1
|
Chen J, Hao M, Hou W, Zhang J, Xin Y, Zhu R, Gu Z, Zhang L, Guo X. Self-Assembly-Activated Engineered Magnetic Biohybrids Loaded with Phosphotriesterase for Sustainable Decontamination and Detection of Organophosphorus Pesticides. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:23173-23182. [PMID: 39387801 DOI: 10.1021/acs.jafc.4c06190] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Phosphotriesterase (PTE) biodegradation of organophosphorus pesticides (OPs) is an efficient and environmentally friendly method. However, the instability and nonreusability of free PTE become the key factors restricting its practical application. In this study, a novel cross-linked magnetic hybrid nanoflower (CLMNF) was prepared. Molecular dynamics (MD) simulations were performed to further investigate the enhanced catalytic efficiency of the enzymes. The recovery rate of enzyme activity was 298% due to the large specific surface area and metal ion activation effect. More importantly, the immobilization scheme greatly improved the stability and reuse performance of the catalyst and simplified the recovery operation. CLMNFs retained 90.32% relative activity after 5 consecutive cycles and maintained 84.8% relative activity after 30 days at 25 °C. It has a good practical application prospect in the degradation and detection of OPs. Consequently, the immobilized enzyme as a biocatalyst has the characteristics of high efficiency, stability, safety, and easy separation, establishing the key step in a biodetoxification system to control organophosphorus contamination in food and the environment.
Collapse
Affiliation(s)
- Jianxiong Chen
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
- JITRI Future Food Technology Research Institute Co., Ltd, Yixing 214200, China
| | - Mengyao Hao
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
- JITRI Future Food Technology Research Institute Co., Ltd, Yixing 214200, China
| | - Wenjie Hou
- State Key Laboratory of NBC Protection for Civilian, Research Institute of Chemical Defense, Academy of Military Science, Beijing 102205, China
| | - Jingjing Zhang
- State Key Laboratory of NBC Protection for Civilian, Research Institute of Chemical Defense, Academy of Military Science, Beijing 102205, China
| | - Yu Xin
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
- JITRI Future Food Technology Research Institute Co., Ltd, Yixing 214200, China
| | - Rui Zhu
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
- JITRI Future Food Technology Research Institute Co., Ltd, Yixing 214200, China
| | - Zhenghua Gu
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
- JITRI Future Food Technology Research Institute Co., Ltd, Yixing 214200, China
| | - Liang Zhang
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
- JITRI Future Food Technology Research Institute Co., Ltd, Yixing 214200, China
| | - Xuan Guo
- State Key Laboratory of NBC Protection for Civilian, Research Institute of Chemical Defense, Academy of Military Science, Beijing 102205, China
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| |
Collapse
|
2
|
Patil PD, Salokhe S, Karvekar A, Suryavanshi P, Phirke AN, Tiwari MS, Nadar SS. Microfluidic based continuous enzyme immobilization: A comprehensive review. Int J Biol Macromol 2023; 253:127358. [PMID: 37827414 DOI: 10.1016/j.ijbiomac.2023.127358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/05/2023] [Accepted: 10/09/2023] [Indexed: 10/14/2023]
Abstract
Conventional techniques for enzyme immobilization suffer from suboptimal activity recovery due to insufficient enzyme loading and inadequate stability. Furthermore, these techniques are time-consuming and involve multiple steps which limit the applicability of immobilized enzymes. In contrast, the use of microfluidic devices for enzyme immobilization has garnered significant attention due to its ability to precisely control immobilization parameters, resulting in highly active immobilized enzymes. This approach offers several advantages, including reduced time and energy consumption, enhanced mass-heat transfer, and improved control over the mixing process. It maintains the superior structural configuration in immobilized form which ultimately affects the overall efficiency. The present review article comprehensively explains the design, construction, and various methods employed for enzyme immobilization using microfluidic devices. The immobilized enzymes prepared using these techniques demonstrated excellent catalytic activity, remarkable stability, and outstanding recyclability. Moreover, they have found applications in diverse areas such as biosensors, biotransformation, and bioremediation. The review article also discusses potential future developments and foresees significant challenges associated with enzyme immobilization using microfluidics, along with potential remedies. The development of this advanced technology not only paves the way for novel and innovative approaches to enzyme immobilization but also allows for the straightforward scalability of microfluidic-based techniques from an industrial standpoint.
