nanoparticles coated with the thickest gold shell tested here (ca. 42 nm) was only ca. 1% of the non-coated bare magnetic nanoparticle, demonstrating reduced magnetic manipulability. The T1 relaxivity, r1, of the thick gold-shelled magnetic particle was ca. 22% of the purely magnetic counterpart, whereas the T2 relaxivity, r2, was 42%, indicating a reduced MRI contrasting. Lastly, the magnetic hyperthermia heating efficiency (intrinsic loss power parameter) was reduced to ca. 14% for the thickest gold shell. For all applications, the efficiency decayed exponentially with increased gold shell thickness; therefore, if the primary application of the nanostructure is magnetic-based, this work suggests that it is preferable to use a thinner gold shell or higher levels of stimuli to compensate for losses associated with the addition of the gold shell. Moreover, as thinner gold shells have better magnetic properties, have previously demonstrated superior optical properties, and are more economical than thick gold shells, it can be said that “less is more”.
Collapse
|
17
|
Natarajan P, Tomich JM. Understanding the influence of experimental factors on bio-interactions of nanoparticles: Towards improving correlation between in vitro and in vivo studies. Arch Biochem Biophys 2020; 694:108592. [PMID: 32971033 PMCID: PMC7503072 DOI: 10.1016/j.abb.2020.108592] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 09/16/2020] [Accepted: 09/18/2020] [Indexed: 12/17/2022]
Abstract
Bionanotechnology has developed rapidly over the past two decades, owing to the extensive and versatile, functionalities and applicability of nanoparticles (NPs). Fifty-one nanomedicines have been approved by FDA since 1995, out of the many NPs based formulations developed to date. The general conformation of NPs consists of a core with ligands coating their surface, that stabilizes them and provides them with added functionalities. The physicochemical properties, especially the surface composition of NPs influence their bio-interactions to a large extent. This review discusses recent studies that help understand the nano-bio interactions of iron oxide and gold NPs with different surface compositions. We discuss the influence of the experimental factors on the outcome of the studies and, thus, the importance of standardization in the field of nanotechnology. Recent studies suggest that with careful selection of experimental parameters, it is possible to improve the positive correlation between in vitro and in vivo studies. This provides a fundamental understanding of the NPs which helps in assessing their potential toxic side effects and may aid in manipulating them further to improve their biocompatibility and biosafety.
Collapse
|
18
|
Nie L, Chang P, Ji C, Zhang F, Zhou Q, Sun M, Sun Y, Politis C, Shavandi A. Poly(acrylic acid) capped iron oxide nanoparticles via ligand exchange with antibacterial properties for biofilm applications. Colloids Surf B Biointerfaces 2020; 197:111385. [PMID: 33049660 DOI: 10.1016/j.colsurfb.2020.111385] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 09/15/2020] [Accepted: 09/26/2020] [Indexed: 01/12/2023]
Abstract
Biofilm infections pose a rising threat to public health due to its existing protective shield, which preventing biocide penetration. Here, the oleate-capped iron oxide nanoparticles (OIONPs) were synthesized by the high-temperature method first; after then, the poly(acrylic acid)-capped iron oxide nanoparticles (PIONPs) were obtained via a ligand exchange reaction between OIONPs and sodium poly(acrylic acid). The physicochemical properties of PIONPs were evaluated by Fourier-transform Infrared Spectroscopy (FT-IR), X-ray Diffraction (XRD), Scanning Transmission Electron Microscopy (STEM), Dynamic Light Scattering (DLS), and zeta potential. The FT-IR analysis confirmed the successful ligand exchange on the surface of iron oxide nanoparticles. STEM images displayed that the prepared PIONPs were monodisperse spherical nanoparticles. The PIONPs were stable in ultrapure water and could be kept for 5 weeks without aggregation. Next, Cell Counting Kit-8 (CCK-8) assay and fluorescent images confirmed the excellent cytocompatibility of PIONPs, while the iron concentration of PIONPs was in the range of 5∼120 mg/L. Finally, PIONPs exhibited efficient antibacterial activity against E. coli and S. aureus, and Staphylococcus aureus subsp. aureus Rosenbach (SASAR) biofilm could be destroyed by treating PIONPs under alternating current (AC) applied field conditions.
