1
|
Han Y, Kou M, Quan K, Wang J, Zhang H, Ihara H, Takafuji M, Qiu H. Enantioselective Glutamic Acid Discrimination and Nanobiological Imaging by Chiral Fluorescent Silicon Nanoparticles. Anal Chem 2024; 96:2173-2182. [PMID: 38261544 DOI: 10.1021/acs.analchem.3c05150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
Enantioselective discrimination of chiral molecules is essential in chemistry, biology, and medical science due to the configuration-dependent activities of enantiomers. Therefore, identifying a specific amino acid and distinguishing it from its enantiomer by using nanomaterials with outstanding performance are of great significance. Herein, blue- and green-emitting chiral silicon nanoparticles named bSiNPs and gSiNPs, respectively, with excellent water solubility, salt resistance, pH stability, photobleaching resistance, biocompatibility, and ability to promote soybean germination, were fabricated in a facile one-step method. Especially, chiral gSiNPs presented excellent fluorescence recognition ability for glutamic acid enantiomers within 1 min, and the enantiomeric recognition difference factor was as high as 9.0. The mechanism for enantiomeric fluorescence recognition was systematically explored by combining the fluorescence spectra with density functional theory (DFT) calculation. Presumably, the different Gibbs free energy and hydrogen-bonding interaction of the chiral recognition module with glutamic acid enantiomers mainly contributed to the difference in the fluorescence signals. Most noteworthy was the fact that the chiral gSiNPs can showcase not only the ability to recognize l- and d-glutamic acids in living cells but also the test strips fabricated by soaking gSiNPs can be applied for d-glutamic acid visual detection. As a result, this study provided insights into the design of multifunctional chiral sensing nanoplatforms for enantiomeric detection and other applications.
Collapse
Affiliation(s)
- Yangxia Han
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Manchang Kou
- College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Kaijun Quan
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Juanjuan Wang
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Haixia Zhang
- College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Hirotaka Ihara
- Department of Applied Chemistry and Biochemistry, Kumamoto University, Kumamoto 860-8555, Japan
| | - Makoto Takafuji
- Department of Applied Chemistry and Biochemistry, Kumamoto University, Kumamoto 860-8555, Japan
| | - Hongdeng Qiu
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
2
|
Mellado P, Concha A, Hofhuis K, Tapia I. Intrinsic chiral field as vector potential of the magnetic current in the zig-zag lattice of magnetic dipoles. Sci Rep 2023; 13:1245. [PMID: 36690858 PMCID: PMC9870917 DOI: 10.1038/s41598-023-28545-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 01/19/2023] [Indexed: 01/24/2023] Open
Abstract
Chiral magnetic insulators manifest novel phases of matter where the sense of rotation of the magnetization is associated with exotic transport phenomena. Effective control of such phases and their dynamical evolution points to the search and study of chiral fields like the Dzyaloshinskii-Moriya interaction. Here we combine experiments, numerics, and theory to study a zig-zag dipolar lattice as a model of an interface between magnetic in-plane layers with a perpendicular magnetization. The zig-zag lattice comprises two parallel sublattices of dipoles with perpendicular easy plane of rotation. The dipolar energy of the system is exactly separable into a sum of symmetric and antisymmetric long-range exchange interactions between dipoles, where the antisymmetric coupling generates a nonlocal Dzyaloshinskii-Moriya field which stabilizes winding textures with the form of chiral solitons. The Dzyaloshinskii-Moriya interaction acts as a vector potential or gauge field of the magnetic current and gives rise to emergent magnetic and electric fields that allow the manifestation of the magnetoelectric effect in the system.