Collapse
Affiliation(s)
- Pravin D Patil
- Department of Basic Science & Humanities, SVKM'S NMIMS Mukesh Patel School of Technology Management & Engineering, Mumbai, Maharashtra 400056, India
| | - Sakshi Salokhe
- Department of Biotechnology Engineering, Kolhapur Institute of Technology's College of Engineering, Kolhapur 416 234, India
| | - Aparna Karvekar
- Department of Biotechnology Engineering, Kolhapur Institute of Technology's College of Engineering, Kolhapur 416 234, India
| | - Prabhavati Suryavanshi
- Department of Biotechnology Engineering, Kolhapur Institute of Technology's College of Engineering, Kolhapur 416 234, India
| | - Ajay N Phirke
- Department of Basic Science & Humanities, SVKM'S NMIMS Mukesh Patel School of Technology Management & Engineering, Mumbai, Maharashtra 400056, India
| | - Manishkumar S Tiwari
- Department of Data Science, SVKM'S NMIMS Mukesh Patel School of Technology Management & Engineering, Mumbai, Maharashtra 400056, India
| | - Shamraja S Nadar
- Department of Chemical Engineering, Institute of Chemical Technology, Matunga (E), Mumbai 400019, India.
| |
Collapse
|
3
|
Almulaiky YQ, Alkabli J, El-Shishtawy RM. Sustainable Immobilization of β-Glucosidase onto Silver Ions and AgNPs-Loaded Acrylic Fabric with Enhanced Stability and Reusability. Polymers (Basel) 2023; 15:4361. [PMID: 38006085 PMCID: PMC10674166 DOI: 10.3390/polym15224361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/02/2023] [Accepted: 11/03/2023] [Indexed: 11/26/2023] Open
Abstract
Modified polymer design has attracted significant attention for enzyme immobilization, offering promising applications. In this study, amine-terminated polymers were synthesized by incorporating functional groups into polyacrylonitrile using hexamethylenediamine. This work highlights the successful enzyme immobilization strategy using modified polymers, offering improved stability and expanded operational conditions for potential biotechnological applications. The resulting amino groups were utilized to capture silver ions, which were subsequently converted to silver nanoparticles (AgNPs). The obtained materials, AgNPs@TA-HMDA (acrylic textiles coated silver nanoparticles AgNPs) and Ag(I)@TA-HMDA (acrylic textiles coated with Ag ion) were employed as supports for β-glucosidase enzyme immobilization. The highest immobilization yields (IY%) were achieved with AgNPs@TA-HMDA at 92%, followed by Ag(I)@TA-HMDA at 79.8%, resulting in activity yields (AY%) of 81% and 73%, respectively. Characterization techniques such as FTIR, FE-SEM, EDX, TG/DTG, DSC, and zeta potential were employed to investigate the structural composition, surface morphologies, elemental composition, thermal properties, and surface charge of the support materials. After 15 reuses, the preservation percentages decreased to 76% for AgNPs@TA-HMDA/β-Glu and 65% for Ag(I)@TA-HMDA/β-Glu. Storage stability revealed that the decrease in activity for the immobilized enzymes was smaller than the free enzyme. The optimal pH for the immobilized enzymes was broader (pH 5.5 to 6.5) compared to the free enzyme (pH 5.0), and the optimal temperature for the immobilized enzymes was 60 °C, slightly higher than the free enzyme's optimal temperature of 50 °C. The kinetic analysis showed a slight increase in Michaelis constant (Km) values for the immobilized enzymes and a decrease in maximum velocity (Vmax), turnover number (Kcat), and specificity constant (Kcat/Km) values compared to the free enzyme. Through extensive characterization, we gained valuable insights into the structural composition and properties of the modified polymer supports. This research significantly contributes to the development of efficient biotechnological processes by advancing the field of enzyme immobilization and offering valuable knowledge for its potential applications.
