1
|
Santiago T, Konstantinovsky D, Tremblay M, Perets EA, Hammes-Schiffer S, Yan ECY. Drug binding disrupts chiral water structures in the DNA first hydration shell. Chem Sci 2025; 16:6853-6861. [PMID: 40110517 PMCID: PMC11917447 DOI: 10.1039/d4sc08372e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 03/11/2025] [Indexed: 03/22/2025] Open
Abstract
Knowledge of how intermolecular interactions change hydration structures surrounding DNA will heighten understanding of DNA biology and advance drug development. However, probing changes in DNA hydration structures in response to molecular interactions and drug binding in situ under ambient conditions has remained challenging. Here, we apply a combined experimental and computational approach of chiral-selective vibrational sum frequency generation spectroscopy (chiral SFG) to probe changes of DNA hydration structures when a small-molecule drug, netropsin, binds the minor groove of DNA. Our results show that chiral SFG can detect water being displaced from the minor groove of DNA due to netropsin binding. Additionally, we observe that chiral SFG distinguishes between weakly and strongly hydrogen-bonded water hydrating DNA. Chiral SFG spectra show that netropsin binding, instead of displacing weakly hydrogen-bonded water, preferentially displaces water molecules strongly hydrogen-bonded to thymine carbonyl groups in the DNA minor groove, revealing the roles of water in modulating site-specificity of netropsin binding to duplex DNA rich in adenine-thymine sequences. The results convey the promise of chiral SFG to offer mechanistic insights into roles of water in drug development targeting DNA.
Collapse
Affiliation(s)
- Ty Santiago
- Department of Chemistry, Yale University New Haven CT 06520 USA
| | - Daniel Konstantinovsky
- Department of Chemistry, Yale University New Haven CT 06520 USA
- Department of Molecular Biophysics and Biochemistry, Yale University New Haven CT 06520 USA
| | - Matthew Tremblay
- Department of Chemistry, Yale University New Haven CT 06520 USA
- Department of Chemistry, Princeton University Princeton New Jersey 08544 USA
| | - Ethan A Perets
- Department of Chemistry, Yale University New Haven CT 06520 USA
| | - Sharon Hammes-Schiffer
- Department of Chemistry, Yale University New Haven CT 06520 USA
- Department of Chemistry, Princeton University Princeton New Jersey 08544 USA
| | - Elsa C Y Yan
- Department of Chemistry, Yale University New Haven CT 06520 USA
| |
Collapse
|
2
|
Cecchet F. Light on the interactions between nanoparticles and lipid membranes by interface-sensitive vibrational spectroscopy. Colloids Surf B Biointerfaces 2024; 241:114013. [PMID: 38865867 DOI: 10.1016/j.colsurfb.2024.114013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/10/2024] [Accepted: 06/03/2024] [Indexed: 06/14/2024]
Abstract
Nanoparticles are produced in natural phenomena or synthesized artificially for technological applications. Their frequent contact with humans has been judged potentially harmful for health, and numerous studies are ongoing to understand the mechanisms of the toxicity of nanoparticles. At the macroscopic level, the toxicity can be established in vitro or in vivo by measuring the survival of cells. At the sub-microscopic level, scientists want to unveil the molecular mechanisms of the first interactions of nanoparticles with cells via the cell membrane, before the toxicity cascades within the whole cell. Unveiling a molecular understanding of the nanoparticle-membrane interface is a tricky challenge, because of the chemical complexity of this system and its nanosized dimensions buried within bulk macroscopic environments. In this review, we highlight how, in the last 10 years, second-order nonlinear optical (NLO) spectroscopy, and specifically vibrational sum frequency generation (SFG), has provided a new understanding of the structural, physicochemical, and dynamic properties of these biological interfaces, with molecular sensitivity. We will show how the intrinsic interfacial sensitivity of second-order NLO and the chemical information of vibrational SFG spectroscopy have revealed new knowledge of the molecular mechanisms that drive nanoparticles to interact with cell membranes, from both sides, the nanoparticles and the membrane properties.
