1
|
Getya D, Lucas A, Gitsov I. Composite Hydrogels Based on Poly(Ethylene Glycol) and Cellulose Macromonomers as Fortified Materials for Environmental Cleanup and Clean Water Safeguarding. Int J Mol Sci 2023; 24:ijms24087558. [PMID: 37108723 PMCID: PMC10144984 DOI: 10.3390/ijms24087558] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 03/28/2023] [Accepted: 04/16/2023] [Indexed: 04/29/2023] Open
Abstract
Pollution with organic dyes is one of the most typical environmental problems related to industrial wastewater. The removal of these dyes opens up new prospects for environmental remediation, but the design of sustainable and inexpensive systems for water purification is a fundamental challenge. This paper reports the synthesis of novel fortified hydrogels that can bind and remove organic dyes from aqueous solutions. These hydrophilic conetworks consist of chemically modified poly(ethylene glycol) (PEG-m) and multifunctional cellulose macromonomers ("cellu-mers"). Williamson etherification with 4-vinylbenzyl chloride (4-VBC) is used to modify PEGs of different molecular masses (1, 5, 6, and 10 kDa) and cellobiose, Sigmacell, or Technocell™ T-90 cellulose (products derived from natural renewable resources) with polymerizable/crosslinkable moieties. The networks are formed with good (75%) to excellent (96%) yields. They show good swelling and have good mechanical properties according to rheological tests. Scanning electron microscopy (SEM) reveals that cellulose fibers are visibly embedded into the inner hydrogel structure. The ability to bind and remove organic dyes, such as bromophenol blue (BPB), methylene blue (MB), and crystal violet (CV), from aqueous solutions hints at the potential of the new cellulosic hydrogels for environmental cleanup and clean water safeguarding.
Collapse
Affiliation(s)
- Dariya Getya
- Department of Chemistry, State University of New York-ESF, Syracuse, NY 132101, USA
- The Michael M. Szwarc Polymer Research Institute, Syracuse, NY 13210, USA
| | - Alec Lucas
- Department of Materials Science and Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Ivan Gitsov
- Department of Chemistry, State University of New York-ESF, Syracuse, NY 132101, USA
- The Michael M. Szwarc Polymer Research Institute, Syracuse, NY 13210, USA
- The BioInspired Institute, Syracuse University, Syracuse, NY 13244, USA
| |
Collapse
|
2
|
UV- and thermally-active small bi-functional gelator for creating gradient polymer network coatings. Biointerphases 2023; 18:011001. [PMID: 36627232 DOI: 10.1116/6.0002268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
We present a versatile one-pot synthesis method for creating surface-anchored orthogonal gradient networks using a small bi-functional gelator, 4-azidosulfonylphenethyltrimethoxysilane (4-ASPTMS). The sulfonyl azide (SAz) group of 4-ASPTMS is UV (≤254 nm) and thermally active (≥100 °C) and, thus, enables us to vary the cross-link density in orthogonal directions by controlling the activation of SAz groups via UV and temperature means. We deposit a thin layer (∼200 nm) of a mixture comprising ∼90% precursor polymer and ∼10% 4-ASPTMS in a silicon wafer. Upon UV irradiation or annealing the layers, SAz releases nitrogen by forming singlet and triplet nitrenes that concurrently react with any C-H bond in the vicinity leading to sulfonamide cross-links. Condensation among trimethoxy groups in the bulk connects 4-ASPTMS units and completes the cross-linking. Simultaneously, 4-ASPTMS near the substrate reacts with surface-bound -OH motifs that anchor the cross-linked polymer chains to the substrate. We demonstrate the generation of orthogonal gradient network coatings exhibiting cross-link density (or stiffness) gradients in orthogonal directions using such a simple process.