Collapse
Affiliation(s)
- Yaaser Q. Almulaiky
- Department of Chemistry, College of Science and Arts at Khulis, University of Jeddah, Jeddah 21921, Saudi Arabia
| | - J. Alkabli
- Department of Chemistry, College of Science and Arts at Alkamil, University of Jeddah, Jeddah 23218, Saudi Arabia;
| | - Reda M. El-Shishtawy
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| |
Collapse
|
4
|
Szerlauth A, Varga Á, Madácsy T, Sebők D, Bashiri S, Skwarczynski M, Toth I, Maléth J, Szilagyi I. Confinement of Triple-Enzyme-Involved Antioxidant Cascade in Two-Dimensional Nanostructure. ACS MATERIALS LETTERS 2023; 5:565-573. [PMID: 36776691 PMCID: PMC9906813 DOI: 10.1021/acsmaterialslett.2c00580] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 01/12/2023] [Indexed: 06/18/2023]
Abstract
Application of antioxidant enzymes in medical or industrial processes is limited due to their high sensitivity to environmental conditions. Incorporation of such enzymes in nanostructures provides a promising route to obtain highly efficient and robust biocatalytic system to scavenge reactive oxygen species (ROS). Here, this question was addressed by confinement of superoxide dismutase (SOD), horseradish peroxidase (HRP), and catalase (CAT) enzymes into nanostructures containing polyelectrolyte building blocks (alginate (Alg) and trimethyl chitosan (TMC)) and delaminated layered double hydroxide (dLDH) nanoparticle support. The nanocomposite possessed excellent structural and colloidal stability, while antioxidant tests revealed that the enzymes remained active upon immobilization and the developed composite greatly reduced intracellular oxidative stress in two-dimensional cell cultures. Moreover, it effectively prevented hydrogen peroxide-induced double stranded DNA breaks, which is a common consequence of oxidative stress. The results provide important tools to design complex nanostructures with multienzymatic antioxidant activities for ROS scavenging.
Collapse
Affiliation(s)
- Adel Szerlauth
- MTA-SZTE
Lendület Biocolloids Research Group, Interdisciplinary Excellence
Centre, University of Szeged, H-6720 Szeged, Hungary
| | - Árpád Varga
- MTA-SZTE
Lendület Epithelial Cell Signaling and Secretion Research Group,
Interdisciplinary Excellence Centre, University
of Szeged, H-6720 Szeged, Hungary
| | - Tamara Madácsy
- MTA-SZTE
Lendület Epithelial Cell Signaling and Secretion Research Group,
Interdisciplinary Excellence Centre, University
of Szeged, H-6720 Szeged, Hungary
| | - Dániel Sebők
- Department
of Applied and Environmental Chemistry, University of Szeged, H-6720 Szeged, Hungary
| | - Sahra Bashiri
- School
of Chemistry and Molecular Biosciences, University of Queensland, QLD-4072 St. Lucia, Australia
| | - Mariusz Skwarczynski
- School
of Chemistry and Molecular Biosciences, University of Queensland, QLD-4072 St. Lucia, Australia
| | - Istvan Toth
- School
of Chemistry and Molecular Biosciences, University of Queensland, QLD-4072 St. Lucia, Australia
| | - József Maléth
- MTA-SZTE
Lendület Epithelial Cell Signaling and Secretion Research Group,
Interdisciplinary Excellence Centre, University
of Szeged, H-6720 Szeged, Hungary
| | - Istvan Szilagyi
- MTA-SZTE
Lendület Biocolloids Research Group, Interdisciplinary Excellence
Centre, University of Szeged, H-6720 Szeged, Hungary
| |
Collapse
|
5
|
Hong X, Cholko T, Chang CEA, Wheeldon I. Multiscale simulation-guided design of enzyme bioconjugates with enhanced catalysis. CHEM CATALYSIS 2022; 2:2691-2703. [PMID: 36569428 PMCID: PMC9784400 DOI: 10.1016/j.checat.2022.09.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Biopolymer-scaffold modification is widely used to enhance enzyme catalysis. A central challenge is predicting the effects of scaffold position on enzyme properties. Here, we use a computational-experimental approach to develop a model for the effects of DNA scaffold position on enzyme kinetics. Using phosphotriesterase modified with a 20bp dsDNA, we demonstrate that conjugation position is as important as the scaffold's chemistry and structure. Multiscale simulations predict the effective substrate concentration increases close to the scaffold, which has μM-strength binding to the substrate. Kinetic analysis shows that the effective concentration that the scaffold provides is best utilized when positioned next to, but not blocking, the active site. At ~5Å distance between scaffold and active site a 7-fold increase in k cat /K M was achieved. A model that accounts for the substrate concentration as well PTE-DNA geometry accurately captures the kinetic enhancements, enabling prediction of the effect across a range of DNA positions.