Collapse
Affiliation(s)
- Paula Mellado
- Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez, Santiago, Chile.
| | - Andrés Concha
- grid.440617.00000 0001 2162 5606Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez, Santiago, Chile
| | - Kevin Hofhuis
- grid.5801.c0000 0001 2156 2780Laboratory for Mesoscopic Systems, Department of Materials, ETH Zurich, Zurich, Switzerland ,grid.5991.40000 0001 1090 7501Laboratory for Multiscale Materials Experiments, Paul Scherrer Institute, Villigen PSI, Switzerland ,grid.47100.320000000419368710Department of Applied Physics, Yale University, New Haven, USA
| | - Ignacio Tapia
- grid.443909.30000 0004 0385 4466Departamento de Física, Facultad de Ciencias, Universidad de Chile, Casilla 653, Santiago, Chile
| |
Collapse
|
3
|
A novel regulable enantioselective platform based on porphyrin tubular cage assemblies with controllable handedness. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
4
|
Simple Self-Assembly Strategy of Nanospheres on 3D Substrate and Its Application for Enhanced Textured Silicon Solar Cell. NANOMATERIALS 2021; 11:nano11102581. [PMID: 34685020 PMCID: PMC8541415 DOI: 10.3390/nano11102581] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/25/2021] [Accepted: 09/27/2021] [Indexed: 11/16/2022]
Abstract
Nanomaterials and nanostructures provide new opportunities to achieve high-performance optical and optoelectronic devices. Three-dimensional (3D) surfaces commonly exist in those devices (such as light-trapping structures or intrinsic grains), and here, we propose requests for nanoscale control over nanostructures on 3D substrates. In this paper, a simple self-assembly strategy of nanospheres for 3D substrates is demonstrated, featuring controllable density (from sparse to close-packed) and controllable layer (from a monolayer to multi-layers). Taking the assembly of wavelength-scale SiO2 nanospheres as an example, it has been found that textured 3D substrate promotes close-packed SiO2 spheres compared to the planar substrate. Distribution density and layers of SiO2 coating can be well controlled by tuning the assembly time and repeating the assembly process. With such a versatile strategy, the enhancement effects of SiO2 coating on textured silicon solar cells were systematically examined by varying assembly conditions. It was found that the close-packed SiO2 monolayer yielded a maximum relative efficiency enhancement of 9.35%. Combining simulation and macro/micro optical measurements, we attributed the enhancement to the nanosphere-induced concentration and anti-reflection of incident light. The proposed self-assembly strategy provides a facile and cost-effective approach for engineering nanomaterials at 3D interfaces.
Collapse
|
5
|
Antipin IS, Alfimov MV, Arslanov VV, Burilov VA, Vatsadze SZ, Voloshin YZ, Volcho KP, Gorbatchuk VV, Gorbunova YG, Gromov SP, Dudkin SV, Zaitsev SY, Zakharova LY, Ziganshin MA, Zolotukhina AV, Kalinina MA, Karakhanov EA, Kashapov RR, Koifman OI, Konovalov AI, Korenev VS, Maksimov AL, Mamardashvili NZ, Mamardashvili GM, Martynov AG, Mustafina AR, Nugmanov RI, Ovsyannikov AS, Padnya PL, Potapov AS, Selektor SL, Sokolov MN, Solovieva SE, Stoikov II, Stuzhin PA, Suslov EV, Ushakov EN, Fedin VP, Fedorenko SV, Fedorova OA, Fedorov YV, Chvalun SN, Tsivadze AY, Shtykov SN, Shurpik DN, Shcherbina MA, Yakimova LS. Functional supramolecular systems: design and applications. RUSSIAN CHEMICAL REVIEWS 2021; 90:895-1107. [DOI: 10.1070/rcr5011] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The interest in functional supramolecular systems for the design of innovative materials and technologies, able to fundamentally change the world, is growing at a high pace. The huge array of publications that appeared in recent years in the global literature calls for systematization of the structural trends inherent in the formation of these systems revealed at different molecular platforms and practically useful properties they exhibit. The attention is concentrated on the topics related to functional supramolecular systems that are actively explored in institutes and universities of Russia in the last 10–15 years, such as the chemistry of host–guest complexes, crystal engineering, self-assembly and self-organization in solutions and at interfaces, biomimetics and molecular machines and devices.The bibliography includes 1714 references.