Collapse
Affiliation(s)
- Francesca Cecchet
- Laboratory of Lasers and Spectroscopies (LLS), Namur Institute of Structured Matter (NISM) and NAmur Institute for Life Sciences (NARILIS), University of Namur (UNamur), Belgium.
| |
Collapse
|
3
|
Tan J, Wang M, Ni Z, Pei R, Shi F, Ye S. Intermolecular Protein-Water Coupling Impedes the Coupling Between the Amide A and Amide I Mode in Interfacial Proteins. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:6587-6594. [PMID: 38486393 DOI: 10.1021/acs.langmuir.4c00246] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
The coupling between different vibrational modes in proteins is essential for chemical dynamics and biological functions and is linked to the propagation of conformational changes and pathways of allosteric communication. However, little is known about the influence of intermolecular protein-H2O coupling on the vibrational coupling between amide A (NH) and amide I (C═O) bands. Here, we investigate the NH/CO coupling strength in various peptides with different secondary structures at the lipid cell membrane/H2O interface using femtosecond time-resolved sum frequency generation vibrational spectroscopy (SFG-VS) in which a femtosecond infrared pump is used to excite the amide A band, and SFG-VS is used to probe transient spectral evolution in the amide A and amide I bands. Our results reveal that the NH/CO coupling strength strongly depends on the bandwidth of the amide I mode and the coupling of proteins with water molecules. A large extent of protein-water coupling significantly reduces the delocalization of the amide I mode along the peptide chain and impedes the NH/CO coupling strength. A large NH/CO coupling strength is found to show a strong correlation with the high energy transfer rate found in the light-harvesting proteins of green sulfur bacteria, which may understand the mechanism of energy transfer through a molecular system and assist in controlling vibrational energy transfer by engineering the molecular structures to achieve high energy transfer efficiency.
Collapse
Affiliation(s)
- Junjun Tan
- Hefei National Research Center for Physical Sciences at the Microscale, and Department of Chemical Physics, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei, Anhui 230088, China
| | - Mengmeng Wang
- Hefei National Research Center for Physical Sciences at the Microscale, and Department of Chemical Physics, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Zijian Ni
- Hefei National Research Center for Physical Sciences at the Microscale, and Department of Chemical Physics, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Ruoqi Pei
- Hefei National Research Center for Physical Sciences at the Microscale, and Department of Chemical Physics, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Fangwen Shi
- Hefei National Research Center for Physical Sciences at the Microscale, and Department of Chemical Physics, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Shuji Ye
- Hefei National Research Center for Physical Sciences at the Microscale, and Department of Chemical Physics, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei, Anhui 230088, China
| |
Collapse
|
4
|
Chen Y, Huang J, Xia S, Wang K, Rui Y. Effect of laser energy on protein conformation and lipid structure in skin tissue. OPTICS & LASER TECHNOLOGY 2023; 160:109077. [DOI: 10.1016/j.optlastec.2022.109077] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/07/2025]
|
5
|
Wang C, Ma YH, Han X, Lu X. Re-Examining Interaction between Antimicrobial Peptide Aurein 1.2 and Model Cell Membranes via SFG. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:690-699. [PMID: 36576332 DOI: 10.1021/acs.langmuir.2c03068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Aurein 1.2 (Aur), a highly efficient 13-residue antimicrobial peptide (AMP) with a broad-spectrum antibiotic activity originally derived from the Australian frog skin secretions, can nonspecifically disrupt bacterial membranes. To deeply understand the molecular-level detail of the antimicrobial mechanism, here, we artificially established comparative experimental models to investigate the interfacial interaction process between Aur and negatively charged model cell membranes via sum frequency generation vibrational spectroscopy. Sequencing the vibrational signals of phenyl, C-H, and amide groups from Aur has characteristically helped us differentiate between the initial adsorption and subsequent insertion steps upon mutual interaction between Aur and the charged lipids. The phenyl group at the terminal phenylalanine residue can act as an anchor in the adsorption process. The time-dependent signal intensity of α-helices showed a sharp rise once the Aur molecules came into contact with the negatively charged lipids, indicating that the adsorption process was ongoing. Insertion of Aur into the charged lipids then offered the detectable interfacial C-H signals from Aur. The achiral and chiral amide I signals suggest that Aur had formed β-folding-like aggregates after interacting with the charged lipids, along with the subsequent descending α-helical amide I signals. The above-mentioned experimental results provide the molecular-level detail on how the Aur molecules interact with the cell membranes, and such a mechanism study can offer the necessary support for the AMP design and later application.