Collapse
|
3
|
Son D, Hwang H, Fontenot JF, Lee C, Jung JP, Kim M. Tailoring Physical Properties of Dual-Network Acrylamide Hydrogel Composites by Engineering Molecular Structures of the Cross-linked Network. ACS OMEGA 2022; 7:30028-30039. [PMID: 36061674 PMCID: PMC9434611 DOI: 10.1021/acsomega.2c03031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 08/05/2022] [Indexed: 05/07/2023]
Abstract
We demonstrate the impact of engineering molecular structures of poly(acrylamide) (PAAm) and poly(N-isopropylacrylamide) (PNIPAm) hydrogel composites on several physical properties. The network structure was systematically varied by (i) the type and the concentration of difunctional cross-linkers and (ii) the type of native or chemically modified natural polymers, including sodium alginate, methacrylate/dopamine-incorporated porcine skin gelatin and fish skin gelatin, and thiol-incorporated lignosulfonate, which are attractive biopolymers generated in pulp and food industries because of their abundance, rich chemical functionalities, and environmental friendliness. First, we added cross-linking agents of varying lengths at different concentrations to assess how the cross-linking agent modulates the mechanical properties of acrylamide-based composites with alginate. After chemically modifying gelatins from fish or porcine skin with methacrylate and/or dopamine, the acrylamide-based composites were fabricated with the chemically modified gelatins and thiolated lignosulfonate to assess the stress-strain behavior. Furthermore, swelling ratios were measured with respect to temperature change. The mechanical properties were systematically modulated by the changes in the molecular structure, that is, the length of the chemical unit between two end alkene groups in the difunctional cross-linker and the types of the additive natural polymers. Overall, PAAm hydrogel composites exhibit a significant, negative correlation between toughness and the volume fraction of the swollen state and between strain at fracture and the volume fraction of the swollen state. In contrast, PNIPAm hydrogel composites showed positive, but only moderate correlations, which is attributed to the difference in the network polymer structure.
Collapse
Affiliation(s)
- Dongwan Son
- Department
of Chemistry and Chemical Engineering, Inha
University, Incheon 22212, Republic of Korea
| | - Hwanmin Hwang
- Department
of Chemistry and Chemical Engineering, Inha
University, Incheon 22212, Republic of Korea
| | - Jake F. Fontenot
- Department
of Biological Engineering, Louisiana State
University, Baton Rouge, Louisiana 70803, United States
| | - Changjae Lee
- Department
of Chemistry and Chemical Engineering, Inha
University, Incheon 22212, Republic of Korea
| | - Jangwook P. Jung
- Department
of Biological Engineering, Louisiana State
University, Baton Rouge, Louisiana 70803, United States
| | - Myungwoong Kim
- Department
of Chemistry and Chemical Engineering, Inha
University, Incheon 22212, Republic of Korea
| |
Collapse
|
4
|
Mu G, Genzer J, Gorman CB. Degradable Anti-Biofouling Polyester Coatings with Controllable Lifetimes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:1488-1496. [PMID: 35050633 DOI: 10.1021/acs.langmuir.1c02822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
To achieve degradable, anti-biofouling coatings with longer lifetimes and better mechanical properties, we synthesized a series of degradable co-polyesters composed of cyclic ketene acetals, di-(ethylene glycol) methyl ether methacrylate, and a photoactive curing agent, 4-benzoylphenyl methacrylate, using a radical ring-opening polymerization. The precursor co-polyesters were spin-coated on a benzophenone-functionalized silicon wafer to form ca. 60 nm films and drop-casted on glass to form ∼32 μm films. The copolymers were cross-linked via UV irradiation at 365 nm. The degradation of films was studied by immersing the specimens in aqueous buffers of different pH values. The results show that both the pH of buffer solutions and gel fractions of networks affect the degradation rate. The coatings show good bovine serum albumin resistance capability. By adjusting the fractions of monomers, the degradation rate and degree of hydration (e.g., swelling ratio) are controllable.
Collapse
Affiliation(s)
- Gaoyan Mu
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, United States
| | - Jan Genzer
- Department of Chemical & Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695-7905, United States
| | - Christopher B Gorman
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, United States
| |
Collapse
|
5
|
Meinzer JK, Henze M, Pandiyarajan CK, Prucker O, Bothe W, Beyersdorf F, Rühe J. Hemocompatible Surfaces Through Surface-attached Hydrogel Coatings and their Functional Stability in a Medical Environment. ASAIO J 2022; 68:56-63. [PMID: 33883509 DOI: 10.1097/mat.0000000000001426] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Blood compatible materials are a well-researched scientific field as such materials are required in a wide range of applications, for example, in heart-lung machines or ventricular assist devices. Surfaces coated with certain surface-bound neutral, water-swellable polymer networks have the ability to repel cells such as platelets and exhibit a significantly improved hemocompatibility. In this study, we investigate the interaction of platelets from whole blood with surfaces coated with photochemically generated surface-attached polymer networks based on polydimethyl acrylamide. As substrates medical-grade polyurethanes are used, and the networks are formed and attached to the substrate surfaces through C-H insertion reactions. The hydrogel-coated substrates are perfused with blood for extended periods of time. We show that the polymer coating prevents the adhesion of cells even at longer times of blood contact, regardless of the thickness of the coating employed. The surfaces can be sterilized following a standard autoclave procedure without any loss of function. Additionally, it is shown that the samples can be stored at least for 3 months under varying ambient conditions while retaining their functionality. The excellent blood compatibility, the possibility to coat even rather inert polymeric materials and the ability to handle the materials in an environment typical for a medical application make such coatings a promising candidate for future hemocompatible devices.
