1
|
Moya Betancourt SN, Cámara CI, Juarez AV, Riva JS. Magnetically controlled insertion of magnetic nanoparticles into membrane model. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2024; 1866:184293. [PMID: 38311015 DOI: 10.1016/j.bbamem.2024.184293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/22/2024] [Accepted: 02/01/2024] [Indexed: 02/06/2024]
Abstract
Polysaccharide-coated magnetic nanoparticles (MNPs) have been reported to show potential applications in many biomedical fields. In this report, we have studied the interactions between magnetite (Fe3O4) MNPs functionalized with polysaccharides (diethylamino-ethyl dextran, DEAE-D or chitosan, CHI) with different membranes models by Langmuir isotherms, incorporation experiments, and brewster angle microscopy (BAM). In this report, zwitterionic 1,2-distearoyl-sn-glycerol-3-phosphoethanolamine (DSPE) and anionic 1,2-distearoyl-sn-glycerol-3-phosphate (DSPA) phospholipid, were used to form membrane models. Incorporation experiments (π-t) as well as the compression isotherms demonstrate positive interactions between MNPs and DSPE or DSPA monolayers. The study assessed the impact of varying initial surface pressure on a preformed phospholipid monolayer to determine the maximum insertion pressure (MIP) and synergy. Our findings indicate that the primary driving force of the coated MNPs incorporation into the monolayer predominantly stems from electrostatic interaction. The drop in the subphase pH from 6.0 to 4.0 led to an enhancement of the MIP value for DSPA phospholipid monolayer. On the other hand, for DSPE, the drop in the pH does not affect the MIP values. Besides, the presence of a magnetic field induces an enhancement of the insertion process of the MNPs into DSPA preformed monolayer, demonstrating that a previous interaction between MNPs and phospholipid preformed monolayer needs to take place to enhance the incorporation process. This work opens novel perspectives for the research of the influence of magnetic fields on the incorporation of MNPs into model membranes.
Collapse
Affiliation(s)
- Sara N Moya Betancourt
- INFIQC-CONICET, Departamento de Fisicoquímica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre y Medina Allende, Ciudad Universitaria, X5000HUA Córdoba, Argentina
| | - Candelaria I Cámara
- INFIQC-CONICET, Departamento de Fisicoquímica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre y Medina Allende, Ciudad Universitaria, X5000HUA Córdoba, Argentina
| | - Ana V Juarez
- INFIQC-CONICET, Departamento de Fisicoquímica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre y Medina Allende, Ciudad Universitaria, X5000HUA Córdoba, Argentina
| | - Julieta S Riva
- INFIQC-CONICET, Departamento de Fisicoquímica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre y Medina Allende, Ciudad Universitaria, X5000HUA Córdoba, Argentina.
| |
Collapse
|
2
|
|
3
|
Zhou X, Liu Q, Shi X, Xu C, Li B. Effect of aspect ratio on the chirality of gold nanorods prepared through conventional seed-mediated growth method. Anal Chim Acta 2021; 1152:338277. [PMID: 33648649 DOI: 10.1016/j.aca.2021.338277] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 01/18/2021] [Accepted: 01/29/2021] [Indexed: 11/24/2022]
Abstract
In this work, three kinds of gold nanorods (AuNRs) with different aspect ratios were synthesized through conventional seed-mediated growth method, and the chirality of these AuNRs were characterized by circular dichroism (CD) spectroscopy. The results showed that the AuNRs with bigger aspect ratio had larger chirality. The AuNRs with different aspect ratios were applied to distinguish the enantiomers of 19 kinds of α-amino acids. It was found that AuNRs with bigger aspect ratio exhibited the stronger chiral recognition ability. As a proof-of-principle, the AuNRs with the aspect ratio of 4.8 were used to quantitatively recognize enantiomers of valine. Furthermore, the microcalorimetry was applied to study the interaction of AuNRs with amino acid enantiomers. This work provides one method to improve the chiral recognition ability of AuNRs by optimizing the aspect ratio of AuNRs, and helps people better understand the intrinsic chirality of nanostructures.
Collapse
Affiliation(s)
- Xiaojuan Zhou
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, China
| | - Qiang Liu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, China
| | - Xiaoyu Shi
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, China
| | - Chunli Xu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, China.
| | - Baoxin Li
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, China.