Collapse
Affiliation(s)
- Lei Nie
- College of Life Sciences, Xinyang Normal University, Xinyang 464000, China; Department of Imaging & Pathology, University of Leuven and Oral & Maxillofacial Surgery, University Hospitals Leuven, Leuven 3001, Belgium; Institut für Chemie und Biochemie-Physikalische und Theoretische Chemie, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany.
| | - Pengbo Chang
- Zhengzhou Technical College, Zhengzhou 450010, China
| | - Chingching Ji
- Institut für Chemie und Biochemie-Physikalische und Theoretische Chemie, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany
| | - Fang Zhang
- College of Life Science & Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Qiuju Zhou
- Analysis & Testing Center, Xinyang Normal University, Xinyang 464000, China
| | - Meng Sun
- College of Life Sciences, Xinyang Normal University, Xinyang 464000, China
| | - Yi Sun
- Department of Imaging & Pathology, University of Leuven and Oral & Maxillofacial Surgery, University Hospitals Leuven, Leuven 3001, Belgium
| | - Constantinus Politis
- Department of Imaging & Pathology, University of Leuven and Oral & Maxillofacial Surgery, University Hospitals Leuven, Leuven 3001, Belgium
| | - Amin Shavandi
- BioMatter Unit - École Polytechnique de Bruxelles, Université Libre de Bruxelles, Avenue F.D. Roosevelt, 50 - CP 165/61, 1050 Brussels, Belgium.
| |
Collapse
|
19
|
Supercritically dried superparamagnetic mesoporous silica nanoparticles for cancer theranostics. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 115:111124. [DOI: 10.1016/j.msec.2020.111124] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 05/20/2020] [Accepted: 05/25/2020] [Indexed: 12/23/2022]
|
20
|
Brennan G, Thorat ND, Pescio M, Bergamino S, Bauer J, Liu N, Tofail SAM, Silien C. Spectral drifts in surface textured Fe 3O 4-Au, core-shell nanoparticles enhance spectra-selective photothermal heating and scatter imaging. NANOSCALE 2020; 12:12632-12638. [PMID: 32510529 DOI: 10.1039/d0nr01463j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
We report a significant spectral drift (up to 110 nm) between optical scattering and extinction in magnetite-gold (Fe3O4-Au) core-shell nanostructures. The drift was observed experimentally using single-particle broadband dark-field scattering microspectroscopy and solution extinction experiments. Infrared thermography demonstrates an enhanced photothermal activity of these nanoparticles at extinction wavelengths that are far drifted from the wavelengths that produce the best results for imaging via scattering. For example, a relatively smooth gold shell leads to 19% more photothermal activity at 532 nm compared to 690 nm whereas a rough-texture, popcorn type morphology gold shell with three times higher drift, is 170% more efficient at 532 nm. We suggest that the enhanced photothermal response results directly from a reduced competition between absorption and scattering as a consequence of the spectral drift. This spectral drift can be advantageous in multimodal theranostics where therapy and imaging are performed independently at different wavelengths.
Collapse
Affiliation(s)
- Grace Brennan
- Modelling Simulation and Innovative Characterisation (MOSAIC), Department of Physics, School of Natural Sciences and Bernal Institute, University of Limerick, Limerick, V94 T9PX, Ireland.