Collapse
Affiliation(s)
- Xiao Hong
- Department of Biochemistry, University of California-Riverside, Riverside, CA, 92521
| | - Timothy Cholko
- Department of Chemistry, University of California-Riverside, Riverside, CA, 92521
| | - Chia-en A. Chang
- Department of Chemistry, University of California-Riverside, Riverside, CA, 92521
| | - Ian Wheeldon
- Department of Chemical and Environmental Engineering, University of California-Riverside, Riverside, CA, 92521
- Center for Industrial Biotechnology, University of California-Riverside, Riverside, CA, 92521
| |
Collapse
|
6
|
Preparation of a flowerlike protein-inorganic nanohybrid biocatalyst via co-immobilization of cobalt phosphate with mutant cellobiose 2-epimerase. Biochem Eng J 2021. [DOI: 10.1016/j.bej.2021.108190] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
7
|
Dube S, Rawtani D. Understanding intricacies of bioinspired organic-inorganic hybrid nanoflowers: A quest to achieve enhanced biomolecules immobilization for biocatalytic, biosensing and bioremediation applications. Adv Colloid Interface Sci 2021; 295:102484. [PMID: 34358991 DOI: 10.1016/j.cis.2021.102484] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 06/29/2021] [Accepted: 07/02/2021] [Indexed: 01/10/2023]
Abstract
The immobilization of biomolecules has been a subject of interest for scientists for a long time. The organic-inorganic hybrid nanoflowers are a new class of nanostructures that act as a host platform for the immobilization of such biomolecules. It provides better practical applicability to these functional biomolecules while also providing superior activity and reusability when catalysis is involved. These nanostructures have a versatile and straightforward synthesis process and also exhibit enzyme mimicking activity in many cases. However, this facile synthesis involves many intricacies that require in-depth analysis to fully attain its potential as an immobilization technique. A complete account of all the factors involving the synthesis process optimisation is essential to be studied to make it commercially viable. This paper explores all the different aspects of hybrid nanoflowers which sets them apart from the conventional immobilization techniques while also giving an overview of its wide range of applications in industries.
Collapse
|
8
|
Wei H, Bu S, Zhang W, Ma L, Liu X, Wang Z, Li Z, Hao Z, He X, Wan J. An electrochemical biosensor for the detection of pathogenic bacteria based on dual signal amplification of Cu 3(PO 4) 2-mediated click chemistry and DNAzymes. Analyst 2021; 146:4841-4847. [PMID: 34223580 DOI: 10.1039/d1an00982f] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
A novel electrochemical biosensor for detecting pathogenic bacteria was designed based on specific magnetic separation and highly sensitive click chemistry. Instead of enzyme-antibody conjugates, organic-inorganic hybrid nanoflowers [concanavalin A (Con A)-Cu3(PO4)2] were used as the signal probe of the sandwich structure. The inorganic component, the copper ions of hybrid nanoflowers, was first used to amplify signal transduction for enzyme-free detection. Sodium ascorbate could dissolve Cu3(PO4)2 of the signal probe to produce Cu2+, which was subsequently converted to Cu+, triggering the Cu+-catalyzed alkyne-azide cycloaddition (CuAAC) reaction between azide-functionalized ssDNA (a fragment of the DNAzyme-containing sequence) and alkyne-functionalized ssDNA immobilized onto the electrode surface. As a result, the DNAzyme was immobilized onto the gold electrode, which produced a positive and stable electrical signal. An exceptional linear relationship was observed between the electrical signal and the concentration of Salmonella typhimurium (101-107 CFU mL-1) with a detection limit of 10 CFU mL-1. The developed electrochemical biosensor based on dual signal amplification of Cu3(PO4)2-mediated click chemistry and DNAzymes exhibited good results in detecting S. typhimurium in milk samples.