Collapse
Affiliation(s)
- Julia Kim Meinzer
- From the Department of Cardiovascular Surgery, University Hospital Freiburg, Freiburg, Germany
| | - Michael Henze
- Department of Microsystems Engineering (IMTEK), Laboratory for Chemistry and Physics of Interfaces, University of Freiburg, Freiburg, Germany
| | - Chinnayan Kannan Pandiyarajan
- Department of Microsystems Engineering (IMTEK), Laboratory for Chemistry and Physics of Interfaces, University of Freiburg, Freiburg, Germany
| | - Oswald Prucker
- Department of Microsystems Engineering (IMTEK), Laboratory for Chemistry and Physics of Interfaces, University of Freiburg, Freiburg, Germany
| | - Wolfgang Bothe
- From the Department of Cardiovascular Surgery, University Hospital Freiburg, Freiburg, Germany
| | - Friedhelm Beyersdorf
- From the Department of Cardiovascular Surgery, University Hospital Freiburg, Freiburg, Germany
| | - Jürgen Rühe
- Department of Microsystems Engineering (IMTEK), Laboratory for Chemistry and Physics of Interfaces, University of Freiburg, Freiburg, Germany
| |
Collapse
|
6
|
Jensen MJ, Peel A, Horne R, Chamberlain J, Xu L, Hansen MR, Guymon CA. Antifouling and Mechanical Properties of Photografted Zwitterionic Hydrogel Thin-Film Coatings Depend on the Cross-Link Density. ACS Biomater Sci Eng 2021; 7:4494-4502. [PMID: 34347419 PMCID: PMC8441969 DOI: 10.1021/acsbiomaterials.1c00852] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Zwitterionic polymer networks have shown promise in reducing the short- and long-term inflammatory foreign body response to implanted biomaterials by combining the antifouling properties of zwitterionic polymers with the mechanical stability provided by cross-linking. Cross-link density directly modulates mechanical properties (i.e., swelling behavior, resistance to stress and strain, and lubricity) but theoretically could reduce desirable biological properties (i.e., antifouling) of zwitterionic materials. This work examined the effect of varying poly(ethylene glycol) dimethacrylate cross-linker concentration on protein adsorption, cell adhesion, equilibrium swelling, compressive modulus, and lubricity of zwitterionic thin films. Furthermore, this work aimed to determine the appropriate balance among each of these mechanical and biologic properties to produce thin films that are strong, durable, and lubricious, yet also able to resist biofouling. The results demonstrated nearly a 20-fold reduction in fibrinogen adsorption on zwitterionic thin films photografted on polydimethylsiloxane (PDMS) across a wide range of cross-link densities. Interestingly, either at high or low cross-link densities, increased levels of protein adsorption were observed. In addition to fibrinogen, macrophage and fibroblast cell adhesion was reduced significantly on zwitterionic thin films, with a large range of cross-link densities, resulting in low cell counts. The macrophage count was reduced by 30-fold, while the fibroblast count was reduced nearly 10-fold on grafted zwitterionic films relative to uncoated films. Increasing degrees of cell adhesion were noted as the cross-linker concentration exceeded 50%. As expected, increased cross-link density resulted in a reduced swelling but greater compressive modulus. Notably, the coefficient of friction was dramatically reduced for zwitterionic thin films compared to uncoated PDMS across a broad range of cross-link densities, an attractive property for insertional implants. This work identified a broad range of cross-link densities that provide desirable antifouling effects while also maintaining the mechanical functionality of the thin films.
