1
|
Li KK, Hao M, Kinoshita S, Xia Y. Facile Synthesis and Characterization of Uniform Au Nanospheres Capped by Citrate for Biomedical Applications. Chemistry 2024; 30:e202401144. [PMID: 38924574 DOI: 10.1002/chem.202401144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/20/2024] [Accepted: 06/25/2024] [Indexed: 06/28/2024]
Abstract
We report a simple and versatile method for effectively replacing the toxic ligands, such as cetyltrimethylammonium bromide (CTAB) and cetyltrimethylammonium chloride (CTAC), on the surface of Au nanospheres with different sizes by citrate. The method involves the deposition of an ultrathin shell of fresh Au in the presence of sodium citrate at an adequate concentration. After the ligand exchange process, multiple techniques are used to confirm that the surface of the resultant Au nanospheres is covered by citrate while there is no sign of aggregation. We also demonstrate the mitigation of cell toxicity after exchanging the surface-bound CTAB/CTAC with citrate, opening the door to a range of biomedical applications.
Collapse
Affiliation(s)
- Kei Kwan Li
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, 30332, United States
| | - Min Hao
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, 30332, United States
| | - Seth Kinoshita
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, 30332, United States
| | - Younan Xia
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, 30332, United States
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, 30332, United States
| |
Collapse
|
2
|
Kwan Li K, Wu CY, Yang TH, Qin D, Xia Y. Quantification, Exchange, and Removal of Surface Ligands on Noble-Metal Nanocrystals. Acc Chem Res 2023. [PMID: 37162754 DOI: 10.1021/acs.accounts.3c00116] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
ConspectusSurface ligands are vital to the colloidal synthesis of noble-metal nanocrystals with well-controlled sizes and shapes for various applications. The surface ligands not only dictate the formation of nanocrystals with diverse shapes but also serve as a colloidal stabilizer to prevent the suspended nanocrystals from aggregation during their synthesis or storage. By leveraging the facet selectivity of some surface ligands, one can further control the sites for growth or galvanic replacement to transform presynthesized nanocrystals into complex structures that are otherwise difficult to fabricate using conventional methods. Furthermore, the presence of surface ligands on nanocrystals also facilitates their applications in areas such as sensing, imaging, nanomedicine, and self-assembly. Despite their popular use in enhancing the properties of nanocrystals and thus optimizing their performance in a wide variety of applications, it remains a major challenge to quantitatively determine the coverage density of ligand molecules, not to mention the difficulty of substituting or removing them without compromising the surface structure and aggregation state of the nanocrystals.In this Account, we recapitulate our efforts in developing methods capable of qualitatively or quantitatively measuring, exchanging, and removing the surface ligands adsorbed on noble-metal nanocrystals. We begin with an introduction to the typical interactions between ligand molecules and surface atoms, followed by a discussion of the Langmuir model that can be used to describe the adsorption of surface ligands. It is also emphasized that the adsorption process may become very complex in the case of a polymeric ligand due to the variations in binding configuration and chain conformation. We then highlight the capabilities of various spectroscopy methods to analyze the adsorbed ligands qualitatively or quantitatively. Specifically, surface-enhanced Raman scattering, Fourier transform infrared, and X-ray photoelectron spectroscopy are three examples of qualitative methods that can be used to confirm the absence or presence of a surface ligand. On the other hand, ultraviolet-visible spectroscopy and inductively coupled plasma mass spectrometry can be used for quantitative measurements. Additionally, the coverage density of a ligand can be derived by analyzing the morphological changes during nanocrystal growth. We then discuss how the ligands present on the surface of metal nanocrystals can be exchanged directly or indirectly to meet the requirements of different applications. The former can be done using a ligand with stronger binding, whereas the latter is achieved by introducing a sacrificial shell to the surface of the nanocrystals. Furthermore, we highlight three additional strategies besides simple washing to remove the surface ligands, including calcination, heating in a solution, and UV-ozone treatment. Finally, we showcase three applications of metal nanocrystals in nanomedicine, tumor targeting, and self-assembly by taking advantage of the diversity of surface ligands bearing different functional groups. We also offer perspectives on the challenges and opportunities in realizing the full potential of surface ligands.