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Klein S, Smuda M, Harreiß C, Menter C, Distel LVR, Kryschi C. Bifunctional Au-Fe 3O 4 Nanoheterodimers Acting as X-ray Protector in Healthy Cells and as X-ray Enhancer in Tumor Cells. ACS APPLIED MATERIALS & INTERFACES 2019; 11:39613-39623. [PMID: 31613607 DOI: 10.1021/acsami.9b13877] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Bifunctional Au-Fe3O4 nanoheterodimers were synthesized by thermally decomposing Fe(III)oleate on gold nanoparticles followed by functionalizing with tiron, 2,3-dihydroxybenzoic acid, or caffeic acid. These catechol derivatives are antioxidative and thus are predicted to function as superoxide scavengers. In particular, caffeic acid lost its antioxidant capacity, although it was covalently linked through its carboxyl moiety to the Fe3O4 surface. Tiron was shown to bind via its catechol group to the Au-Fe3O4 nanoheterodimers, and 2,3-dihydroxybenzoic was just physisorbed between the oleic acid surface structures. Caffeic-acid stabilized Au-Fe3O4 nanoheterodimers turned out to act as X-ray protector in healthy cells but as X-ray enhancing agents in cancer cells. Furthermore, these functionalized Au-Fe3O4 nanoheterodimers were found to inhibit the migratory capacity of the cancer cells.
Collapse
Affiliation(s)
- Stefanie Klein
- Department of Chemistry and Pharmacy, Physical Chemistry I and ICMM , Friedrich-Alexander University of Erlangen , Egerlandstraße 3 , D-91058 Erlangen , Germany
| | - Matthias Smuda
- Department of Chemistry and Pharmacy, Physical Chemistry I and ICMM , Friedrich-Alexander University of Erlangen , Egerlandstraße 3 , D-91058 Erlangen , Germany
| | - Christina Harreiß
- Department of Chemistry and Pharmacy, Physical Chemistry I and ICMM , Friedrich-Alexander University of Erlangen , Egerlandstraße 3 , D-91058 Erlangen , Germany
| | - Christina Menter
- Department of Chemistry and Pharmacy, Physical Chemistry I and ICMM , Friedrich-Alexander University of Erlangen , Egerlandstraße 3 , D-91058 Erlangen , Germany
| | - Luitpold V R Distel
- Department of Radiation Oncology , Friedrich-Alexander University of Erlangen , Universitätsstraße 27 , D-91054 Erlangen , Germany
| | - Carola Kryschi
- Department of Chemistry and Pharmacy, Physical Chemistry I and ICMM , Friedrich-Alexander University of Erlangen , Egerlandstraße 3 , D-91058 Erlangen , Germany
| |
Collapse
|
22
|
Sandler SE, Fellows B, Mefford OT. Best Practices for Characterization of Magnetic Nanoparticles for Biomedical Applications. Anal Chem 2019; 91:14159-14169. [DOI: 10.1021/acs.analchem.9b03518] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Sarah E. Sandler
- Department of Materials Science and Engineering, Clemson University, Clemson, South Carolina 29634, United States
| | - Benjamin Fellows
- Department of Bioengineering, University of California at Berkeley, Berkeley, California 94720, United States
| | - O. Thompson Mefford
- Department of Materials Science and Engineering, Clemson University, Clemson, South Carolina 29634, United States
| |
Collapse
|
23
|
Schechtel E, Dören R, Frerichs H, Panthöfer M, Mondeshki M, Tremel W. Mixed Ligand Shell Formation upon Catechol Ligand Adsorption on Hydrophobic TiO 2 Nanoparticles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:12518-12531. [PMID: 31487189 DOI: 10.1021/acs.langmuir.9b02496] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Modifying the surfaces of metal oxide nanoparticles (NPs) with monolayers of ligands provides a simple and direct method to generate multifunctional coatings by altering their surface properties. This works best if the composition of the monolayers can be controlled. Mussel-inspired, noninnocent catecholates stand out from other ligands like carboxylates and amines because they are redox-active and allow for highly efficient surface binding and enhanced electron transfer to the surface. However, a comprehensive understanding of their surface chemistry, including surface coverage and displacement of the native ligand, is still lacking. Here, we unravel the displacement of oleate (OA) ligands on hydrophobic, OA-stabilized TiO2 NPs by catecholate ligands using a combination of one- and two-dimensional nuclear magnetic resonance (NMR) spectroscopy techniques. Conclusive pictures of the ligand shells before and after surface modification with catecholate were obtained by 1H and 13C NMR spectroscopy (the 13C chemical shift being more sensitive and with a broader range). The data could be explained using a Langmuir-type approach. Gradual formation of a mixed ligand shell was observed, and the surface processes of catecholate adsorption and OA desorption were quantified. Contrary to the prevailing view, catecholate displaces only a minor fraction (∼20%) of the native OA ligand shell. At the same time, the total ligand density more than doubled from 2.3 nm-2 at native oleate coverage to 4.8 nm-2 at maximum catecholate loading. We conclude that the catecholate ligand adsorbs preferably to unoccupied Ti surface sites rather than replacing native OA ligands. This unexpected behavior, reminiscent of the Vroman effect for protein corona formation, appears to be a fundamental feature in the widely used surface modification of hydrophobic metal oxide NPs with catecholate ligands. Moreover, our findings show that ligand displacement on OA-capped TiO2 NPs is not suited for a full ligand shell refunctionalization because it produces only mixed ligand shells. Therefore, our results contribute to a better understanding and performance of photocatalytic applications based on catecholate ligand-sensitized TiO2 NPs.