Collapse
Affiliation(s)
- Hongguo Wei
- School of Life Science and Technology, Changchun University of Science and Technology, Changchun 130022, China. and Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Changchun 130122, China.
| | - Shengjun Bu
- Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Changchun 130122, China.
| | - Wenguang Zhang
- Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Changchun 130122, China.
| | - Li Ma
- Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Changchun 130122, China.
| | - Xiu Liu
- Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Changchun 130122, China.
| | - Ze Wang
- Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Changchun 130122, China.
| | - Zhongyi Li
- Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Changchun 130122, China.
| | - Zhuo Hao
- Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Changchun 130122, China.
| | - Xiuxia He
- School of Life Science and Technology, Changchun University of Science and Technology, Changchun 130022, China.
| | - Jiayu Wan
- Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Changchun 130122, China.
| |
Collapse
|
9
|
Al-Maqdi KA, Bilal M, Alzamly A, Iqbal HMN, Shah I, Ashraf SS. Enzyme-Loaded Flower-Shaped Nanomaterials: A Versatile Platform with Biosensing, Biocatalytic, and Environmental Promise. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1460. [PMID: 34072882 PMCID: PMC8227841 DOI: 10.3390/nano11061460] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/27/2021] [Accepted: 05/28/2021] [Indexed: 02/05/2023]
Abstract
As a result of their unique structural and multifunctional characteristics, organic-inorganic hybrid nanoflowers (hNFs), a newly developed class of flower-like, well-structured and well-oriented materials has gained significant attention. The structural attributes along with the surface-engineered functional entities of hNFs, e.g., their size, shape, surface orientation, structural integrity, stability under reactive environments, enzyme stabilizing capability, and organic-inorganic ratio, all significantly contribute to and determine their applications. Although hNFs are still in their infancy and in the early stage of robust development, the recent hike in biotechnology at large and nanotechnology in particular is making hNFs a versatile platform for constructing enzyme-loaded/immobilized structures for different applications. For instance, detection- and sensing-based applications, environmental- and sustainability-based applications, and biocatalytic and biotransformation applications are of supreme interest. Considering the above points, herein we reviewed current advances in multifunctional hNFs, with particular emphasis on (1) critical factors, (2) different metal/non-metal-based synthesizing processes (i.e., (i) copper-based hNFs, (ii) calcium-based hNFs, (iii) manganese-based hNFs, (iv) zinc-based hNFs, (v) cobalt-based hNFs, (vi) iron-based hNFs, (vii) multi-metal-based hNFs, and (viii) non-metal-based hNFs), and (3) their applications. Moreover, the interfacial mechanism involved in hNF development is also discussed considering the following three critical points: (1) the combination of metal ions and organic matter, (2) petal formation, and (3) the generation of hNFs. In summary, the literature given herein could be used to engineer hNFs for multipurpose applications in the biosensing, biocatalysis, and other environmental sectors.
Collapse
Affiliation(s)
- Khadega A. Al-Maqdi
- Department of Chemistry, College of Science, UAE University, Al Ain P. O. Box 15551, United Arab Emirates; (K.A.A.-M.); (A.A.)