Collapse
Affiliation(s)
- Chu Wang
- State Key Laboratory of Bioelectronics, School of Biomedical Engineering, Southeast University, Nanjing 210096, China
| | - Yong-Hao Ma
- State Key Laboratory of Bioelectronics, School of Biomedical Engineering, Southeast University, Nanjing 210096, China
| | - Xiaofeng Han
- State Key Laboratory of Bioelectronics, School of Biomedical Engineering, Southeast University, Nanjing 210096, China
| | - Xiaolin Lu
- State Key Laboratory of Bioelectronics, School of Biomedical Engineering, Southeast University, Nanjing 210096, China
| |
Collapse
|
6
|
Sofińska K, Lupa D, Chachaj-Brekiesz A, Czaja M, Kobierski J, Seweryn S, Skirlińska-Nosek K, Szymonski M, Wilkosz N, Wnętrzak A, Lipiec E. Revealing local molecular distribution, orientation, phase separation, and formation of domains in artificial lipid layers: Towards comprehensive characterization of biological membranes. Adv Colloid Interface Sci 2022; 301:102614. [PMID: 35190313 DOI: 10.1016/j.cis.2022.102614] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/28/2022] [Accepted: 02/01/2022] [Indexed: 01/01/2023]
Abstract
Lipids, together with molecules such as DNA and proteins, are one of the most relevant systems responsible for the existence of life. Selected lipids are able to assembly into various organized structures, such as lipid membranes. The unique properties of lipid membranes determine their complex functions, not only to separate biological environments, but also to participate in regulatory functions, absorption of nutrients, cell-cell communication, endocytosis, cell signaling, and many others. Despite numerous scientific efforts, still little is known about the reason underlying the variability within lipid membranes, and its biochemical significance. In this review, we discuss the structural complexity of lipid membranes, as well as the importance to simplify studied systems in order to understand phenomena occurring in natural, complex membranes. Such systems require a model interface to be analyzed. Therefore, here we focused on analytical studies of artificial systems at various interfaces. The molecular structure of lipid membranes, specifically the nanometric thickens of molecular bilayer, limits in a major extent the choice of highly sensitive methods suitable to study such structures. Therefore, we focused on methods that combine high sensitivity, and/or chemical selectivity, and/or nanometric spatial resolution, such as atomic force microscopy, nanospectroscopy (tip-enhanced Raman spectroscopy, infrared nanospectroscopy), phase modulation infrared reflection-absorption spectroscopy, sum-frequency generation spectroscopy. We summarized experimental and theoretical approaches providing information about molecular structure and composition, lipid spatial distribution (phase separation), organization (domain shape, molecular orientation) of lipid membranes, and real-time visualization of the influence of various molecules (proteins, drugs) on their integrity. An integral part of this review discusses the latest achievements in the field of lipid layer-based biosensors.