Collapse
Affiliation(s)
- Eugen Schechtel
- Institut für Anorganische Chemie und Analytische Chemie , Johannes Gutenberg-Universität Mainz , Duesbergweg 10-14 , D-55128 Mainz , Germany
| | - René Dören
- Institut für Anorganische Chemie und Analytische Chemie , Johannes Gutenberg-Universität Mainz , Duesbergweg 10-14 , D-55128 Mainz , Germany
| | - Hajo Frerichs
- Institut für Anorganische Chemie und Analytische Chemie , Johannes Gutenberg-Universität Mainz , Duesbergweg 10-14 , D-55128 Mainz , Germany
| | - Martin Panthöfer
- Institut für Anorganische Chemie und Analytische Chemie , Johannes Gutenberg-Universität Mainz , Duesbergweg 10-14 , D-55128 Mainz , Germany
| | - Mihail Mondeshki
- Institut für Anorganische Chemie und Analytische Chemie , Johannes Gutenberg-Universität Mainz , Duesbergweg 10-14 , D-55128 Mainz , Germany
| | - Wolfgang Tremel
- Institut für Anorganische Chemie und Analytische Chemie , Johannes Gutenberg-Universität Mainz , Duesbergweg 10-14 , D-55128 Mainz , Germany
| |
Collapse
|
24
|
Wei N, Li L, Zhang H, Wang W, Pan C, Qi S, Zhang H, Chen H, Chen X. Characterization of the Ligand Exchange Reactions on CdSe/ZnS QDs by Capillary Electrophoresis. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:4806-4812. [PMID: 30865827 DOI: 10.1021/acs.langmuir.8b03856] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The continuous development of semiconductor quantum dots (QDs) in biochemical research has attracted special attention, and surface functionalizing becomes more important to optimize their performance. Ligand exchange reactions are commonly used to modify the surface of QDs for their biomedical applications. However, the kinetics of ligand exchange for semiconductor QDs remain fully unexplored. Here, we describe a simple and rapid method to characterize the ligand exchange reactions on CdSe/ZnS QDs by capillary electrophoresis (CE). The results of ultraviolet-visible absorption spectra, fluorescence spectra, and Fourier transform infrared spectroscopy indicated the successful implementation of the ligand exchange process. The dynamics of ligand exchange of OA-coated CdSe/ZnS QDs with 4-mercaptobenzoic acid was monitored by CE, and the observed ligand exchange trends were fitted with logistic functions. When the ligand exchange reactions reached equilibrium, the ligand density of QDs can be quantified by CE. It is anticipated that CE will be a new powerful technique for quantitative analysis of the ligand exchange reactions on the surface of QDs.