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China;
| | - Ahmed Alzamly
- Department of Chemistry, College of Science, UAE University, Al Ain P. O. Box 15551, United Arab Emirates; (K.A.A.-M.); (A.A.)
| | - Hafiz M. N. Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico;
| | - Iltaf Shah
- Department of Chemistry, College of Science, UAE University, Al Ain P. O. Box 15551, United Arab Emirates; (K.A.A.-M.); (A.A.)
| | - Syed Salman Ashraf
- Department of Chemistry, College of Arts and Sciences, Khalifa University, Abu Dhabi P. O. Box 127788, United Arab Emirates
| |
Collapse
|
10
|
Co-immobilization of antioxidant enzymes on titania nanosheets for reduction of oxidative stress in colloid systems. J Colloid Interface Sci 2021; 590:28-37. [DOI: 10.1016/j.jcis.2021.01.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/04/2021] [Accepted: 01/05/2021] [Indexed: 02/07/2023]
|
11
|
Liu H, Hao C, Zhang Y, Yang H, Sun R. The interaction of graphene oxide-silver nanoparticles with trypsin: Insights from adsorption behaviors, conformational structure and enzymatic activity investigations. Colloids Surf B Biointerfaces 2021; 202:111688. [PMID: 33721802 DOI: 10.1016/j.colsurfb.2021.111688] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 02/22/2021] [Accepted: 03/07/2021] [Indexed: 11/28/2022]
Abstract
In this work, we synthesized graphene oxide-silver nanoparticles (GO-AgNPs) hybrids by one-pot method. Since there are relatively few reports on whether GO-AgNPs bind and change the structure and function of trypsin, A variety of methods were employed to systematically characterize the molecular interaction between GO-AgNPs and trypsin. Results exhibited that GO-AgNPs bound with trypsin to form a ground state complex. GO-AgNPs had higher adsorption capacity for trypsin compared with single GO. Langmuir-Blodgett assembly method was used to confirm that AgNPs did not interfere with the adsorption of trypsin by GO. The secondary structure and the microenvironment of amino acid residues of trypsin were altered after interacting with GO-AgNPs. In addition, GO-AgNPs can enhance the activity of trypsin and promote the hydrolysis of bovine serum protein (BSA) by trypsin. These findings provide important support for the application of GO-based nanocomposites in the efficient immobilization of enzymes.
Collapse
Affiliation(s)
- Hengyu Liu
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an, 710062, China
| | - Changchun Hao
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an, 710062, China.
| | - Yanyan Zhang
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an, 710062, China
| | - Haiyan Yang
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an, 710062, China
| | - Runguang Sun
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an, 710062, China.
| |
Collapse
|
12
|
Berezovska A, Nedellec Y, Giroud F, Gross AJ, Cosnier S. Freestanding biopellet electrodes based on carbon nanotubes and protein compression for direct and mediated bioelectrocatalysis. Electrochem commun 2021. [DOI: 10.1016/j.elecom.2020.106895] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
13
|
Li Y, Wu H, Su Z. Enzyme-based hybrid nanoflowers with high performances for biocatalytic, biomedical, and environmental applications. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213342] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
14
|
Mohd Hussin FNN, Attan N, Wahab RA. Taguchi design-assisted immobilization of Candida rugosa lipase onto a ternary alginate/nanocellulose/montmorillonite composite: Physicochemical characterization, thermal stability and reusability studies. Enzyme Microb Technol 2020; 136:109506. [DOI: 10.1016/j.enzmictec.2019.109506] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 12/06/2019] [Accepted: 12/26/2019] [Indexed: 10/25/2022]
|
15
|
Swaidan A, Addad A, Tahon JF, Barras A, Toufaily J, Hamieh T, Szunerits S, Boukherroub R. Ultrasmall CuS-BSA-Cu3(PO4)2 nanozyme for highly efficient colorimetric sensing of H2O2 and glucose in contact lens care solutions and human serum. Anal Chim Acta 2020; 1109:78-89. [DOI: 10.1016/j.aca.2020.02.064] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 02/07/2020] [Accepted: 02/28/2020] [Indexed: 01/04/2023]
|
16
|