Collapse
|
7
|
Tan J, Ni Z, Ye S. Protein-Water Coupling Tunes the Anharmonicity of Amide I Modes in the Interfacial Membrane-Bound Proteins. J Chem Phys 2022; 156:105103. [DOI: 10.1063/5.0078632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Junjun Tan
- University of Science and Technology of China Hefei National Laboratory for Physical Sciences at the Microscale, China
| | - Zijian Ni
- University of Science and Technology of China Hefei National Laboratory for Physical Sciences at the Microscale Nanoscience Laboratory, China
| | - Shuji Ye
- University of Science and Technology of China Hefei National Laboratory for Physical Sciences at the Microscale, China
| |
Collapse
|
8
|
Ma L, Luo Y, Ma YH, Lu X. Interaction between Antimicrobial Peptide CM15 and a Model Cell Membrane Affected by CM15 Terminal Amidation and the Membrane Phase State. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:1613-1621. [PMID: 33464910 DOI: 10.1021/acs.langmuir.0c03498] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Antimicrobial peptides (AMPs) have been proposed as an effective class of antimicrobial agents against microorganisms. In this work, the interaction between an antimicrobial peptide, CM15, and a negatively charged phospholipid bilayer, DPPG, was studied via sum frequency generation (SFG) vibrational spectroscopy. Two structurally correlated characteristic variables were introduced to reveal the interaction mechanism/efficiency, i.e. C-terminal amidation and temperature variation (∼20 °C, room temperature, and ∼35 °C, close to human body temperature). Experimental results indicated that owing to the increased positive charge, C-terminal amidation resulted in rapid adsorption onto the bilayer surface and efficient disruption of the outer layer, exhibiting less ordered insertion orientation. The elevated temperature (from ∼20 °C to ∼35 °C) promoted the penetration of both the outer and inner leaflets by the peptides and finally led to the disruption of the whole bilayer owing to the enhanced fluidity of the bilayer. From the perspective of the interaction mechanism, this experimental study provides two practical cues to understand the disruption process of the negatively charged model biomembranes, which can lay the structural foundation for designing and developing high-efficiency antimicrobial peptides.
Collapse
Affiliation(s)
- Liang Ma
- State Key Laboratory of Bioelectronics, School of Biological Science & Medical Engineering, Southeast University, Nanjing, 210096, Jiangsu Province, P. R. China
| | - Yongsheng Luo
- State Key Laboratory of Bioelectronics, School of Biological Science & Medical Engineering, Southeast University, Nanjing, 210096, Jiangsu Province, P. R. China
| | - Yong-Hao Ma
- State Key Laboratory of Bioelectronics, School of Biological Science & Medical Engineering, Southeast University, Nanjing, 210096, Jiangsu Province, P. R. China
| | - Xiaolin Lu
- State Key Laboratory of Bioelectronics, School of Biological Science & Medical Engineering, Southeast University, Nanjing, 210096, Jiangsu Province, P. R. China
| |
Collapse
|
9
|
Zhang L, Tan J, Pei Q, Ye S. Film thickness and surface plasmon tune the contribution of SFG signals from buried interface and air surface. CHINESE J CHEM PHYS 2020. [DOI: 10.1063/1674-0068/cjcp2006113] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Liang Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale, and Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
- Synergetic Innovation Center of Quantum Information Quantum Physics, University of Science and Technology of China, Hefei 230026, China
| | - Junjun Tan
- Hefei National Laboratory for Physical Sciences at the Microscale, and Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
- Synergetic Innovation Center of Quantum Information Quantum Physics, University of Science and Technology of China, Hefei 230026, China
| | - Quanbing Pei
- Hefei National Laboratory for Physical Sciences at the Microscale, and Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
- Synergetic Innovation Center of Quantum Information Quantum Physics, University of Science and Technology of China, Hefei 230026, China
| | - Shuji Ye
- Hefei National Laboratory for Physical Sciences at the Microscale, and Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
- Synergetic Innovation Center of Quantum Information Quantum Physics, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
10
|
Comparing vibrational sum frequency generation responses at fused silica and fluorite/liquid ethanol interfaces. Chem Phys 2020. [DOI: 10.1016/j.chemphys.2020.110814] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
11
|
Wang W, Tan J, Ye S. Unsaturated Lipid Accelerates Formation of Oligomeric β-Sheet Structure of GP41 Fusion Peptide in Model Cell Membrane. J Phys Chem B 2020; 124:5169-5176. [PMID: 32453953 DOI: 10.1021/acs.jpcb.0c02464] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Membrane fusion of the viral and host cell membranes is the initial step of virus infection and is catalyzed by fusion peptides. Although the β-sheet structure of fusion peptides has been proposed to be the most important fusion-active conformation, it is still very challenging to experimentally identify different types of β-sheet structures at the cell membrane surface in situ and in real time. In this work, we demonstrate that the interface-sensitive amide II spectral signals of protein backbones, generated by the sum frequency generation vibrational spectroscopy, provide a sensitive probe for directly capturing the formation of oligomeric β-sheet structure of fusion peptides. Using human immunodeficiency virus (HIV) glycoprotein GP41 fusing peptide (FP23) as the model, we find that formation speed of oligomeric β-sheet structure depends on lipid unsaturation. The unsaturated lipid such as POPG can accelerate formation of oligomeric β-sheet structure of FP23. The β-sheet structure is more deeply inserted into the hydrophobic region of the POPG bilayer than the α-helical segment. This work will pave the way for future researches on capturing intermediate structures during membrane fusion processes and revealing the fusion mechanism.