Collapse
|
6
|
Yang C, Zhu X, Liu M. Helicenes at Air/Water Interface: Spreading Film and Metal Ion Induced a Helical Ring Nanostructure. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:10241-10247. [PMID: 34379419 DOI: 10.1021/acs.langmuir.1c01810] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Two enantiomeric hydrohelicenes containing a hydroxyl group and a π-conjugated nonplanar structure are assembled at the air/water interface. These molecules are found to form spreading films with well-defined surface pressure-area isotherms. Upon transferring the spreading film onto the mica surface, porous nanostructures are observed. The spreading film can be transferred onto solid substrates by the Langmuir-Schaefer (LS) method and the transferred LS films display optical activity as revealed by the circular dichroism (CD) spectra. The P- and M-hydrohelicene enantiomers showed mirrored CD spectra, suggesting that the chirality of the LS films was controlled by molecular chirality. When these molecules are spread on the aqueous solution containing metal ions such as Ag+, Cu2+, and Zn2+, a clear twisted ring nanostructure, which is similar to the Möbius strip, is observed. It is suggested that the interaction between the hydroxyl groups of helicenes and metal ions induced such a ring nanostructure.
Collapse
Affiliation(s)
- Chenchen Yang
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, No. 2 Zhongguancun Beiyijie, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Xuefeng Zhu
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, No. 2 Zhongguancun Beiyijie, Beijing 100190, P. R. China
| | - Minghua Liu
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, No. 2 Zhongguancun Beiyijie, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
7
|
Jiang Y, Chen X, Xiao Z, Wang T, Chen Y. Achiral double-decker phthalocyanine assemble into helical nanofibers for electrochemically chiral recognition of tryptophan. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2020.126040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
8
|
Yi Y, Liu L, Wu Y, Zhu G. Fluorescent and Colorimetric Dual-signal Enantiomers Recognition via Enzyme Catalysis: The Case of Glucose Enantiomers Using Nitrogen-doped Silicon Quantum Dots/Silver Probe Coupled with β-D-Glucose Oxidase. ANAL SCI 2021; 37:275-281. [PMID: 32863333 DOI: 10.2116/analsci.20p228] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Chiral enantiomer recognition is important but facing tough challenges in the direct quantitative determination for complex samples. In this work, via chosing nitrogen-doped silicon quantum dots (N-SiQD) as optical nanoprobe and constructing N-SiQD/silver (N-SiQD/Ag NPs) complex, β-D-GOx as model enzyme and glucose enantiomers as analytes, a fluorescent and colorimetric dual-signal chiral sensing strategy was proposed herein for chiral recognition based on specific enzyme-catalyzed reaction. N-SiQD can exhibit intense fluorescence, while it can be quenched by Ag NPs owing to the formation of N-SiQD/Ag NPs. In the presence of glucose isomer, D-glucose is catalytically hydrolyzed by β-D-GOx to form H2O2 owing to the specific enzyme catalyzed reaction between D-glucose and β-D-GOx, and H2O2 can etch Ag NPs from the N-SiQD/Ag NPs probe to change the solution color from brown to colorless and restore the N-SiQD fluorescence; while these phenomena cannot be caused by L-glucose, a dual-signal sensing method was thus constructed for recognizing glucose enantiomers. It is believed that the chiral enantiomers recognition strategy via enzyme catalysis has great application for selective and quantificational detection of enantiomers in the complex sample system.
