1
|
Morla-Folch J, Ranzenigo A, Fayad ZA, Teunissen AJP. Nanotherapeutic Heterogeneity: Sources, Effects, and Solutions. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307502. [PMID: 38050951 PMCID: PMC11045328 DOI: 10.1002/smll.202307502] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/30/2023] [Indexed: 12/07/2023]
Abstract
Nanomaterials have revolutionized medicine by enabling control over drugs' pharmacokinetics, biodistribution, and biocompatibility. However, most nanotherapeutic batches are highly heterogeneous, meaning they comprise nanoparticles that vary in size, shape, charge, composition, and ligand functionalization. Similarly, individual nanotherapeutics often have heterogeneously distributed components, ligands, and charges. This review discusses nanotherapeutic heterogeneity's sources and effects on experimental readouts and therapeutic efficacy. Among other topics, it demonstrates that heterogeneity exists in nearly all nanotherapeutic types, examines how nanotherapeutic heterogeneity arises, and discusses how heterogeneity impacts nanomaterials' in vitro and in vivo behavior. How nanotherapeutic heterogeneity skews experimental readouts and complicates their optimization and clinical translation is also shown. Lastly, strategies for limiting nanotherapeutic heterogeneity are reviewed and recommendations for developing more reproducible and effective nanotherapeutics provided.
Collapse
Affiliation(s)
- Judit Morla-Folch
- Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, 10029, NY, USA
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Anna Ranzenigo
- Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, 10029, NY, USA
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Zahi Adel Fayad
- Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, 10029, NY, USA
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Abraham Jozef Petrus Teunissen
- Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, 10029, NY, USA
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| |
Collapse
|
2
|
Chen Q, Zheng J. Self-assembly and structures of nanoscale double emulsion droplets through coarse-grained molecular dynamics simulations. SOFT MATTER 2023; 19:7731-7743. [PMID: 37789812 DOI: 10.1039/d3sm00656e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Examples of self-assembled multiple emulsion droplets on the nanometre scale are very rare. In this work, we use coarse-grained (CG) molecular dynamics simulations to study the self-assembly of ternary mixtures consisting of water, n-heptane, and nonionic surfactant tetraethylene glycol monododecyl ether (C12E4). The water volume fractions studied are 1%, 3%, and 5%, respectively. Various nanoscale emulsions are obtained in a spontaneous process. When the water/surfactant volume ratio vm/s = 1.0/1.0, the obtained emulsion droplets are identified as oil-in-water-in-oil (O/W/O) double types, consisting of an oil core, an inner surfactant layer, a water layer, and an outer surfactant layer. The water molecules are distributed around the hydrophilic ends of the surfactants, while the hydrophobic ends of the surfactants wrap the oil cores and penetrate into the oil bulk. Hydrogen-bond interactions among water and the hydrophilic ends of the surfactants form cross-links that stabilize the double emulsion droplets. The sizes of all the oil cores inside the droplets are <6 nm in diameter, even with the highest water volume fraction of 5%. Both the concentration of free water molecules on the order of 10-6 mol/cm3 and the favourable energy change during emulsion formation indicate that the emulsion droplets are thermodynamically stable. In contrast, for vm/s = 1.0/5.5, no double emulsion but a simple water-in-oil emulsion was observed, with morphologies evolving from oblate to bicontinuous phases with an increase in the water volume fraction from 1% to 5%. Our coarse-grained molecular dynamics simulations provide valuable insight for the preparation of nanoscale double emulsions and the characterization of their structures.