Collapse
Affiliation(s)
- Wenting Wang
- Hefei National Laboratory for Physical Sciences at the Microscale, and Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Junjun Tan
- Hefei National Laboratory for Physical Sciences at the Microscale, and Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Shuji Ye
- Hefei National Laboratory for Physical Sciences at the Microscale, and Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| |
Collapse
|
12
|
Zhang J, Tan J, Pei R, Ye S. Acidic Environment Significantly Alters Aggregation Pathway of Human Islet Amyloid Polypeptide at Negative Lipid Membrane. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:1530-1537. [PMID: 31995712 DOI: 10.1021/acs.langmuir.9b03623] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The misfolding and aggregation of human islet amyloid polypeptide (hIAPP) at cell membrane has a close relationship with the development of type 2 diabetes (T2DM). This aggregation process is susceptible to various physiologically related factors, and systematic studies on condition-mediated hIAPP aggregation are therefore essential for a thorough understanding of the pathology of T2DM. In this study, we combined surface-sensitive amide I and amide II spectral signals from the protein backbone, generated simultaneously in a highly sensitive femtosecond broad-band sum frequency generation vibrational spectroscopy system, to examine the effect of environmental pH on the dynamical structural changes of hIAPP at membrane surface in situ and in real time. Such a combination can directly discriminate the formation of β-hairpin-like monomer and oligomer/fibril at the membrane surface. It is evident that, in an acidic milieu, hIAPP slows down its conformational evolution and alters its aggregation pathway, leading to the formation of off-pathway oligomers. When matured hIAPP aggregates are exposed to basic subphase, partial conversion from β-sheet oligomers into ordered β-sheet fibrillar structures is observed. When exposed to acidic environment, however, hIAPP fibrils partially converse into more loosely patterned β-sheet oligomeric structures.
Collapse
Affiliation(s)
- Jiahui Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale, and Department of Chemical Physics , University of Science and Technology of China , Hefei , Anhui 230026 , China
| | - Junjun Tan
- Hefei National Laboratory for Physical Sciences at the Microscale, and Department of Chemical Physics , University of Science and Technology of China , Hefei , Anhui 230026 , China
| | - Ruoqi Pei
- Hefei National Laboratory for Physical Sciences at the Microscale, and Department of Chemical Physics , University of Science and Technology of China , Hefei , Anhui 230026 , China
| | - Shuji Ye
- Hefei National Laboratory for Physical Sciences at the Microscale, and Department of Chemical Physics , University of Science and Technology of China , Hefei , Anhui 230026 , China
| |
Collapse
|
13
|
Wang C, Luo Y, Li X, Zhang F, Wang F, Han X, Wang T, Beke-Somfai T, Lu X. Revealing Molecular-Level Interaction between a Polymeric Drug and Model Membrane Via Sum Frequency Generation and Microfluidics. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:1615-1622. [PMID: 31967838 DOI: 10.1021/acs.langmuir.9b03676] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Body fluids flow all over the body and affect the biological processes at biointerfaces. To simulate such a case, sum frequency generation (SFG) vibrational spectroscopy and a self-designed microfluidic chip were combined together to investigate the interaction between a pH-responsive polymeric drug, poly(α-propylacrylic acid) (PPAAc), and the model cell membranes in different liquid environments. By examining the SFG spectra under the static and flowing conditions, the drug-membrane interaction was revealed comprehensively. The interfacial water layer was screened as the key factor affecting the drug-membrane interaction. The interfacial water layer can prevent the side propyl groups on PPAAc from inserting into the model cell membrane but would be disrupted by numerous ions in buffer solutions. Without flowing, at pH 6.6, the interaction between PPAAc and the model cell membrane was strongest; with flowing, at pH 5.8, the interaction was strongest. Flowing was proven to substantially affect the interaction between PPAAc and the model cell membranes, suggesting that the fluid environment was of key significance for biointerfaces. This work demonstrated that, by combining SFG and microfluidics, new information about the molecular-level interaction between macromolecules and the model cell membranes can be acquired, which cannot be obtained by collecting the normal static SFG spectra.