Collapse
Affiliation(s)
- Megan J Jensen
- Department of Otolaryngology-Head & Neck Surgery, University of Iowa, Iowa City, Iowa 52242, United States
| | - Adreann Peel
- Department of Chemical and Biochemical Engineering, University of Iowa, Iowa City, Iowa 52242, United States
| | - Ryan Horne
- Department of Otolaryngology-Head & Neck Surgery, University of Iowa, Iowa City, Iowa 52242, United States.,Department of Chemical and Biochemical Engineering, University of Iowa, Iowa City, Iowa 52242, United States
| | - Jamison Chamberlain
- Department of Chemical and Biochemical Engineering, University of Iowa, Iowa City, Iowa 52242, United States
| | - Linjing Xu
- Department of Otolaryngology-Head & Neck Surgery, University of Iowa, Iowa City, Iowa 52242, United States
| | - Marlan R Hansen
- Department of Otolaryngology-Head & Neck Surgery, University of Iowa, Iowa City, Iowa 52242, United States.,Department of Neurosurgery, University of Iowa, Iowa City, Iowa 52242, United States.,Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, Iowa 52242, United States
| | - C Allan Guymon
- Department of Chemical and Biochemical Engineering, University of Iowa, Iowa City, Iowa 52242, United States
| |
Collapse
|
7
|
Mu G, Pandiyarajan CK, Lu X, Weaver M, Genzer J, Gorman CB. Dynamic Surfaces-Degradable Polyester Networks that Resist Protein Adsorption. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:8978-8988. [PMID: 34297579 DOI: 10.1021/acs.langmuir.1c00890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
We synthesized a series of novel degradable alternating copolyesters composed of diglycolic anhydride (DGA) and two epoxides, epoxymethoxytriethylene glycol (ETEG) and a photoactive crosslinking agent epoxy benzophenone (EBP). After UV crosslinking, soaking the films in a good solvent (tetrahydrofuran) removed uncrosslinked material, and the resulting film gel fractions were calculated. These network films were then degraded in buffer solutions of varying pH values. The degradation of networks with lower gel fraction (fewer crosslinks) was faster and followed first-order kinetics. In contrast, the denser network degraded slower and followed zeroth-order kinetics. The lower gel fraction networks possess a higher swelling ratio and resist bovine serum albumin (BSA) adsorption better by entropic shielding and faster degradation. In comparison, higher gel fraction networks with higher EBP mole fractions adsorb more BSA due to hydrophobic interactions and slower degradation.
Collapse
Affiliation(s)
- Gaoyan Mu
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-7905, United States
| | - C K Pandiyarajan
- Department of Chemical & Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695-7905, United States
| | - Xiuyuan Lu
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-7905, United States
| | - Matt Weaver
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-7905, United States
| | - Jan Genzer
- Department of Chemical & Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695-7905, United States
| | - Christopher B Gorman
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-7905, United States
| |
Collapse
|
8
|
Qi X, Yang N, Luo Y, Jia X, Zhao J, Feng X, Chen L, Zhao Y. Resveratrol as a plant type antioxidant modifier for polysulfone membranes to improve hemodialysis-induced oxidative stress. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 123:111953. [PMID: 33812581 DOI: 10.1016/j.msec.2021.111953] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 01/24/2021] [Accepted: 02/04/2021] [Indexed: 10/22/2022]
Abstract
Resveratrol (RES) is a plant extract with excellent antioxidant, biocompatibility, anti-inflammatory and inhibition of platelet aggregation. RES-modified polysulfone (PSF) hemodialysis membranes have been fabricated using an immersion phase transformation method. The antioxidant properties of the blend membranes were evaluated in terms of their 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonate) (ABTS+), reactive oxygen species (ROS) free radicals scavenging, total antioxidant capacity (T-AOC) of serum and lipid peroxidation inhibition. The observed results of decreasing DPPH and ABTS+ levels, scavenging ROS, significant inhibition of lipid peroxidation and improving the T-AOC of serum all contribute to the recovery of oxidative balance and the use of RES as an antioxidant modifier. The antioxidant stability of PSF/RES blend membranes was also studied. Moreover, the results of blood compatibility experiments showed that the addition of RES improved the blood compatibility of PSF membrane, inhibited the adhesion of red blood cells and platelets; inhibited complement activation; and reduced the blood cells deformation rate. The dialysis simulation experiment indicated that PSF/RES membrane (M-3) can clear 90.33% urea, 89.50% creatinine, 74.60% lysozyme and retention 90.47% BSA. All these results showed the new PSF/RES blend membranes have potential to be used in the field of hemodialysis to improve oxidative stress status in patients.