Collapse
Affiliation(s)
- Qiubo Chen
- Institute of High Performance Computing (IHPC), Agency for Science, Technology and Research (A*STAR), 1 Fusionopolis Way, #16-16 Connexis, Singapore 138632, Republic of Singapore.
| | - Jianwei Zheng
- Institute of High Performance Computing (IHPC), Agency for Science, Technology and Research (A*STAR), 1 Fusionopolis Way, #16-16 Connexis, Singapore 138632, Republic of Singapore.
| |
Collapse
|
3
|
da Silva BD, do Rosário DKA, Weitz DA, Conte-Junior CA. Essential oil nanoemulsions: Properties, development, and application in meat and meat products. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.01.026] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
4
|
Nanoemulsions: Techniques for the preparation and the recent advances in their food applications. INNOV FOOD SCI EMERG 2022. [DOI: 10.1016/j.ifset.2021.102914] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
5
|
Schmidt BVKJ. Multicompartment Hydrogels. Macromol Rapid Commun 2022; 43:e2100895. [PMID: 35092101 DOI: 10.1002/marc.202100895] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/27/2022] [Indexed: 11/11/2022]
Abstract
Hydrogels belong to the most promising materials in polymer and materials science at the moment. As they feature soft and tissue-like character as well as high water-content, a broad range of applications are addressed with hydrogels, e.g. tissue engineering and wound dressings but also soft robotics, drug delivery, actuators and catalysis. Ways to tailor hydrogel properties are crosslinking mechanism, hydrogel shape and reinforcement, but new features can be introduced by variation of hydrogel composition as well, e.g. via monomer choice, functionalization or compartmentalization. Especially, multicompartment hydrogels drive progress towards complex and highly functional soft materials. In the present review the latest developments in multicompartment hydrogels are highlighted with a focus on three types of compartments, i.e. micellar/vesicular, droplets or multi-layers including various sub-categories. Furthermore, several morphologies of compartmentalized hydrogels and applications of multicompartment hydrogels will be discussed as well. Finally, an outlook towards future developments of the field will be given. The further development of multicompartment hydrogels is highly relevant for a broad range of applications and will have a significant impact on biomedicine and organic devices. This article is protected by copyright. All rights reserved.
Collapse
|
6
|
Guo J, Jiang J, Gu X, Li X, Liu T. Encapsulation of β-carotene in calcium alginate hydrogels templated by oil-in-water-in-oil (O/W/O) double emulsions. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2020.125548] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
7
|
Zhang J, Shen B, Chen L, Chen L, Mo J, Feng J. Antibacterial and Antifouling Hybrid Ionic-Covalent Hydrogels with Tunable Mechanical Properties. ACS APPLIED MATERIALS & INTERFACES 2019; 11:31594-31604. [PMID: 31407568 DOI: 10.1021/acsami.9b08870] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Because of their self-recovery ability and fatigue resistance, double-network (DN) hydrogels with hybrid ionical-covalent cross-linking have received wide attention. In this work, by a simple "one-pot" method, a novel kind of hybrid ionic-covalent chitosan/poly(sulfobetaine methacrylate) (CS/PSBMA) DN hydrogels was prepared. The hydrogels showed high tensile strength (2.0 MPa), strong elastic modulus (0.5 MPa), fast self-recovery ability as well as excellent fatigue resistance, high mechanical strength, and toughness retention rate after soaking in water for 24 h. Additionally, the mechanical properties of the DN gels were enhanced after stretch and relaxation because of the rearrangement of the CS network. More excitingly, because of the antifouling feature of PSBMA and the inherent antibacterial property of CS, the hybrid DN hydrogels demonstrated a "repel and kill" effect on microorganisms. The CS/PSBMA DN hydrogels may find potential applications in biomedical fields, such as artificial connective tissues, implantable devices, and wound dressing.