| |
Collapse
|
4
|
Xia PP, Shan Y, He LL, Ji YY, Wang XH, Li SB. Multinanoparticle translocations in phospholipid membranes: Translocation modes and dynamic processes. CHINESE J CHEM PHYS 2020. [DOI: 10.1063/1674-0068/cjcp1910174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Affiliation(s)
- Ping-ping Xia
- Department of Physics, Wenzhou University, Wenzhou 325035, China
| | - Yue Shan
- Department of Physics, Wenzhou University, Wenzhou 325035, China
| | - Lin-li He
- Department of Physics, Wenzhou University, Wenzhou 325035, China
| | - Yong-yun Ji
- Department of Physics, Wenzhou University, Wenzhou 325035, China
| | - Xiang-hong Wang
- Department of Physics, Wenzhou University, Wenzhou 325035, China
| | - Shi-ben Li
- Department of Physics, Wenzhou University, Wenzhou 325035, China
| |
Collapse
|
5
|
Camacho SA, Kobal MB, Almeida AM, Toledo KA, Oliveira ON, Aoki PHB. Molecular-level effects on cell membrane models to explain the phototoxicity of gold shell-isolated nanoparticles to cancer cells. Colloids Surf B Biointerfaces 2020; 194:111189. [PMID: 32580142 DOI: 10.1016/j.colsurfb.2020.111189] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 06/05/2020] [Accepted: 06/08/2020] [Indexed: 12/21/2022]
Abstract
Metallic nanoparticles are promising agents for photothermal cancer therapy (PTT) owing to their photostability and efficient light-to-heat conversion, but their possible aggregation remains an issue. In this paper, we report on the photoinduced heating of gold shell-isolated nanoparticles (AuSHINs) in in vitro experiments to kill human oropharyngeal (HEp-2) and breast (BT-474 and MCF-7) carcinoma cells, with cell viability reducing below 50 % with 2.2 × 1012 AuSHINs/mL and 6 h of incubation. This toxicity to cancer cells is significantly higher than in previous works with gold nanoparticles. Considering the AuSHINs dimensions we hypothesize that cell uptake is not straightforward, and the mechanism of action involves accumulation on phospholipid membranes as the PTT target for photoinduced heating and subsequent generation of reactive oxygen species (ROS). Using Langmuir monolayers as simplified membrane models, we confirmed that AuSHINs have a larger effect on 1,2-dioleoyl-sn-glycero-3-phospho-l-serine (DOPS), believed to represent cancer cell membranes, than on 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) taken as representative of healthy eukaryotic cells. In particular, data from polarization-modulated infrared reflection absorption spectroscopy (PM-IRRAS) revealed an increased conformational order of DOPS tails due to the stronger adsorption of AuSHINs. Furthermore, light irradiation reduced the stability of AuSHINs containing DOPC and DOPS monolayers owing to oxidative reactions triggered by ROS upon photoinduced heating. Compared to DOPC, DOPS lost nearly twice as much material to the subphase, which is consistent with a higher rate of ROS formation in the vicinity of the DOPS monolayer.
Collapse
Affiliation(s)
- Sabrina A Camacho
- São Paulo State University (UNESP), School of Sciences, Humanities and Languages, Assis, SP, 19806-900, Brazil; São Carlos Institute of Physics, University of São Paulo (USP), CP 369, São Carlos, SP, 13566-590, Brazil
| | - Mirella B Kobal
- São Paulo State University (UNESP), School of Sciences, Humanities and Languages, Assis, SP, 19806-900, Brazil
| | - Alexandre M Almeida
- São Paulo State University (UNESP), School of Sciences, Humanities and Languages, Assis, SP, 19806-900, Brazil
| | - Karina A Toledo
- São Paulo State University (UNESP), School of Sciences, Humanities and Languages, Assis, SP, 19806-900, Brazil
| | - Osvaldo N Oliveira
- São Carlos Institute of Physics, University of São Paulo (USP), CP 369, São Carlos, SP, 13566-590, Brazil
| | - Pedro H B Aoki
- São Paulo State University (UNESP), School of Sciences, Humanities and Languages, Assis, SP, 19806-900, Brazil.
| |
Collapse
|
6
|
Gomez-Flores A, Bradford SA, Wu L, Kim H. Interaction energies for hollow and solid cylinders: Role of aspect ratio and particle orientation. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2019.123781] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
7
|
|
8
|
Salis B, Pugliese G, Pellegrino T, Diaspro A, Dante S. Polymer Coating and Lipid Phases Regulate Semiconductor Nanorods' Interaction with Neuronal Membranes: A Modeling Approach. ACS Chem Neurosci 2019; 10:618-627. [PMID: 30339349 DOI: 10.1021/acschemneuro.8b00466] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The interplay between nanoparticles (NPs) and cell membranes is extremely important with regard to using NPs in biology applications. With the aim of unraveling the dominating factors on the molecular scale, we have studied the interaction between polymer-coated semiconductor nanorods (NRs) made of cadmium selenium/cadmium sulfur and model lipid membranes. The zeta potential (ζ) of the NRs was tuned from having a negative value (-24 mV) to having a positive one (+11 mV) by changing the amine content in the polymer coating. Supported lipid bilayers (SLBs) and lipid monolayers (LMs) were used as model membranes. Lipid mixtures containing anionic or cationic lipids were employed in order to change the membrane ζ from -77 to +49 mV; lipids with saturated hydrophobic chains were used to create phase-separated gel domains. NR adsorption to the SLBs was monitored by quartz crystal microbalance with dissipation monitoring; interactions with LMs with the same lipid composition were measured by surface pressure-area isotherms. The results showed that the NRs only interact with the model membrane if the mutual Δζ is higher than 70 mV; at the air-water interface, positively charged NRs remove lipids from the anionic lipid mixtures, and the negative ones penetrate the space between the polar heads in the cationic mixtures. However, the presence of gel domains in the membrane inhibits this interaction. The results of the Derjaguin-Landau-Verwey-Overbeek model frame indicate that the interaction occurs not only due to electrostatic and van der Waals forces, but also due to steric and/or hydration forces.