Collapse
Affiliation(s)
- Xuchao Qi
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, People's Republic of China
| | - Ning Yang
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, People's Republic of China.
| | - Ying Luo
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, People's Republic of China; Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Institute of Hepatobiliary Disease, Nankai University Affiliated Third Center Hospital, Tianjin 300170, People's Republic of China
| | - Xuemeng Jia
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, People's Republic of China
| | - Junqiang Zhao
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, People's Republic of China
| | - Xia Feng
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, People's Republic of China
| | - Li Chen
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, People's Republic of China.
| | - Yiping Zhao
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, People's Republic of China
| |
Collapse
|
9
|
Umar M, Son D, Arif S, Kim M, Kim S. Multistimuli-Responsive Optical Hydrogel Nanomembranes to Construct Planar Color Display Boards for Detecting Local Environmental Changes. ACS APPLIED MATERIALS & INTERFACES 2020; 12:55231-55242. [PMID: 33232110 DOI: 10.1021/acsami.0c15195] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Planar metal-insulator-metal (MIM) optical cavities are attractive for biochemical and environmental sensing applications, as they offer a cost-effective cavity platform with acceptable performances. However, localized detection and scope of expansion of applicable analytes are still challenging. Here, we report a stimuli-responsive color display board that can exhibit local spectral footprints, for locally applied heat and alcohol presence. A thermoresponsive, optically applicable, and patternable copolymer, poly(N-isopropylacrylamide-r-glycidyl methacrylate), is synthesized and used with a photosensitive cross-linker to produce a responsive insulating layer. This layer is then sandwiched between two nanoporous silver membranes to yield a thermoresponsive MIM cavity. The resonant spectral peak is blue-shifted as the environmental temperature increases, and the dynamic range of the resonant peak is largely affected by the composition and structure of the cross-linker and the copolymer. The localized temperature increase of silk particles with gold nanoparticles by laser heating can be measured by reading the spectral shift. In addition, a free-standing color board can be transferred onto a curved biological tissue sample, allowing us to simultaneously read the temperature of the tissue sample and the concentration of ethanol. The stimuli-responsive MIM provides a new way to optically sense localized environmental temperature and ethanol concentration fluctuations.
Collapse
Affiliation(s)
- Muhammad Umar
- Department of Energy Systems Research, Ajou University, Suwon 16499, Republic of Korea
| | - Dongwan Son
- Department of Chemistry and Chemical Engineering, Inha University, Incheon 22212, Republic of Korea
| | - Sara Arif
- Department of Energy Systems Research, Ajou University, Suwon 16499, Republic of Korea
| | - Myungwoong Kim
- Department of Chemistry and Chemical Engineering, Inha University, Incheon 22212, Republic of Korea
| | - Sunghwan Kim
- Department of Energy Systems Research, Ajou University, Suwon 16499, Republic of Korea
- Department of Physics, Ajou University, Suwon 16499, Republic of Korea
| |
Collapse
|
10
|
Yang B, Chen Y, Li Z, Tang P, Tang Y, Zhang Y, Nie X, Fang C, Li X, Zhang H. Konjac glucomannan/polyvinyl alcohol nanofibers with enhanced skin healing properties by improving fibrinogen adsorption. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 110:110718. [PMID: 32204030 DOI: 10.1016/j.msec.2020.110718] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 01/13/2020] [Accepted: 02/02/2020] [Indexed: 12/18/2022]
Abstract
Skin tissue engineering aims to develop the effective healing strategy to repair the wound by optimizing skin scaffold materials. During the skin wound healing process, fibrin plays an important role due to the specific blood coagulation effect. In this study, the outstanding fibrin capability of konjac glucomannan (KGM) is demonstrated by the molecular dynamics simulation and confirmed by the protein adsorption experiments. A series of konjac glucomannan/polyvinyl alcohol (KGM/PVA) composites with different ratio are fabricated and their role in enhancing the skin repair is tested by in vitro cell culture and in vivo study. The Eads (adsorption energy) between fibrin and KGM is about 30% larger than that between fibrin and PVA. The fibrinogen adsorption rates of PVA and KGM/PVA (5:5) composites can reach about 20% and 60%, respectively. The results show the blood adsorption capacity of KGM/PVA (5:5) composite can reach about 13 g/g. After 7 days of cell culture, the optical density values of 3T3 fibroblasts on KGM/PVA (5:5) composite could reach 0.8. The mechanical properties of the composites are also verified to meet the practical needs. Thus, we propose a potential wound dressing material strategy based on the materials design and the intrinsic properties of KGM.