Siddiqui I, Husain Q, Azam A. Exploring the antioxidant effects of peptides from almond proteins using PAni-Ag-GONC conjugated trypsin by improving enzyme stability & applications. Int J Biol Macromol 2020; 158:150-158. [PMID: 32344094 DOI: 10.1016/j.ijbiomac.2020.04.188] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 04/16/2020] [Accepted: 04/22/2020] [Indexed: 01/11/2023]
Abstract
Functionalized graphene oxide nano-sheets (PAni-Ag-GONC) were prepared and employed as carrier for covalent immobilization of trypsin. This low cost setting, which involves loading of high amount of enzyme on the matrix, displayed significantly enhanced thermo-stability and pH resistance. The nano-composite (NC) bound trypsin preserved 90% of activity whereas native trypsin retained only 44% of activity after 60 days of storage at a temperature of 4°C. Immobilized trypsin conserved 80.5% of activity even after its ten repeated uses. Almond protein hydrolysates prepared by native and conjugated enzyme was investigated for antioxidant activities and found that peptides resulted from NC bound trypsin displayed increase in radical scavenging activity (i.e. around 30% and 37% scavenging activity observed, respectively by native and NC bound trypsin from same concentration of peptides). This strategy provides a new approach for production of potential biopeptides which may be incorporated in drugs and functional food industries applying PAni-Ag-GONC based biocatalysis. CHEMICAL COMPOUNDS: Trichloroacetic acid (PubChem CID: 6421); Tris (hydroxymethyl)aminomethane (PubChem CID: 6503); Glycine (PubChem CID: 750); and 2,2'-diphenyl-1-picrylhydrazyl (PubChem CID: 74358); Nα- Benzoyl-DL-arginine 4-nitroanilide hydrochloride (PubChem CID: 2724371); Ammonium sulphate (PubChem CID: 6097028).
Collapse
Affiliation(s)
- Irfanah Siddiqui
- Department of Biochemistry, Faculty of life Sciences, Aligarh Muslim University, Aligarh 202002, India
| | - Qayyum Husain
- Department of Biochemistry, Faculty of life Sciences, Aligarh Muslim University, Aligarh 202002, India.
| | - Ameer Azam
- Department of Biochemistry, Faculty of life Sciences, Aligarh Muslim University, Aligarh 202002, India
| |
Collapse
|
17
|
Abstract
Owing to their unique physicochemical properties and comparable size to biomacromolecules, functional nanostructures have served as powerful supports to construct enzyme-nanostructure biocatalysts (nanobiocatalysts). Of particular importance, recent years have witnessed the development of novel nanobiocatalysts with remarkably increased enzyme activities. This review provides a comprehensive description of recent advances in the field of nanobiocatalysts, with systematic elaboration of the underlying mechanisms of activity enhancement, including metal ion activation, electron transfer, morphology effects, mass transfer limitations, and conformation changes. The nanobiocatalysts highlighted here are expected to provide an insight into enzyme–nanostructure interaction, and provide a guideline for future design of high-efficiency nanobiocatalysts in both fundamental research and practical applications.
Collapse
|
18
|
Zeng D, San L, Qian F, Ge Z, Xu X, Wang B, Li Q, He G, Mi X. Framework Nucleic Acid-Enabled Programming of Electrochemical Catalytic Properties of Artificial Enzymes. ACS APPLIED MATERIALS & INTERFACES 2019; 11:21859-21864. [PMID: 31117473 DOI: 10.1021/acsami.9b06480] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The creation and engineering of artificial enzymes remain a challenge, especially the arrangement of enzymes into geometric patterns with nanometer precision. In this work, we fabricated a series of novel DNA-tetrahedron-scaffolded-DNAzymes (Tetrazymes) and evaluated the catalytic activity of these Tetrazymes by electrochemistry. Tetrazymes were constructed by precisely positioning G-quadruplex on different sites of a DNA tetrahedral framework, with hemin employed as the co-catalyst. Immobilization of Tetrazymes on a gold electrode surface revealed horseradish peroxidase (HPR)-mimicking bioelectrocatalytic property. Cyclic voltammogram and amperometry were employed to evaluate the capability of Tetrazymes of different configurations to electrocatalyze the reduction of hydrogen peroxide (H2O2). These artificial Tetrazymes displayed 6- to 14-fold higher enzymatic activity than G-quadruplex/hemin (G4-hemin) without the DNA tetrahedron scaffold, demonstrating application potential in developing novel G-quadruplex-based electrochemical sensors.