Collapse
Affiliation(s)
- Nannan Wei
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province , Lanzhou University , Lanzhou 730000 , China
| | - Ling Li
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province , Lanzhou University , Lanzhou 730000 , China
| | - Huige Zhang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province , Lanzhou University , Lanzhou 730000 , China
| | - Weifeng Wang
- Lanzhou Institute of Chemical Physics , Chinese Academy of Sciences , Lanzhou 730000 , P. R. China
| | - Congjie Pan
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province , Lanzhou University , Lanzhou 730000 , China
| | - Shengda Qi
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province , Lanzhou University , Lanzhou 730000 , China
| | - Hongyi Zhang
- Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Environmental Science , Hebei University , Baoding 071002 , China
| | - Hongli Chen
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province , Lanzhou University , Lanzhou 730000 , China
| | - Xingguo Chen
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province , Lanzhou University , Lanzhou 730000 , China
| |
Collapse
|
25
|
Guo X, Wang W, Yuan X, Yang Y, Tian Q, Xiang Y, Sun Y, Bai Z. Heavy metal redistribution mechanism assisted magnetic separation for highly-efficient removal of lead and cadmium from human blood. J Colloid Interface Sci 2019; 536:563-574. [DOI: 10.1016/j.jcis.2018.10.095] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 10/28/2018] [Accepted: 10/29/2018] [Indexed: 12/23/2022]
|
26
|
Das P, Colombo M, Prosperi D. Recent advances in magnetic fluid hyperthermia for cancer therapy. Colloids Surf B Biointerfaces 2018; 174:42-55. [PMID: 30428431 DOI: 10.1016/j.colsurfb.2018.10.051] [Citation(s) in RCA: 145] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 10/12/2018] [Accepted: 10/18/2018] [Indexed: 10/28/2022]
Abstract
Recently, magnetic fluid hyperthermia using biocompatible magnetic nanoparticles as heat mediators for cancer therapy has been extensively investigated due to its high efficiency and limited side effects. However, the development of more efficient heat nanomediators that exhibit very high specific absorption rate (SAR) value is essential for clinical application to overcome the several restrictions previously encountered due to the large quantity of nanomaterial required for effective treatment. In this review, we focus on the current progress in the development of magnetic nanoparticles based hyperthermia therapy as well as combined therapy harnessing hyperthermia with heat-mediated drug delivery for cancer treatment. We also address the fundamental principles of magnetic hyperthermia, basics of magnetism including the effect of several parameters on heating capacity, synthetic methods and nanoparticle surface chemistry needed to design and develop an ideal magnetic nanoparticle heat mediator suitable for clinical translation in cancer therapy.
Collapse
Affiliation(s)
- Pradip Das
- NanoBioLab, Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza, 20126, Milan, Italy
| | - Miriam Colombo
- NanoBioLab, Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza, 20126, Milan, Italy
| | - Davide Prosperi
- NanoBioLab, Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza, 20126, Milan, Italy.
| |
Collapse
|
27
|
Komati R, Mitchell CA, LeBeaud A, Do H, Goloverda GZ, Kolesnichenko VL. Tenacic Acids: A New Class of Tenacious Binders to Metal Oxide Surfaces. Chemistry 2018; 24:14824-14829. [PMID: 30076653 PMCID: PMC6168372 DOI: 10.1002/chem.201803242] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 08/01/2018] [Indexed: 11/11/2022]
Abstract
The backbone of 2-hydroxyisophthalic acid was identified as a potential metal oxide anchor because of the perfect alignment of all three of its donor groups for binding to inorganic surfaces. It can therefore be used in the design of organic linkers for metal oxide based hybrid materials. Optimized and scalable methods for the synthesis of 2-hydroxyisophthalic acid (1) and its 5-substituted derivatives: 5-bromo- (2), 5-sulfooxy- (3), 5-hydroxy- (4), and 5-PEG600 (5) are presented. Dynamic light scattering (DLS) demonstrated that compound 2 inhibits Fe(OH)3 precipitation when FeIII aqueous solutions are titrated with NaOH, while similar titrations in the presence of the structurally-related isophthalic and salicylic acids, both missing the third donor group, show turbidity at pHs as low as 2.3 and 3.5, respectively. The adduct synthesized from 4.5 nm γ-Fe2 O3 nanoparticles and 5 is water-, alcohol- and CH2 Cl2 -soluble, and forms stable aqueous colloids in the pH range of 4.4-8.7. Moreover, at a pH close to neutral these colloids survive at 100 °C, demonstrating the high practicality of 2-hydroxyisophthalic acid for nanoparticulate inorganic/organic hybrid material design.