Collapse
Affiliation(s)
- Yinhui Yi
- School of the Environment and Safety Engineering, Jiangsu University.,State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University
| | - Lirong Liu
- School of the Environment and Safety Engineering, Jiangsu University
| | - Yuntao Wu
- School of the Environment and Safety Engineering, Jiangsu University
| | - Gangbing Zhu
- School of the Environment and Safety Engineering, Jiangsu University.,Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences.,State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University
| |
Collapse
|
9
|
Tian J, Wang Y, Chen Y, Zhao F, Jiang Y, Yu S, Yu X, Pu L. Chemoselective and enantioselective fluorescent recognition of glutamic and aspartic acids. Chem Commun (Camb) 2020; 56:15012-15015. [PMID: 33185210 DOI: 10.1039/d0cc06736a] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A highly chemoselective as well as enantioselective fluorescent probe has been discovered for the recognition of the acidic amino acids, including glutamic acid and aspartic acid. This study has established a novel amino acid recognition mechanism by an aldehyde-based fluorescent probe.
Collapse
Affiliation(s)
- Jun Tian
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Pu L. Enantioselective Fluorescent Recognition of Free Amino Acids: Challenges and Opportunities. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202003969] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Lin Pu
- Department of Chemistry University of Virginia Charlottesville Virginia 22904 USA
| |
Collapse
|
11
|
Pu L. Enantioselective Fluorescent Recognition of Free Amino Acids: Challenges and Opportunities. Angew Chem Int Ed Engl 2020; 59:21814-21828. [PMID: 32602243 DOI: 10.1002/anie.202003969] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 05/08/2020] [Indexed: 02/02/2023]
Abstract
Fluorescent probes that can discriminate enantiomers of amino acids in organic media or aqueous solution are discussed. This Minireview focuses on recent progress in the studies of three classes of probes including those made of cyclodextrins, 1,1'-binaphthyl compounds, and nanomaterials, and uses them to illustrate the design strategies, applications, and limitations in this area. These probes are potentially useful for rapid analysis of asymmetric reactions for amino acid synthesis as well as the real-time imaging of amino acids in biological systems. The challenges in these applications are analyzed. Working in this field of enantioselective fluorescent recognition of amino acids offers great opportunities to make new scientific discoveries and to develop important practical applications.
Collapse
Affiliation(s)
- Lin Pu
- Department of Chemistry, University of Virginia, Charlottesville, Virginia, 22904, USA
| |
Collapse
|
12
|
Bettini S, Valli L, Giancane G. Applications of Photoinduced Phenomena in Supramolecularly Arranged Phthalocyanine Derivatives: A Perspective. Molecules 2020; 25:molecules25163742. [PMID: 32824375 PMCID: PMC7463501 DOI: 10.3390/molecules25163742] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/12/2020] [Accepted: 08/13/2020] [Indexed: 01/10/2023] Open
Abstract
This review focuses on the description of several examples of supramolecular assemblies of phthalocyanine derivatives differently functionalized and interfaced with diverse kinds of chemical species for photo-induced phenomena applications. In fact, the role of different substituents was investigated in order to tune peculiar aggregates formation as well as, with the same aim, the possibility to interface these derivatives with other molecular species, as electron donor and acceptor, carbon allotropes, cyclodextrins, protein cages, drugs. Phthalocyanine photo-physical features are indeed really interesting and appealing but need to be preserved and optimized. Here, we highlight that the supramolecular approach is a versatile method to build up very complex and functional architectures. Further, the possibility to minimize the organization energy and to facilitate the spontaneous assembly of the molecules, in numerous examples, has been demonstrated to be more useful and performing than the covalent approach.