Collapse
Affiliation(s)
- Dongdong Zeng
- Shanghai Key Laboratory of Molecular Imaging , Shanghai University of Medicine & Health Sciences , Shanghai 201318 , China
| | - Lili San
- Shanghai Advanced Research Institute , Chinese Academy of Sciences , Shanghai 201210 , China
| | - Fengyu Qian
- Shanghai Key Laboratory of Molecular Imaging , Shanghai University of Medicine & Health Sciences , Shanghai 201318 , China
| | | | - Xiaohui Xu
- Shanghai Key Laboratory of Molecular Imaging , Shanghai University of Medicine & Health Sciences , Shanghai 201318 , China
| | - Bin Wang
- Shanghai Key Laboratory of Molecular Imaging , Shanghai University of Medicine & Health Sciences , Shanghai 201318 , China
| | | | - Guifang He
- Shanghai Advanced Research Institute , Chinese Academy of Sciences , Shanghai 201210 , China
| | - Xianqiang Mi
- Shanghai Advanced Research Institute , Chinese Academy of Sciences , Shanghai 201210 , China
- Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology , Chinese Academy of Sciences , Shanghai 200050 , China
| |
Collapse
|
19
|
Huang J, Zhuang W, Ge L, Wang K, Wang Z, Niu H, Wu J, Zhu C, Chen Y, Ying H. Improving biocatalytic microenvironment with biocompatible ε-poly-l-lysine for one step gluconic acid production in low pH enzymatic systems. Process Biochem 2019. [DOI: 10.1016/j.procbio.2018.10.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
20
|
Zhu J, Wen M, Wen W, Du D, Zhang X, Wang S, Lin Y. Recent progress in biosensors based on organic-inorganic hybrid nanoflowers. Biosens Bioelectron 2018; 120:175-187. [DOI: 10.1016/j.bios.2018.08.058] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 08/24/2018] [Accepted: 08/24/2018] [Indexed: 12/31/2022]
|
21
|
Multilayer petal-like enzymatic-inorganic hybrid micro-spheres [CPO-(Cu/Co/Cd)3(PO4)2] with high bio-catalytic activity. Chem Eng Res Des 2018. [DOI: 10.1016/j.cherd.2018.03.036] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
22
|
Pavlovic M, Rouster P, Somosi Z, Szilagyi I. Horseradish peroxidase-nanoclay hybrid particles of high functional and colloidal stability. J Colloid Interface Sci 2018; 524:114-121. [PMID: 29635084 DOI: 10.1016/j.jcis.2018.04.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 03/29/2018] [Accepted: 04/02/2018] [Indexed: 02/07/2023]
Abstract
Highly stable dispersions of enzyme-clay nanohybrids of excellent horseradish peroxidase activity were developed. Layered double hydroxide nanoclay was synthesized and functionalized with heparin polyelectrolyte to immobilize the horseradish peroxidase enzyme. The formation of a saturated heparin layer on the platelets led to charge inversion of the positively charged bare nanoclay and to highly stable aqueous dispersions. Great affinity of the enzyme to the surface modified platelets resulted in strong horseradish peroxidase adsorption through electrostatic and hydrophobic interactions as well as hydrogen bonding network and prevented enzyme leakage from the obtained material. The enzyme kept its functional integrity upon immobilization and showed excellent activity in decomposition of hydrogen peroxide and oxidation of an aromatic compound in the test reactions. In addition, remarkable long term functional stability of the enzyme-nanoclay hybrid was observed making the developed colloidal system a promising antioxidant candidate in biomedical treatments and industrial processes.
Collapse
Affiliation(s)
- Marko Pavlovic
- Department of Inorganic and Analytical Chemistry, University of Geneva, CH-1205 Geneva, Switzerland
| | - Paul Rouster
- Institute of Condensed Matter and Nanosciences - Bio and Soft Matter, Université Catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium
| | - Zoltan Somosi
- MTA-SZTE Lendület Biocolloids Research Group, University of Szeged, H-6720 Szeged, Hungary
| | - Istvan Szilagyi
- MTA-SZTE Lendület Biocolloids Research Group, University of Szeged, H-6720 Szeged, Hungary; Department of Physical Chemistry and Materials Science, University of Szeged, H-6720 Szeged, Hungary.
| |
Collapse
|