Collapse
Affiliation(s)
- Bo Yang
- State Key Laboratory of Environmental Friendly Energy Materials, Engineering Research Center of Biomass Materials, Ministry of Education, School of Materials Science and Engineering, Southwest University of Science and Technology, Sichuan 621010, China
| | - Yushan Chen
- State Key Laboratory of Environmental Friendly Energy Materials, Engineering Research Center of Biomass Materials, Ministry of Education, School of Materials Science and Engineering, Southwest University of Science and Technology, Sichuan 621010, China
| | - Zhiqiang Li
- Department of Orthopedics, General Hospital of Western Theater Command, Chengdu 610038, China
| | - Pengfei Tang
- State Key Laboratory of Environmental Friendly Energy Materials, Engineering Research Center of Biomass Materials, Ministry of Education, School of Materials Science and Engineering, Southwest University of Science and Technology, Sichuan 621010, China
| | - Youhong Tang
- Institute for NanoScale Science and Technology and College of Science and Engineering, Flinders University, South Australia 5042, Australia
| | - Yaping Zhang
- State Key Laboratory of Environmental Friendly Energy Materials, Engineering Research Center of Biomass Materials, Ministry of Education, School of Materials Science and Engineering, Southwest University of Science and Technology, Sichuan 621010, China
| | - Xiaoqing Nie
- Fundamental Science on Nuclear Wastes and Environmental Safety Laboratory, Southwest University of Science and Technology, Mianyang 621010, China
| | - Cheng Fang
- Global Centre for Environmental Remediation, University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Xiaodong Li
- Institute of Chemical Materials, China Academy of Engineering Physics (CAEP), Mianyang 621900, China.
| | - Hongping Zhang
- State Key Laboratory of Environmental Friendly Energy Materials, Engineering Research Center of Biomass Materials, Ministry of Education, School of Materials Science and Engineering, Southwest University of Science and Technology, Sichuan 621010, China.
| |
Collapse
|
11
|
Pandiyarajan CK, Genzer J. Thermally Activated One-Pot, Simultaneous Radical and Condensation Reactions Generate Surface-Anchored Network Layers from Common Polymers. Macromolecules 2019. [DOI: 10.1021/acs.macromol.8b02194] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- C. K. Pandiyarajan
- Department of Chemical & Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695-7905, United States
| | - Jan Genzer
- Department of Chemical & Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695-7905, United States
- Global Station for Soft Matter, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Hokkaido 060-0808, Japan
| |
Collapse
|
12
|
Li M, Zhang H, Gao F, Tang Z, Zeng D, Pan Y, Su P, Ruan Y, Xu Y, Weng W. A cyclic cinnamate dimer mechanophore for multimodal stress responsive and mechanically adaptable polymeric materials. Polym Chem 2019. [DOI: 10.1039/c8py01654b] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
A methanone tethered cinnamate dimer manifests both multimodal stress-responsiveness and mechanical adaptability by light.
Collapse
|
13
|
Jelken J, Pandiyarajan CK, Genzer J, Lomadze N, Santer S. Fabrication of Flexible Hydrogel Sheets Featuring Periodically Spaced Circular Holes with Continuously Adjustable Size in Real Time. ACS APPLIED MATERIALS & INTERFACES 2018; 10:30844-30851. [PMID: 30114362 DOI: 10.1021/acsami.8b09580] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
We report on the formation of stimuli-responsive structured hydrogel thin films whose pattern geometry can be adjusted on demand and tuned reversibly by varying solvent quality or by changing temperature. The hydrogel films, ∼100 nm in thickness, were prepared by depositing layers of random copolymers comprising N-isopropylacrylamide and ultraviolet (UV)-active methacryloyloxybenzophenone units onto solid substrates. A two-beam interference pattern technique was used to cross-link the selected areas of the film; any unreacted material was extracted using ethanol after UV light-assisted cross-linking. In this way, we produced nanoholes, perfectly ordered structures with a narrow size distribution, negligible tortuosity, adjustable periodicity, and a high density. The diameter of the circular holes ranged from a few micrometers down to several tens of nanometers; the hole periodicity could be adjusted readily by changing the optical period of the UV interference pattern. The holes were reversibly closed and opened by swelling/deswelling the polymer networks in the presence of ethanol and water, respectively, at various temperatures. The reversible regulation of the hole diameter can be repeated many times within a few seconds. The hydrogel sheet with circular holes periodically arranged may also be transferred onto different substrates and be employed as tunable templates for the deposition of desired substances.