Collapse
Affiliation(s)
- Jing Zhang
- College of Materials Science and Engineering , Zhejiang University of Technology , Hangzhou , Zhejiang 310014 , P. R. China
| | - Biao Shen
- College of Materials Science and Engineering , Zhejiang University of Technology , Hangzhou , Zhejiang 310014 , P. R. China
| | - Lingdong Chen
- College of Materials Science and Engineering , Zhejiang University of Technology , Hangzhou , Zhejiang 310014 , P. R. China
| | - Liqun Chen
- College of Materials Science and Engineering , Zhejiang University of Technology , Hangzhou , Zhejiang 310014 , P. R. China
| | - Jiaying Mo
- College of Materials Science and Engineering , Zhejiang University of Technology , Hangzhou , Zhejiang 310014 , P. R. China
| | - Jie Feng
- College of Materials Science and Engineering , Zhejiang University of Technology , Hangzhou , Zhejiang 310014 , P. R. China
| |
Collapse
|
8
|
Zarepour A, Zarrabi A, Larsen KL. Fabricating β-cyclodextrin based pH-responsive nanotheranostics as a programmable polymeric nanocapsule for simultaneous diagnosis and therapy. Int J Nanomedicine 2019; 14:7017-7038. [PMID: 31564863 PMCID: PMC6722460 DOI: 10.2147/ijn.s221598] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 08/15/2019] [Indexed: 12/16/2022] Open
Abstract
Background Fabrication of a smart drug delivery system that could dramatically increase the efficiency of chemotherapeutic drugs and reduce the side effects is still a challenge for pharmaceutical researchers. By the emergence of nanotechnology, a huge window was opened towards this goal, and a wide type of nanocarriers were introduced for delivering the chemotherapeutic to the cancer cells, among them are cyclodextrins with the ability to host different types of hydrophobic bioactive molecules through inclusion complexation process. Aim The aim of this study is to design and fabricate a pH-responsive theranostic nanocapsule based on cyclodextrin supramolecular nano-structure. Materials and methods This nanostructure contains iron oxide nanoparticles in the core surrounded with three polymeric layers including polymeric β-cyclodextrin, polyacrylic acid conjugated to sulfadiazine, and polyethylenimine functionalized with β-cyclodextrin. Sulfadiazine is a pH-responsive hydrophobic component capable of making inclusion complex with β-cyclodextrin available in the first and third layers. Doxorubicin, as an anti-cancer drug model, was chosen and the drug loading and release pattern were determined at normal and acidic pH. Moreover, the biocompatibility of the nanocapsule (with/without drug component) was examined using different techniques such as MTT assay, complement activation, coagulation assay, and hemolysis. Results The results revealed the successful preparation of a spherical nanocapsule with mean size 43±1.5 nm and negatively charge of −43 mV that show 160% loading efficacy. Moreover, the nanocapsule has an on/off switching release pattern in response to pH that leads to drug released in low acidic pH. The results of the biocompatibility tests indicated that this nano drug delivery system had no effect on blood and immune components while it could affect cancer cells even at very low concentrations (0.3 μg mL−1). Conclusion The obtained results suggest that this is a “switchable” theranostic nanocapsule with potential application as an ideal delivery system for simultaneous cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Atefeh Zarepour
- Department of Biotechnology, Faculty of Advanced Sciences and Technologies, University of Isfahan, Isfahan, Iran
| | - Ali Zarrabi
- Department of Biotechnology, Faculty of Advanced Sciences and Technologies, University of Isfahan, Isfahan, Iran
| | - Kim Lambertsen Larsen
- Department of Chemistry and Bioscience, Faculty of Chemistry, Aalborg University, Aalborg, Denmark
| |
Collapse
|
9
|
Akram S, Wang X, Vandamme TF, Collot M, Rehman AU, Messaddeq N, Mély Y, Anton N. Toward the Formulation of Stable Micro and Nano Double Emulsions through a Silica Coating on Internal Water Droplets. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:2313-2325. [PMID: 30630316 DOI: 10.1021/acs.langmuir.8b03919] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Delivery systems able to coencapsulate both hydrophilic and hydrophobic species are of great interest in both fundamental research and industrial applications. Water-in-oil-in-water (w1/O/W2) emulsions are interesting systems for this purpose, but they suffer from limited stability. In this study, we propose an innovative approach to stabilize double emulsions by the synthesis of a silica membrane at the water/oil interface of the primary emulsion (i.e., inner w1/O emulsion). This approach allows the formulation of stable double emulsions through a two-step process, enabling high encapsulation efficiencies of model hydrophilic dyes encapsulated in the internal droplets. This approach also decreases the scale of the double droplets up to the nanoscale, which is not possible without silica stabilization. Different formulation and processing parameters were explored in order to optimize the methodology. Physicochemical characterization was performed by dynamic light scattering, encapsulation efficiency measurements, release profiles, and optical and transmission electron microscopies.