Collapse
Affiliation(s)
- Chu Wang
- Department of Biomedical Engineering , Southeast University , Jiangsu 210096 , China
| | - Yongsheng Luo
- Department of Biomedical Engineering , Southeast University , Jiangsu 210096 , China
| | - Xu Li
- Department of Biomedical Engineering , Southeast University , Jiangsu 210096 , China
| | - Furong Zhang
- Department of Biomedical Engineering , Southeast University , Jiangsu 210096 , China
| | - Feng Wang
- Department of Biomedical Engineering , Southeast University , Jiangsu 210096 , China
| | - Xiaofeng Han
- Department of Biomedical Engineering , Southeast University , Jiangsu 210096 , China
| | - Ting Wang
- Department of Biomedical Engineering , Southeast University , Jiangsu 210096 , China
| | - Tamás Beke-Somfai
- Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences , Hungarian Academy of Sciences , H-1117 Budapest , Hungary
| | - Xiaolin Lu
- Department of Biomedical Engineering , Southeast University , Jiangsu 210096 , China
| |
Collapse
|
14
|
Hosseinpour S, Roeters SJ, Bonn M, Peukert W, Woutersen S, Weidner T. Structure and Dynamics of Interfacial Peptides and Proteins from Vibrational Sum-Frequency Generation Spectroscopy. Chem Rev 2020; 120:3420-3465. [DOI: 10.1021/acs.chemrev.9b00410] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Saman Hosseinpour
- Institute of Particle Technology (LFG), Friedrich-Alexander-University Erlangen-Nürnberg (FAU), 91058 Erlangen, Germany
| | | | - Mischa Bonn
- Molecular Spectroscopy Department, Max Planck Institute for Polymer Research, 55128 Mainz, Germany
| | - Wolfgang Peukert
- Institute of Particle Technology (LFG), Friedrich-Alexander-University Erlangen-Nürnberg (FAU), 91058 Erlangen, Germany
| | - Sander Woutersen
- Van’t Hoff Institute for Molecular Sciences, University of Amsterdam, 1098 EP Amsterdam, The Netherlands
| | - Tobias Weidner
- Department of Chemistry, Aarhus University, 8000 Aarhus C, Denmark
| |
Collapse
|
15
|
Tian KZ, Cao CC, Nie XM, Wang W, Han CQ. Sensitive and label-free detection of protein secondary structure by amide III spectral signals using surface-enhanced Raman spectroscopy. CHINESE J CHEM PHYS 2019. [DOI: 10.1063/1674-0068/cjcp1811267] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Kang-zhen Tian
- Jiangsu Key Laboratory of Advanced Laser Materials and Devices, School of Physics and Electronic Engineering, Jiangsu Normal University, Xuzhou 221116, China
| | - Chang-chun Cao
- The 95979 Army of Chinese People’s Liberation Army, Taian 271200, China
| | - Xin-ming Nie
- Jiangsu Key Laboratory of Advanced Laser Materials and Devices, School of Physics and Electronic Engineering, Jiangsu Normal University, Xuzhou 221116, China
| | - Wen Wang
- Jiangsu Key Laboratory of Advanced Laser Materials and Devices, School of Physics and Electronic Engineering, Jiangsu Normal University, Xuzhou 221116, China
| | - Cai-qin Han
- Jiangsu Key Laboratory of Advanced Laser Materials and Devices, School of Physics and Electronic Engineering, Jiangsu Normal University, Xuzhou 221116, China
| |
Collapse
|
16
|
Zhang R, Peng X, Jiao Z, Luo T, Zhou C, Yang X, Ren Z. Flexible high-resolution broadband sum-frequency generation vibrational spectroscopy for intrinsic spectral line widths. J Chem Phys 2019; 150:074702. [PMID: 30795649 DOI: 10.1063/1.5066580] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The difficulty in achieving high spectral resolution and accurate line shape in sum-frequency generation vibrational spectroscopy (SFG-VS) has restricted its use in applications requiring precise detection and quantitative analysis. Recently, the development of high-resolution broadband sum-frequency generation vibrational spectroscopy (HR-BB-SFG-VS) with sub-wavenumber resolution generated by synchronizing two independent amplifier