Collapse
Affiliation(s)
- Kei Kwan Li
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Chia-Ying Wu
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Tung-Han Yang
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Dong Qin
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Younan Xia
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, United States
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
3
|
Thai VP, Nguyen HD, Saito N, Takahashi K, Sasaki T, Kikuchi T. Precise size-control and functionalization of gold nanoparticles synthesized by plasma-liquid interactions: using carboxylic, amino, and thiol ligands. NANOSCALE ADVANCES 2022; 4:4490-4501. [PMID: 36341298 PMCID: PMC9595108 DOI: 10.1039/d2na00542e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 08/17/2022] [Indexed: 06/16/2023]
Abstract
Using gold nanoparticles (GNPs) in high-standard applications requires GNPs to be fabricated with high-quality size and surface properties. Plasma-liquid interactions (PLIs) have the unique ability to synthesize GNPs without using any reducing agents, and the GNP surface is free of stabilizing agents. It is an extreme advantage that ensures success for the subsequent functionalization processes for GNPs. However, fabricating GNPs via PLIs at the desired size has still been a challenge. Here, we present a simple approach to achieving the precise size-control of GNPs synthesized by PLIs. By adding suitable ligands to the precursor solution, the ligands wrap GNPs which interrupts and slows down the rapid growth of GNPs under PLIs. This way, the size of the GNPs can be precisely controlled by adjusting the ligand concentration. Our results showed that the size of the GNPs in the range of 10-60 nm can be fitted to reciprocal functions of the ligand concentration. The potency of the size-control depends on the type of ligands in the order of thiol > amine > carboxylate. The size-control has been well investigated with four common ligands: l-cysteine, glucosamine, salicylic acid, and terephthalic acid. XPS, FTIR, and zeta potential techniques confirmed the presence of these ligands on GNPs. The results indicated that functionalized ligands could be utilized to control the size and functionalize the GNP surface. Hence our approach could simultaneously achieve two goals: precise size-control and functionalization of GNPs without the ligand-exchange step.
Collapse
Affiliation(s)
- Van-Phuoc Thai
- Faculty of Mechanical Engineering, HCMC University of Technology and Education Ho Chi Minh City 71307 Vietnam
- Department of Electrical, Electronics and Information Engineering, Nagaoka University of Technology Nagaoka 940-2188 Japan
| | - Hieu Duy Nguyen
- Research Center for Advanced Measurement and Characterization, National Institute for Materials Science 1-1 Namiki Tsukuba Ibaraki 305-0044 Japan
| | - Nobuo Saito
- Department of Materials Science and Bioengineering, Nagaoka University of Technology Nagaoka 940-2188 Japan
| | - Kazumasa Takahashi
- Department of Electrical, Electronics and Information Engineering, Nagaoka University of Technology Nagaoka 940-2188 Japan
| | - Toru Sasaki
- Department of Electrical, Electronics and Information Engineering, Nagaoka University of Technology Nagaoka 940-2188 Japan
- Department of Science of Technology Innovation, Nagaoka University of Technology Nagaoka 940-2188 Japan
| | - Takashi Kikuchi
- Department of Electrical, Electronics and Information Engineering, Nagaoka University of Technology Nagaoka 940-2188 Japan
- Department of Nuclear Technology, Nagaoka University of Technology Nagaoka 940-2188 Japan
- Extreme Energy-Density Research Institute, Nagaoka University of Technology Nagaoka 940-2188 Japan
| |
Collapse
|
4
|
Lapresta-Fernández A, Nefeli Athanasopoulou E, Jacob Silva P, Pelin Güven Z, Stellacci F. Site-selective surface enhanced Raman scattering study of ligand exchange reactions on aggregated Ag nanocubes. J Colloid Interface Sci 2022; 616:110-120. [DOI: 10.1016/j.jcis.2022.02.051] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 01/19/2022] [Accepted: 02/12/2022] [Indexed: 01/07/2023]
|
5
|
Fan Q, Yang H, Ge J, Zhang S, Liu Z, Lei B, Cheng T, Li Y, Yin Y, Gao C. Customizable Ligand Exchange for Tailored Surface Property of Noble Metal Nanocrystals. RESEARCH (WASHINGTON, D.C.) 2020; 2020:2131806. [PMID: 32025660 PMCID: PMC6998038 DOI: 10.34133/2020/2131806] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 12/17/2019] [Indexed: 11/06/2022]
Abstract
It is highly desirable, while still challenging, to obtain noble metal nanocrystals with custom capping ligands, because their colloidal synthesis relies on specific capping ligands for the shape control while conventional ligand exchange processes suffer from "the strong replaces the weak" limitation, which greatly hinders their applications. Herein, we report a general and effective ligand exchange approach that can replace the native capping ligands of noble metal nanocrystals with virtually any type of ligands, producing flexibly tailored surface properties. The key is to use diethylamine with conveniently switchable binding affinity to the metal surface as an intermediate ligand. As a strong ligand, it in its original form can effectively remove the native ligands; while protonated, it loses its binding affinity and facilitates the adsorption of new ligands, especially weak ones, onto the metal surface. By this means, the irreversible order in the conventional ligand exchange processes could be overcome. The efficacy of the strategy is demonstrated by mutual exchange of the capping ligands among cetyltrimethylammonium, citrate, polyvinylpyrrolidone, and oleylamine. This novel strategy significantly expands our ability to manipulate the surface property of noble metal nanocrystals and extends their applicability to a wide range of fields, particularly biomedical applications.