Collapse
|
10
|
Li Q, Dang L, Li S, Liu X, Guo Y, Lu C, Kou X, Wang Z. Preparation of α-Linolenic-Acid-Loaded Water-in-Oil-in-Water Microemulsion and Its Potential as a Fluorescent Delivery Carrier with a Free Label. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:13020-13030. [PMID: 30507107 DOI: 10.1021/acs.jafc.8b04678] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Our previous work has demonstrated that α-linolenic acid (ALA)-loaded oil-in-water (O/W) microemulsion could enhance ALA antioxidant capacity. Meanwhile, we also observed that synthesized microemulsion itself had fluorescence. In this work, we have prepared a multiple water-in-oil-in-water (W/O/W) microemulsion to further enhance ALA antioxidant capacity and activate this delivery carrier application potential with a free label. The compositions of primary water-in-oil (W/O) microemulsion were obtained using pseudo-ternary phase diagrams, and then W/O/W microemulsion was prepared adopting the "two-step heterotherm method". The conductivity of W/O/W microemulsion was measured to lie between 250.0 and 350.0 μs/cm. The spherical droplets with a mean particle diameter of 10.0-20.0 nm were confirmed by transmission electron microscopy and dynamic light scattering. Nuclear magnetic resonance confirmed that ALA diffused to the multiple water-oily interface simultaneously. In addition, the in vitro release and antioxidant capacity measurements of ALA-loaded W/O/W microemulsion concluded the sustained-release effect and excellent antioxidant capacity. The fluorescent intensity of W/O/W microemulsion was markedly increased in comparison to O/W microemulsion. The synthesized microemulsion could lead to important applications and have advantages of a label-free fluorescent carrier for optical imaging purposes.
Collapse
Affiliation(s)
- Qing Li
- School of Chemical Engineering and Technology , Tianjin University , Tianjin 300072 , People's Republic of China
| | - Leping Dang
- School of Chemical Engineering and Technology , Tianjin University , Tianjin 300072 , People's Republic of China
| | - Sen Li
- School of Chemical Engineering and Technology , Tianjin University , Tianjin 300072 , People's Republic of China
| | - Xiaoxue Liu
- School of Chemical Engineering and Technology , Tianjin University , Tianjin 300072 , People's Republic of China
| | - Yun Guo
- School of Chemical Engineering and Technology , Tianjin University , Tianjin 300072 , People's Republic of China
| | - Chao Lu
- School of Chemical Engineering and Technology , Tianjin University , Tianjin 300072 , People's Republic of China
| | - Xiaohong Kou
- School of Chemical Engineering and Technology , Tianjin University , Tianjin 300072 , People's Republic of China
| | - Zhanzhong Wang
- School of Chemical Engineering and Technology , Tianjin University , Tianjin 300072 , People's Republic of China
| |
Collapse
|
11
|
Lee H, Roh YH, Kim HU, Bong KW. Low temperature flow lithography. BIOMICROFLUIDICS 2018; 12:054105. [PMID: 30310526 PMCID: PMC6153115 DOI: 10.1063/1.5047016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 08/29/2018] [Indexed: 05/06/2023]
Abstract
Flow lithography (FL) is a microfluidic technique distinguished for its ability to produce hydrogel microparticles of various geometrical and chemical designs. While FL is typically performed in room temperature, this paper reports a new technique called low temperature flow lithography that uses low synthesis temperature to increase the degree of polymerization of microparticles without compromising other aspects of flow lithography. We suggest that decreased oxygen diffusivity in low temperature is responsible for the increase in polymerization. Microparticles that exhibit a higher degree of polymerization display a more developed polymer network, ultimately resulting in a more defined morphology, higher incorporation of materials of interest, and improved functional performance. This work demonstrates the increase in the degree of polymerization by examining the temperature effect on both the physical and chemical structures of particles. We show applications of this technique in synthesizing thin microparticles and enhancing microparticle-based detection of microRNA. Low temperature FL offers a simple and easy method of improving the degree of polymerization, which can be implemented in a wide range of FL applications.