Collapse
Affiliation(s)
- Rajesh Komati
- Chemistry Department, Xavier University New Orleans, Louisiana 70125 (USA)
| | - Carl A. Mitchell
- Chemistry Department, Xavier University New Orleans, Louisiana 70125 (USA)
| | - Anastasia LeBeaud
- Chemistry Department, Xavier University New Orleans, Louisiana 70125 (USA)
| | - Huy Do
- Chemistry Department, Xavier University New Orleans, Louisiana 70125 (USA)
| | - Galina Z. Goloverda
- Chemistry Department, Xavier University New Orleans, Louisiana 70125 (USA), ,
| | | |
Collapse
|
28
|
Tan L, Liu B, Siemensmeyer K, Glebe U, Böker A. Synthesis of Polystyrene-Coated Superparamagnetic and Ferromagnetic Cobalt Nanoparticles. Polymers (Basel) 2018; 10:E1053. [PMID: 30960978 PMCID: PMC6404081 DOI: 10.3390/polym10101053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 09/13/2018] [Accepted: 09/18/2018] [Indexed: 01/15/2023] Open
Abstract
Polystyrene-coated cobalt nanoparticles (NPs) were synthesized through a dual-stage thermolysis of cobalt carbonyl (Co₂(CO)₈). The amine end-functionalized polystyrene surfactants with varying molecular weight were prepared via atom-transfer radical polymerization technique. By changing the concentration of these polymeric surfactants, Co NPs with different size, size distribution, and magnetic properties were obtained. Transmission electron microscopy characterization showed that the size of Co NPs stabilized with lower molecular weight polystyrene surfactants (Mn = 2300 g/mol) varied from 12⁻22 nm, while the size of Co NPs coated with polystyrene of middle (Mn = 4500 g/mol) and higher molecular weight (Mn = 10,500 g/mol) showed little change around 20 nm. Magnetic measurements revealed that the small cobalt particles were superparamagnetic, while larger particles were ferromagnetic and self-assembled into 1-D chain structures. Thermogravimetric analysis revealed that the grafting density of polystyrene with lower molecular weight is high. To the best of our knowledge, this is the first study to obtain both superparamagnetic and ferromagnetic Co NPs by changing the molecular weight and concentration of polystyrene through the dual-stage decomposition method.
Collapse
Affiliation(s)
- Li Tan
- Fraunhofer Institute for Applied Polymer Research IAP, Geiselbergstr. 69, 14476 Potsdam-Golm, Germany.
- Lehrstuhl für Polymermaterialien und Polymertechnologie, Universität Potsdam, 14476 Potsdam-Golm, Germany.
| | - Bing Liu
- Institute of Chemistry Chinese Academy of Sciences, Beijing 100864, China.
| | | | - Ulrich Glebe
- Fraunhofer Institute for Applied Polymer Research IAP, Geiselbergstr. 69, 14476 Potsdam-Golm, Germany.
| | - Alexander Böker
- Fraunhofer Institute for Applied Polymer Research IAP, Geiselbergstr. 69, 14476 Potsdam-Golm, Germany.