lasers have opened new opportunities for probing an intrinsic SFG response. Here, we present a new flexible approach to achieve HR-BB-SFG-VS. In this system, two regeneration amplifiers shared the same oscillator laser as the seed, and a time-asymmetric visible pulse with a nearly Lorentzian line shape filtered by an etalon was used to overlap with a femtosecond broadband infrared pulse. This Lorentzian line shape of the visible pulse can greatly simplify the spectral fitting and analysis. We also demonstrated that the single-sided long visible pulse provided both high spectral resolution (1.4 cm-1) and effective suppression of the non-resonant background by detuning the time delay between visible and infrared pulses in SFG-VS measurements. With this new SFG setup, a pair of spectral splittings by 3.1 ± 0.7 and 3 ± 0.2 cm-1 for the symmetric and antisymmetric stretching of the CH3 group was resolved at the CH3CN/TiO2(110) surface, which are tentatively attributed to two different orientational methyl groups. These technological advancements can help broaden the applications of HR-BB-SFG-VS and provide solid ground for a better understanding of complex molecular structures and dynamics at interfaces.
Collapse
Affiliation(s)
- Ruidan Zhang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, People's Republic of China
| | - Xingxing Peng
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, People's Republic of China
| | - Zhirun Jiao
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, People's Republic of China
| | - Ting Luo
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, People's Republic of China
| | - Chuanyao Zhou
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, People's Republic of China
| | - Xueming Yang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, People's Republic of China
| | - Zefeng Ren
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, People's Republic of China
| |
Collapse
|
17
|
Yang WC, Hore DK. Broadband models and their consequences on line shape analysis in vibrational sum-frequency spectroscopy. J Chem Phys 2018; 149:174703. [DOI: 10.1063/1.5053128] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Wei-Chen Yang
- Department of Chemistry, University of Victoria, Victoria,
British Columbia V8W 3V6, Canada
| | - Dennis K. Hore
- Department of Chemistry, University of Victoria, Victoria,
British Columbia V8W 3V6, Canada
| |
Collapse
|
18
|
Tan J, Li C, Zhang J, Ye S. Real-Time observation of protein transport across membranes by femtosecond sum frequency generation vibrational spectroscopy. CHINESE J CHEM PHYS 2018. [DOI: 10.1063/1674-0068/31/cjcp1805128] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Affiliation(s)
- Junjun Tan
- Hefei National Laboratory for Physical Sciences at the Microscale, and Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
- Synergetic Innovation Center of Quantum Information & Quantum Physics, University of Science and Technology of China, Hefei 230026, China
| | - Chuanzhao Li
- Hefei National Laboratory for Physical Sciences at the Microscale, and Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
- Synergetic Innovation Center of Quantum Information & Quantum Physics, University of Science and Technology of China, Hefei 230026, China
| | - Jiahui Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale, and Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
- Synergetic Innovation Center of Quantum Information & Quantum Physics, University of Science and Technology of China, Hefei 230026, China
| | - Shuji Ye
- Hefei National Laboratory for Physical Sciences at the Microscale, and Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
- Synergetic Innovation Center of Quantum Information & Quantum Physics, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|