Collapse
Affiliation(s)
- Simona Bettini
- Department of Engineering of Innovation, University of Salento, Via per Monteroni, 73100 Lecce, Italy;
- National Interuniversity Consortium for Materials Science and Technology, INSTM, Via Giuseppe Giusti, 9, 50121 Florence, Italy;
| | - Ludovico Valli
- National Interuniversity Consortium for Materials Science and Technology, INSTM, Via Giuseppe Giusti, 9, 50121 Florence, Italy;
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Via per Monteroni, 73100 Lecce, Italy
- Correspondence:
| | - Gabriele Giancane
- National Interuniversity Consortium for Materials Science and Technology, INSTM, Via Giuseppe Giusti, 9, 50121 Florence, Italy;
- Department of Cultural Heritage, University of Salento, Via D. Birago, 64, 73100 Lecce, Italy
| |
Collapse
|
13
|
Li Q, Yang X, Zhang L, Wang Y, Kong J, Qi W, Liang Y, Su R, He Z. Thermally Induced Structural Transition of Peptide Nanofibers into Nanoparticles with Enhanced Fluorescence Properties. Chempluschem 2020; 85:1523-1528. [DOI: 10.1002/cplu.202000116] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 06/24/2020] [Indexed: 01/09/2023]
Affiliation(s)
- Qing Li
- State Key Laboratory of Chemical Engineering School of Chemical Engineering and TechnologyTianjin University Tianjin 300072 P. R. China
| | - Xin Yang
- State Key Laboratory of Chemical Engineering School of Chemical Engineering and TechnologyTianjin University Tianjin 300072 P. R. China
| | - Liwei Zhang
- State Key Laboratory of Chemical Engineering School of Chemical Engineering and TechnologyTianjin University Tianjin 300072 P. R. China
| | - Yuefei Wang
- State Key Laboratory of Chemical Engineering School of Chemical Engineering and TechnologyTianjin University Tianjin 300072 P. R. China
- Tianjin Key Laboratory of Membrane Science and Desalination TechnologyTianjin University Tianjin 300072 P. R. China
| | - Jia Kong
- State Key Laboratory of Chemical Engineering School of Chemical Engineering and TechnologyTianjin University Tianjin 300072 P. R. China
| | - Wei Qi
- State Key Laboratory of Chemical Engineering School of Chemical Engineering and TechnologyTianjin University Tianjin 300072 P. R. China
- Collaborative Innovation Centre of Chemical Science and Engineering (Tianjin) Tianjin 300072 P. R. China
- Tianjin Key Laboratory of Membrane Science and Desalination TechnologyTianjin University Tianjin 300072 P. R. China
| | - Yaoyu Liang
- State Key Laboratory of Chemical Engineering School of Chemical Engineering and TechnologyTianjin University Tianjin 300072 P. R. China
| | - Rongxin Su
- State Key Laboratory of Chemical Engineering School of Chemical Engineering and TechnologyTianjin University Tianjin 300072 P. R. China
- Collaborative Innovation Centre of Chemical Science and Engineering (Tianjin) Tianjin 300072 P. R. China
- Tianjin Key Laboratory of Membrane Science and Desalination TechnologyTianjin University Tianjin 300072 P. R. China
| | - Zhimin He
- State Key Laboratory of Chemical Engineering School of Chemical Engineering and TechnologyTianjin University Tianjin 300072 P. R. China
| |
Collapse
|
14
|
Jiang Y, Wang C, Lu G, Zhao L, Gong L, Wang T, Qi D, Chen Y, Jiang J. Compartmentalization within Nanofibers of Double‐Decker Phthalocyanine Induces High‐Performance Sensing in both Aqueous Solution and the Gas Phase. Chemistry 2019; 25:16207-16213. [DOI: 10.1002/chem.201903553] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 09/30/2019] [Indexed: 11/07/2022]
Affiliation(s)
- Yuying Jiang
- Department of ChemistryBeijing Key Laboratory for Science and Application of Functional Molecular and Crystalline MaterialsUniversity of Science and Technology Beijing Beijing 100083 China
| | - Chiming Wang