- Lehrstuhl für Polymermaterialien und Polymertechnologie, Universität Potsdam, 14476 Potsdam-Golm, Germany.
| |
Collapse
|
29
|
Bemetz J, Wegemann A, Saatchi K, Haase A, Häfeli UO, Niessner R, Gleich B, Seidel M. Microfluidic-Based Synthesis of Magnetic Nanoparticles Coupled with Miniaturized NMR for Online Relaxation Studies. Anal Chem 2018; 90:9975-9982. [DOI: 10.1021/acs.analchem.8b02374] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Jonas Bemetz
- Institute of Hydrochemistry, Chair of Analytical Chemistry and Water Chemistry, Technical University of Munich, Marchioninistrasse 17, 81377 München, Germany
| | - Andreas Wegemann
- Munich School of BioEngineering, Technical University of Munich, Boltzmannstrasse 11, 85748 Garching, Germany
| | - Katayoun Saatchi
- Faculty of Pharmaceutical Sciences, University of British Columbia, 2405 Wesbrook Mall, Vancouver, BC V6T 1Z3, Canada
| | - Axel Haase
- Munich School of BioEngineering, Technical University of Munich, Boltzmannstrasse 11, 85748 Garching, Germany
| | - Urs O. Häfeli
- Faculty of Pharmaceutical Sciences, University of British Columbia, 2405 Wesbrook Mall, Vancouver, BC V6T 1Z3, Canada
| | - Reinhard Niessner
- Institute of Hydrochemistry, Chair of Analytical Chemistry and Water Chemistry, Technical University of Munich, Marchioninistrasse 17, 81377 München, Germany
| | - Bernhard Gleich
- Munich School of BioEngineering, Technical University of Munich, Boltzmannstrasse 11, 85748 Garching, Germany
| | - Michael Seidel
- Institute of Hydrochemistry, Chair of Analytical Chemistry and Water Chemistry, Technical University of Munich, Marchioninistrasse 17, 81377 München, Germany
| |
Collapse
|
30
|
Yang HY, Li Y, Lee DS. Multifunctional and Stimuli-Responsive Magnetic Nanoparticle-Based Delivery Systems for Biomedical Applications. ADVANCED THERAPEUTICS 2018. [DOI: 10.1002/adtp.201800011] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Hong Yu Yang
- College of Materials Science and Engineering; Jilin Institute of Chemical Technology; Jilin City 132022 P. R. China
| | - Yi Li
- Theranostic Macromolecules Research Center and School of Chemical Engineering; Sungkyunkwan University; Suwon Gyeonggi-do 16419 South Korea
| | - Doo Sung Lee
- Theranostic Macromolecules Research Center and School of Chemical Engineering; Sungkyunkwan University; Suwon Gyeonggi-do 16419 South Korea
| |
Collapse
|
31
|
Magnetic and photocatalytic studies on Zn1−xMgxFe2O4 nanocolloids synthesized by solvothermal reflux method. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2017; 177:95-104. [DOI: 10.1016/j.jphotobiol.2017.10.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 09/29/2017] [Accepted: 10/06/2017] [Indexed: 01/20/2023]
|
32
|
Kertmen A, Torruella P, Coy E, Yate L, Nowaczyk G, Gapiński J, Vogt C, Toprak M, Estradé S, Peiró F, Milewski S, Jurga S, Andruszkiewicz R. Acetate-Induced Disassembly of Spherical Iron Oxide Nanoparticle Clusters into Monodispersed Core-Shell Structures upon Nanoemulsion Fusion. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:10351-10365. [PMID: 28895402 PMCID: PMC5730226 DOI: 10.1021/acs.langmuir.7b02743] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Revised: 09/11/2017] [Indexed: 05/21/2023]
Abstract
It has been long known that the physical encapsulation of oleic acid-capped iron oxide nanoparticles (OA-IONPs) with the cetyltrimethylammonium (CTA+) surfactant induces the formation of spherical iron oxide nanoparticle clusters (IONPCs). However, the behavior and functional properties of IONPCs in chemical reactions have been largely neglected and are still not well-understood. Herein, we report an unconventional ligand-exchange function of IONPCs activated when dispersed in an ethyl acetate/acetate buffer system. The ligand exchange can successfully transform hydrophobic OA-IONP building blocks of IONPCs into highly hydrophilic, acetate-capped iron oxide nanoparticles (Ac-IONPs). More importantly, we demonstrate that the addition of silica precursors (tetraethyl orthosilicate and 3-aminopropyltriethoxysilane) to the acetate/oleate ligand-exchange reaction of the IONPs induces the disassembly of the IONPCs into monodispersed iron oxide-acetate-silica core-shell-shell (IONPs@acetate@SiO2) nanoparticles. Our observations evidence that the formation of IONPs@acetate@SiO2 nanoparticles is initiated by a unique micellar fusion mechanism between the Pickering-type emulsions of IONPCs and nanoemulsions of silica precursors formed under ethyl acetate buffered conditions. A dynamic rearrangement of the CTA+-oleate bilayer on the IONPC surfaces is proposed to be responsible for the templating process of the silica shells around the individual IONPs. In comparison to previously reported methods in the literature, our work provides a much more detailed experimental evidence of the silica-coating mechanism in a nanoemulsion system. Overall, ethyl acetate is proven to be a very efficient agent for an effortless preparation of monodispersed IONPs@acetate@SiO2 and hydrophilic Ac-IONPs from IONPCs.