Collapse
Affiliation(s)
- Barbara Salis
- Dipartimento di Informatica, Bioingegneria, Robotica e Ingegneria dei Sistemi, Università di Genova, Genova 16145, Italy
- Nanoscopy&NIC@IIT, Istituto Italiano di Tecnologia, Genova 16163, Italy
| | - Giammarino Pugliese
- Nanomaterials for Biomedical Applications, Istituto Italiano di Tecnologia, Genova 16146, Italy
| | - Teresa Pellegrino
- Nanomaterials for Biomedical Applications, Istituto Italiano di Tecnologia, Genova 16146, Italy
| | - Alberto Diaspro
- Nanoscopy&NIC@IIT, Istituto Italiano di Tecnologia, Genova 16163, Italy
- Dipartimento di Fisica, Università di Genova, Genova 16163, Italy
| | - Silvia Dante
- Nanoscopy&NIC@IIT, Istituto Italiano di Tecnologia, Genova 16163, Italy
| |
Collapse
|
9
|
Cancino-Bernardi J, Marangoni VS, Besson JCF, Cancino MEC, Natali MRM, Zucolotto V. Gold-based nanospheres and nanorods particles used as theranostic agents: An in vitro and in vivo toxicology studies. CHEMOSPHERE 2018; 213:41-52. [PMID: 30212718 DOI: 10.1016/j.chemosphere.2018.09.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 08/09/2018] [Accepted: 09/02/2018] [Indexed: 06/08/2023]
Abstract
The adverse effect of gold-based nanoparticles is still an open question since it depends on several factors as shape, surface charge or route of administration. In this study, we investigated the influence of shape and human serum albumin (HSA) coating on the adverse effects of spherical (AuNP) and nanorods (AuNR) gold-based particles. F C3H (fibroblast) and HTC (hepatocellular carcinoma) cell lines both from liver were exposed to 25, 75 and 125 μg mL-1, which correspond to 109 NP mL-1. For in vivo studies, Wistar rats received these materials by oral administration in doses of 10 μg kg-1 or 40 μg kg-1. Systemic toxicity was verified after 24 h and 48 h by morphological analysis, blood parameters and myeloperoxidase enzyme activity. Our results revealed that HSA corona does not influence totally the pathway of interactions between AuNP and AuNR. In vitro results evidenced that AuNP can decrease in at least 50% viability of F C3H and cell adhesion of HTC, but corona significantly overcomes these effects. No differences between shape or corona were observed in function of cell lines. In vivo studies showed that 40 μg kg-1 of AuNP-HSA caused an enhancement of the myeloperoxidase response indicating inflammatory processes. An increase from 40% to 80% on alkaline phosphatase levels were found for all groups. Our findings suggested that gold-based particles coated or not with HSA do not cause expressive adverse effects on in vitro or in vivo systems, and their oral administration cannot cause a systemic effect in the experimental conditions used here.
Collapse
Affiliation(s)
- J Cancino-Bernardi
- Nanomedicine and Nanotoxicology Group, Physics Institute of São Carlos, University of São Paulo, CP 369, 13560-970, São Carlos, SP, Brazil.
| | - V S Marangoni
- Nanomedicine and Nanotoxicology Group, Physics Institute of São Carlos, University of São Paulo, CP 369, 13560-970, São Carlos, SP, Brazil
| | - J C F Besson
- Morphologic Science Department, State University of Maringá, CP, 87020-900, Maringá, PR, Brazil
| | - M E C Cancino
- Morphologic Science Department, State University of Maringá, CP, 87020-900, Maringá, PR, Brazil
| | - M R M Natali
- Morphologic Science Department, State University of Maringá, CP, 87020-900, Maringá, PR, Brazil
| | - V Zucolotto
- Nanomedicine and Nanotoxicology Group, Physics Institute of São Carlos, University of São Paulo, CP 369, 13560-970, São Carlos, SP, Brazil
| |
Collapse
|
10
|
Lipopolysaccharides and peptidoglycans modulating the interaction of Au naparticles with cell membranes models at the air-water interface. Biophys Chem 2018; 238:22-29. [DOI: 10.1016/j.bpc.2018.04.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 04/18/2018] [Accepted: 04/24/2018] [Indexed: 12/20/2022]
|