- Department of ChemistryBeijing Key Laboratory for Science and Application of Functional Molecular and Crystalline MaterialsUniversity of Science and Technology Beijing Beijing 100083 China
| | - Guang Lu
- Department of ChemistryBeijing Key Laboratory for Science and Application of Functional Molecular and Crystalline MaterialsUniversity of Science and Technology Beijing Beijing 100083 China
| | - Luyang Zhao
- Department of ChemistryBeijing Key Laboratory for Science and Application of Functional Molecular and Crystalline MaterialsUniversity of Science and Technology Beijing Beijing 100083 China
| | - Lei Gong
- Department of ChemistryBeijing Key Laboratory for Science and Application of Functional Molecular and Crystalline MaterialsUniversity of Science and Technology Beijing Beijing 100083 China
| | - Tianyu Wang
- Department of ChemistryBeijing Key Laboratory for Science and Application of Functional Molecular and Crystalline MaterialsUniversity of Science and Technology Beijing Beijing 100083 China
| | - Dongdong Qi
- Department of ChemistryBeijing Key Laboratory for Science and Application of Functional Molecular and Crystalline MaterialsUniversity of Science and Technology Beijing Beijing 100083 China
| | - Yanli Chen
- School of ScienceChina University of Petroleum (East China) Qingdao 266580 China
| | - Jianzhuang Jiang
- Department of ChemistryBeijing Key Laboratory for Science and Application of Functional Molecular and Crystalline MaterialsUniversity of Science and Technology Beijing Beijing 100083 China
| |
Collapse
|
15
|
McRae EK, Nevonen DE, McKenna SA, Nemykin VN. Binding and photodynamic action of the cationic zinc phthalocyanines with different types of DNA toward understanding of their cancer therapy activity. J Inorg Biochem 2019; 199:110793. [DOI: 10.1016/j.jinorgbio.2019.110793] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 07/22/2019] [Accepted: 07/23/2019] [Indexed: 12/13/2022]
|
16
|
Revuelta-Maza MÁ, Torres T, Torre GDL. Synthesis and Aggregation Studies of Functional Binaphthyl-Bridged Chiral Phthalocyanines. Org Lett 2019; 21:8183-8186. [DOI: 10.1021/acs.orglett.9b02718] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | - Tomás Torres
- Universidad Autónoma de Madrid, c/Francisco Tomás y Valiente 7, 28049 Madrid, Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Instituto Madrileño de Estudios Avanzados (IMDEA)-Nanociencia, c/Faraday 9, Cantoblanco, 28049 Madrid, Spain
| | - Gema de la Torre
- Universidad Autónoma de Madrid, c/Francisco Tomás y Valiente 7, 28049 Madrid, Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, 28049 Madrid, Spain
| |
Collapse
|
17
|
Yang C, Chen P, Meng Y, Liu M. Spreading Films of Anthracene-Containing Gelator Molecules at the Air/Water Interface: Nanorod and Circularly Polarized Luminescence. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:2772-2779. [PMID: 30681345 DOI: 10.1021/acs.langmuir.8b03478] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Two enantiomeric gelator molecules containing anthracene moiety were assembled at the air/water interface and several new insights into the films of the gelator molecules were revealed. When these molecules were spread at the air/water interface, they formed the nanorod structured monolayers and could be subsequently transferred to the solid substrate. The formed Langmuir-Blodgett (LB) films showed both optical activity and circularly polarized luminescence (CPL) due to the chirality transfer upon assembling. The dissymmetric factors of the CPL in the LB films were enhanced nearly 5 times than those in gel systems. Through the formation of the organized nanofilms, the arrangement of the molecules become compact and the film showed enantioselectivity to chiral species, whereas the molecular solution could not.