Collapse
Affiliation(s)
- Joachim Jelken
- Institute of Physics and Astronomy , University of Potsdam , 14476 Potsdam , Germany
| | - C K Pandiyarajan
- Department of Chemical & Biomolecular Engineering , North Carolina State University , Raleigh , North Carolina 27695-7905 , United States
| | - Jan Genzer
- Department of Chemical & Biomolecular Engineering , North Carolina State University , Raleigh , North Carolina 27695-7905 , United States
| | - Nino Lomadze
- Institute of Physics and Astronomy , University of Potsdam , 14476 Potsdam , Germany
| | - Svetlana Santer
- Institute of Physics and Astronomy , University of Potsdam , 14476 Potsdam , Germany
| |
Collapse
|
14
|
Li J, Yang L, Fan X, Wang F, Zhang J, Wang Z. Multi-Responsive Behaviors of Copolymers Bearing N-Isopropylacrylamide with or without Phenylboronic Acid in Aqueous Solution. Polymers (Basel) 2018; 10:E293. [PMID: 30966328 PMCID: PMC6415023 DOI: 10.3390/polym10030293] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 02/27/2018] [Accepted: 03/06/2018] [Indexed: 11/16/2022] Open
Abstract
Continuing efforts to develop novel smart materials are anticipated to upgrade the quality of life of humans. Thermo-responsive poly(N-isopropylacrylamide) and glucose-responsive phenylboronic acid-typical representatives-are often integrated as multi-stimuli-sensitive materials, but few are available for side-by-side comparisons with their properties. In this study, both copolymers bearing N-isopropylacrylamide (NIPAAm), with or without 3-acrylamidophenylboronic acid (AAPBA), were synthesized by free radical polymerization, and characterized by Fourier transform infrared spectrometry, nuclear magnetic resonance hydrogen spectroscopy and gel permeation chromatography. Dynamic light scattering was used to analyze and compare the responsive behaviors of the copolymers in different aqueous solutions. Atomic force microscopy was also employed to investigate the apparent morphology changes with particle sizes. The results demonstrated that the introduction of NIPAAm endowed the composite materials with thermosensitivity, whereas the addition of AAPBA lowered the molecular weight of the copolymers, intensified the intermolecular aggregation of the nanoparticles, reduced the lower critical solution temperature (LCST) of the composites, and accordingly allowed the copolymers to respond to glucose. It was also concluded that the responding of smart copolymers to operating parameters can be activated only under special conditions, and copolymer dimension and conformation were affected by inter/intramolecular interactions.
Collapse
Affiliation(s)
- Jiaxing Li
- School of Environmental and Biological Engineering, Liaoning Shihua University, Fushun 113001, China.
| | - Lei Yang
- School of Environmental and Biological Engineering, Liaoning Shihua University, Fushun 113001, China.
| | - Xiaoguang Fan
- College of Engineering, Shenyang Agricultural University, Shenyang 110866, China.
| | - Fei Wang
- School of Environmental and Biological Engineering, Liaoning Shihua University, Fushun 113001, China.
| | - Jing Zhang
- School of Environmental and Biological Engineering, Liaoning Shihua University, Fushun 113001, China.
| | - Zhanyong Wang
- School of Environmental and Biological Engineering, Liaoning Shihua University, Fushun 113001, China.
| |
Collapse
|
15
|
Wei Y, Zhang J, Feng X, Liu D. Bioactive zwitterionic polymer brushes grafted from silicon wafers via SI-ATRP for enhancement of antifouling properties and endothelial cell selectivity. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2017; 28:2101-2116. [DOI: 10.1080/09205063.2017.1376829] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Yu Wei
- School of Chemical and Pharmaceutical Engineering, Huanghuai University, Zhumadian, China
| | - Jingxun Zhang
- School of Chemical and Pharmaceutical Engineering, Huanghuai University, Zhumadian, China
| | - Xiantao Feng
- School of Chemical and Pharmaceutical Engineering, Huanghuai University, Zhumadian, China
| | - Dongyin Liu
- School of Chemical and Pharmaceutical Engineering, Huanghuai University, Zhumadian, China
| |
Collapse
|