Collapse
Affiliation(s)
- Qikui Fan
- Frontier Institute of Science and Technology, State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, China
| | - Hao Yang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu 215123, China
| | - Juan Ge
- Frontier Institute of Science and Technology, State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, China
| | - Shumeng Zhang
- Frontier Institute of Science and Technology, State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, China
| | - Zhaojun Liu
- Frontier Institute of Science and Technology, State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, China
| | - Bo Lei
- Frontier Institute of Science and Technology, State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, China
| | - Tao Cheng
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu 215123, China
| | - Youyong Li
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu 215123, China
| | - Yadong Yin
- Department of Chemistry, University of California, Riverside, California 92521, USA
| | - Chuanbo Gao
- Frontier Institute of Science and Technology, State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, China
| |
Collapse
|
6
|
Zhou S, Huo D, Goines S, Yang TH, Lyu Z, Zhao M, Gilroy KD, Wu Y, Hood ZD, Xie M, Xia Y. Enabling Complete Ligand Exchange on the Surface of Gold Nanocrystals through the Deposition and Then Etching of Silver. J Am Chem Soc 2018; 140:11898-11901. [DOI: 10.1021/jacs.8b06464] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Shan Zhou
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Da Huo
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, United States
| | - Sondrica Goines
- Honors College, College of Charleston, Charleston, South Carolina 29424, United States
| | - Tung-Han Yang
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, United States
| | - Zhiheng Lyu
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Ming Zhao
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Kyle D. Gilroy
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, United States
| | - Yiren Wu
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Zachary D. Hood
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Minghao Xie
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Younan Xia
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, United States
| |
Collapse
|
7
|
Zhang S, Xiong R, Mahmoud MA, Quigley EN, Chang H, El-Sayed M, Tsukruk VV. Dual-Excitation Nanocellulose Plasmonic Membranes for Molecular and Cellular SERS Detection. ACS APPLIED MATERIALS & INTERFACES 2018; 10:18380-18389. [PMID: 29737825 DOI: 10.1021/acsami.8b04817] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
We demonstrate that cellulose nanofiber (CNF) biomaterials with high transparency and mechanical robustness can be combined with gold nanorods to form a multifunctional porous membrane for dual-mode surface-enhanced Raman scattering (SERS) detection of both small molecules and cells. The nanoporous nature of the nanofiber membranes allows for effective molecular filtration and preconcentration of the analytes, further boosting the SERS performance. Specifically, because of the low fluorescence and Raman background of the CNF matrix, extremely low loading density of gold nanorods can be used. The nanorod assemblies within the CNF network can be resonantly driven by a 532 nm laser (transverse plasmonic mode) and near resonantly driven at by a 785 nm laser (longitudinal mode), facilitating dual operational modes at two excitation wavelengths. The shorter wavelength excitation mode yields better Raman scattering efficiency and has been demonstrated to be capable of detecting rhodamine 6G (R6G) dyes down to picomolar concentrations. On the other hand, the longer wavelength excitation mode provides autofluorescence suppression for the better detection of microorganisms such as Escherichia coli, shortening the required integration time from hours to minutes. Upon drastically lowering the spectral background noise and utilizing nanofiltration, the plasmonic CNF membranes reported here show significantly improved SERS sensitivity and detection fidelity as compared to traditional metal, metal oxide, synthetic polymer, and paper SERS substrates.
Collapse
Affiliation(s)
| | | | - Mahmoud A Mahmoud
- Chemical Engineering, Department of Biomedical Engineering , The University of Texas at San Antonio , San Antonio , Texas 78249 , United States
| | | | | | | | | |
Collapse
|
8
|
Kumar S, Sarita, Nehra M, Dilbaghi N, Tankeshwar K, Kim KH. Recent advances and remaining challenges for polymeric nanocomposites in healthcare applications. Prog Polym Sci 2018. [DOI: 10.1016/j.progpolymsci.2018.03.001] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
9
|
Zhang S, Geryak R, Geldmeier J, Kim S, Tsukruk VV. Synthesis, Assembly, and Applications of Hybrid Nanostructures for Biosensing. Chem Rev 2017; 117:12942-13038. [DOI: 10.1021/acs.chemrev.7b00088] [Citation(s) in RCA: 206] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Shuaidi Zhang
- School of Materials Science
and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0245, United States
| | - Ren Geryak
- School of Materials Science
and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0245, United States
| | - Jeffrey Geldmeier
- School of Materials Science
and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0245, United States
| | - Sunghan Kim
- School of Materials Science
and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0245, United States
| | - Vladimir V. Tsukruk
- School of Materials Science
and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0245, United States
| |
Collapse
|