Collapse
Affiliation(s)
- Chenchen Yang
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry , Chinese Academy of Sciences , No. 2 ZhongGuanCun BeiYiJie , Beijing 100190 , P. R. China
- University of Chinese Academy of Sciences , Beijing 100049 , P. R. China
| | - Penglei Chen
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry , Chinese Academy of Sciences , No. 2 ZhongGuanCun BeiYiJie , Beijing 100190 , P. R. China
- University of Chinese Academy of Sciences , Beijing 100049 , P. R. China
| | - Yan Meng
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication , National Center for Nanoscience and Technology (NCNST) , No. 11 ZhongGuanCun BeiYiTiao , Beijing 100190 , P. R. China
| | - Minghua Liu
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry , Chinese Academy of Sciences , No. 2 ZhongGuanCun BeiYiJie , Beijing 100190 , P. R. China
- University of Chinese Academy of Sciences , Beijing 100049 , P. R. China
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication , National Center for Nanoscience and Technology (NCNST) , No. 11 ZhongGuanCun BeiYiTiao , Beijing 100190 , P. R. China
| |
Collapse
|
18
|
Kong S, Song Y, Bai L, Tang X, Meng F. Supramolecular complexes based on liquid-crystalline polysiloxanes and copper phthalocyanine. POLYM INT 2018. [DOI: 10.1002/pi.5720] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Shengwen Kong
- College of Science; Northeastern University; Shenyang China
| | - Ying Song
- College of Science; Northeastern University; Shenyang China
| | - Lu Bai
- College of Science; Northeastern University; Shenyang China
| | - Xinqiao Tang
- College of Science; Northeastern University; Shenyang China
| | - Fanbao Meng
- College of Science; Northeastern University; Shenyang China
| |
Collapse
|
19
|
Wang X, Liu C, Wang T, Jiang J. Air–water interfacial assembly of all-aromatic-substituted double-decker phthalocyanine forms aligned nanoparticles. J PORPHYR PHTHALOCYA 2018. [DOI: 10.1142/s1088424618500712] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In this manuscript, unexpected supramolecular assembly of [Formula: see text]-conjugated molecules containing complex aromatic substituents was investigated. The air–water interfacial assembly of double-decker phthalocyanines containing sixteen phenol substituents (Ce(Pc2)[Formula: see text] and Y(Pc2)[Formula: see text] form aligned nanoparticles. Depending on the different surface pressure, the Ce(Pc2)[Formula: see text] self-assembled nanostructures can be regulated thoroughly. Although Ce(Pc2)[Formula: see text] and Y(Pc2)[Formula: see text] have only aromatic substituent groups, no H- or J-aggregation of [Formula: see text]-conjugated systems can be detected from the UV-vis spectra of the assemblies of these double-decker phthalocyanines. When the nanostructures of these assemblies were changed greatly, no corresponding changes of UV-vis spectra and FT-IR spectra could be detected. These unusual results can be understood from the balance between the hydrophilicity of aromatic substituents and the ether linkages of double-decker phthalocyanines and the surface pressure, and open new. approaches for supramolecular assembly of complex [Formula: see text]-conjugated systems.
Collapse
Affiliation(s)
- Xiqian Wang
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry, University of Science and Technology Beijing, Beijing 100083, China
| | - Chenxi Liu
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry, University of Science and Technology Beijing, Beijing 100083, China
| | - Tianyu Wang
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry, University of Science and Technology Beijing, Beijing 100083, China
| | - Jianzhuang Jiang
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry, University of Science and Technology Beijing, Beijing 100083, China
| |
Collapse
|
20
|
Chen X, Wang C, Chen Y, Qi D, Jiang J. Vibrational spectra of alkylamino substituted phthalocyanine compounds: Density functional theory calculations. J PORPHYR PHTHALOCYA 2018. [DOI: 10.1142/s1088424618500591] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The infrared spectra of tetrakis(dibutylamino) phthalocyanine and octakis(dibutylamino) compounds were studied via theoretical investigations. The results reveal deep fusion of the peripheral alkylamino moieties with the phthalocyanine chromophore in the tetrakis(dibutylamino)- but not in the octakis(dibutylamino)-phthalocyanine compounds. The successive localized molecular orbitals (LMO) and bond order analyses give support for the infrared vibrational results.