Collapse
Affiliation(s)
- H Lee
- Chemical and Biological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Y H Roh
- Chemical and Biological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - H U Kim
- Chemical and Biological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - K W Bong
- Chemical and Biological Engineering, Korea University, Seoul 02841, Republic of Korea
| |
Collapse
|
12
|
Zhang M, Corona PT, Ruocco N, Alvarez D, Malo de Molina P, Mitragotri S, Helgeson ME. Controlling Complex Nanoemulsion Morphology Using Asymmetric Cosurfactants for the Preparation of Polymer Nanocapsules. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:978-990. [PMID: 29087721 DOI: 10.1021/acs.langmuir.7b02843] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Complex nanoemulsions, comprising multiphase nanoscale droplets, hold considerable potential advantages as vehicles for encapsulation and delivery as well as templates for nanoparticle synthesis. Although methods exist to controllably produce complex emulsions on the microscale, very few methods exist to produce them on the nanoscale. Here, we examine a recently developed method involving a combination of high-energy emulsification with conventional cosurfactants to produce oil-water-oil (O/W/O) complex nanoemulsions. Specifically, we study in detail how the composition of conventional ethoxylated cosurfactants Span80 and Tween20 influences the morphology and structure of the resulting complex nanoemulsions in the water-cyclohexane system. Using a combination of small-angle neutron scattering and cryo-electron microscopy, we find that the cosurfactant composition controls the generation of complex droplet morphologies including core-shell and multicore-shell O/W/O nanodroplets, resulting in an effective state diagram for the selection of nanoemulsion morphology. Additionally, the cosurfactant composition can be used to control the thickness of the water shell contained within the complex nanodroplets. We hypothesize that this degree of control, despite the highly nonequilibrium nature of the nanoemulsions, is ultimately determined by a competition between the opposing spontaneous curvature of the two cosurfactants, which strongly influences the interfacial curvature of the nanodroplets as a result of their ultralow interfacial tension. This is supported by a correlation between cosurfactant compositions that produces complex nanoemulsions and those that produce homogeneous mixed micelles in equilibrium surfactant-cyclohexane solutions. Ultimately, we show that the formation of complex O/W/O nanoemulsions is weakly perturbed upon the addition of hydrophilic polymer precursors, facilitating their use as templates for the formation of polymer nanocapsules.
Collapse
Affiliation(s)
- Mengwen Zhang
- Department of Chemical Engineering, University of California , Santa Barbara, California 93106, United States
| | - Patrick T Corona
- Department of Chemical Engineering, University of California , Santa Barbara, California 93106, United States
| | - Nino Ruocco
- Department of Chemical Engineering, University of California , Santa Barbara, California 93106, United States
| | - David Alvarez
- Department of Chemical Engineering, University of California , Santa Barbara, California 93106, United States
| | - Paula Malo de Molina
- Department of Chemical Engineering, University of California , Santa Barbara, California 93106, United States
| | - Samir Mitragotri
- Department of Chemical Engineering, University of California , Santa Barbara, California 93106, United States
| | - Matthew E Helgeson
- Department of Chemical Engineering, University of California , Santa Barbara, California 93106, United States
| |
Collapse
|