Collapse
Affiliation(s)
- Ahmet Kertmen
- Department
of Pharmaceutical Technology and Biochemistry, Gdansk University of Technology, G. Narutowicza 11/12, 80-233 Gdansk, Poland
- NanoBioMedical
Centre, Adam Mickiewicz University, Umultowska 85, 61-614 Poznan, Poland
- Department
of Applied Physics, KTH-Royal Institute
of Technology, Roslagstullsbacken
21, SE-106 91 Stockholm, Sweden
| | - Pau Torruella
- LENS-MIND-IN2UB,
Departament d’Electronica, Universitat
de Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain
| | - Emerson Coy
- NanoBioMedical
Centre, Adam Mickiewicz University, Umultowska 85, 61-614 Poznan, Poland
| | - Luis Yate
- CIC
biomaGUNE, Paseo Miramón 182, 20009 Donostia—San Sebastian, Spain
| | - Grzegorz Nowaczyk
- NanoBioMedical
Centre, Adam Mickiewicz University, Umultowska 85, 61-614 Poznan, Poland
| | - Jacek Gapiński
- NanoBioMedical
Centre, Adam Mickiewicz University, Umultowska 85, 61-614 Poznan, Poland
| | - Carmen Vogt
- Department
of Applied Physics, KTH-Royal Institute
of Technology, Roslagstullsbacken
21, SE-106 91 Stockholm, Sweden
| | - Muhammet Toprak
- Department
of Applied Physics, KTH-Royal Institute
of Technology, Roslagstullsbacken
21, SE-106 91 Stockholm, Sweden
| | - Sonia Estradé
- LENS-MIND-IN2UB,
Departament d’Electronica, Universitat
de Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain
| | - Francesca Peiró
- LENS-MIND-IN2UB,
Departament d’Electronica, Universitat
de Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain
| | - Sławomir Milewski
- Department
of Pharmaceutical Technology and Biochemistry, Gdansk University of Technology, G. Narutowicza 11/12, 80-233 Gdansk, Poland
| | - Stefan Jurga
- NanoBioMedical
Centre, Adam Mickiewicz University, Umultowska 85, 61-614 Poznan, Poland
| | - Ryszard Andruszkiewicz
- Department
of Pharmaceutical Technology and Biochemistry, Gdansk University of Technology, G. Narutowicza 11/12, 80-233 Gdansk, Poland
| |
Collapse
|
33
|
Surface design of magnetic nanoparticles for stimuli-responsive cancer imaging and therapy. Biomaterials 2017; 136:98-114. [DOI: 10.1016/j.biomaterials.2017.05.013] [Citation(s) in RCA: 210] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 05/02/2017] [Accepted: 05/07/2017] [Indexed: 12/29/2022]
|
34
|
Photocatalytic study and superparamagnetic nature of Zn-doped MgFe 2 O 4 colloidal size nanocrystals prepared by solvothermal reflux method. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2017; 173:456-465. [DOI: 10.1016/j.jphotobiol.2017.06.025] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 06/16/2017] [Accepted: 06/21/2017] [Indexed: 01/20/2023]
|