Collapse
Affiliation(s)
- Xin Chen
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Chiming Wang
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Yuxiang Chen
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Dongdong Qi
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Jianzhuang Jiang
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| |
Collapse
|
21
|
Stefan-van Staden RI, Mitrofan G. Molecular enantiorecognition of l-glucose and d-glucose in whole blood samples. Chirality 2018; 30:680-685. [PMID: 29498440 DOI: 10.1002/chir.22843] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Revised: 02/01/2018] [Accepted: 02/02/2018] [Indexed: 11/11/2022]
Abstract
In the past years, enantioanalysis became very important for clinical analysis; biomarkers/substances of biomedical importance with chiral structure should be analyzed and their presence correlated with the specific disorder. Therefore, we developed a method for the assay of l- and d-glucose, based on molecular recognition of l- and d-glucose. While for d-glucose there are many methods to assess its quantity, the l-enantiomer is not routinely detected by standard methods. Two stochastic microsensors based on the immobilization of Copper(II)phthalocyanine and Ni(II)phthalocyanine, in natural diamond powder, were proposed for the enantioanalysis of glucose. The proposed methods proved to have high sensitivities and were able to be used for determination of concentrations as low as 2.5 pg mL-1 for d-glucose and as low as 2.5 fg mL-1 for l-glucose. The enatioanalysis was performed with good results in whole blood samples collected from diabetic patients.
Collapse
Affiliation(s)
- Raluca-Ioana Stefan-van Staden
- Laboratory of Electrochemistry and PATLAB Bucharest, National Institute of Research for Electrochemistry and Condensed Matter, Bucharest, Romania.,Faculty of Applied Chemistry and Materials Science, Polytechnic University Bucharest, Bucharest, Romania
| | - Grigorina Mitrofan
- Faculty of Applied Chemistry and Materials Science, Polytechnic University Bucharest, Bucharest, Romania
| |
Collapse
|
22
|
Takimoto K, Tamura K, Watanabe Y, Yamagishi A, Sato H. Microscopic chiral pockets in a tris(chelated) iridium(iii) complex as sites for dynamic enantioselective quenching. NEW J CHEM 2018. [DOI: 10.1039/c7nj04688j] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
A microscopic pocket surrounded by bulky ligands in Ir(iii) acted as a site discriminating the chirality of an approaching molecule.
Collapse
Affiliation(s)
- Kazuyoshi Takimoto
- Department of Chemistry
- Graduate School of Science and Engineering
- Ehime University
- Matsuyama 790-8577
- Japan
| | - Kenji Tamura
- National Institute for Materials Science
- Tsukuba 305-0044
- Japan
| | - Yutaka Watanabe
- Department of Chemistry
- Graduate School of Science and Engineering
- Ehime University
- Matsuyama 790-8577
- Japan
| | | | - Hisako Sato
- Department of Chemistry
- Graduate School of Science and Engineering
- Ehime University
- Matsuyama 790-8577
- Japan
| |
Collapse
|
23
|
Wang X, Liu C, Jiang Y, Wang C, Wang T, Bai M, Jiang J. Room temperature chiral reorganization of interfacial assembly of achiral double-decker phthalocyanine. Phys Chem Chem Phys 2018; 20:7223-7229. [DOI: 10.1039/c7cp08647d] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Chiral reorganization with amplification of the Cotton effect is achieved at room temperature and atmospheric pressure in the solid-state.
Collapse
Affiliation(s)
- Xiqian Wang
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials
- Department of Chemistry
- University of Science and Technology Beijing
- Beijing 100083
- China
| | - Chenxi Liu
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials
- Department of Chemistry
- University of Science and Technology Beijing
- Beijing 100083
- China
| | - Yuying Jiang
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials
- Department of Chemistry
- University of Science and Technology Beijing
- Beijing 100083
- China
| | - Chiming Wang
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials
- Department of Chemistry
- University of Science and Technology Beijing
- Beijing 100083
- China
| | - Tianyu Wang
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials
- Department of Chemistry
- University of Science and Technology Beijing
- Beijing 100083
- China
| | - Ming Bai
- Marine College
- Shandong University at Weihai
- Weihai 264209
- China
| | - Jianzhuang Jiang
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials
- Department of Chemistry
- University of Science and Technology Beijing
- Beijing 100083
- China
| |
Collapse
|